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ALGEBRAIC K-THEORY AND CUBICAL DESCENT

PERE PASCUAL and LLORENÇ RUBIÓ PONS

(communicated by Daniel Grayson)

Abstract
In this note we apply the Guillén-Navarro descent theorem

to define a descent variant of the algebraic K-theory of vari-
eties over a field of characteristic zero, KD(X), which coincides
with K(X) for smooth varieties and to prove that there is a
natural weight filtration on the groups KD∗(X). After a result
of Haesemeyer, we deduce that this theory is equivalent to the
homotopy algebraic K-theory introduced by Weibel.

1. Introduction

In Théorème (2.1.5) of [GN02], F. Guillén and V. Navarro have proved a general
result, which permits one to extend (in the presence of resolution of singularities) a
contravariant functor compatible with smooth blow-ups on the category of smooth
schemes to a functor on the category of all schemes in such a way that the extended
functor is compatible with general blow-ups. In this paper we apply this result to
algebraic K-theory. More specifically, we consider the algebraic K-theory functor,
which to a smooth algebraic variety over a field of characteristic zero X, associates the
spectrum of the cofibration category of perfect complexes, K(X). We apply Guillén-
Navarro extension criterion to prove that this functor admits an (essentially unique)
extension to all algebraic varieties, KD(X), which satisfies a descent property.

Moreover, by using the extension theorem in analogy with Guillén and Navarro’s
paper [GN03], we are able to prove the existence of a natural filtration on the KD-
groups associated to an algebraic variety. In fact, the KD-theory of an algebraic
variety X is defined by cubical descent and therefore, if X• is a cubical hyperresolu-
tion of X (see [GNPP, I.(2.12)]), then there is a convergent spectral sequence, see
Proposition 4.3,

Epq
1 =

⊕

|α|=p+1

Kq(Xα)⇒ KDq−p(X),

where we have written KD∗(X) = π∗(KD(X)). We prove that the associated filtra-
tion on KD∗(X) is independent of the chosen hyperresolution X• of X.

It is well known that algebraic K-theory of schemes does not satisfy descent.
C. Haesemeyer has proved in [H, Th. 3.5] that the homotopy algebraic K-theory,
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KH, introduced by Weibel in [W1], satisfies descent for varieties over a field of char-
acteristic zero. From the uniqueness of our extension KD and Haesemeyer’s result, it
follows that, for any variety X over a field of characteristic zero, the spectra KD(X)
and KH(X) are weakly equivalent. We observe that Cortiñas, Haesemeyer and Weibel
have analyzed in [CHW] the fiber of the morphism K −→ KH in terms of the nega-
tive cyclic homology functor.

Following [GN02, Théorème (2.3.6)], we also find an extension of K to a functor
with compact support, Kc, which once again by uniqueness is weakly equivalent to
the algebraic K-theory with compact support introduced by Gillet and Soulé in [GS].
By our techniques we recover the weight filtration introduced in [GS, Theorem 7] for
algebraic K-theory with compact support.

Some results of this paper have been obtained by other authors using the fibrant
replacement functor for a closed model category structure on the category of pre-
sheaves on the category of schemes with a suitable topology; see the papers [CHSW,
CHW] and [GS]. As remarked in [R2, Theorem 4.6], the two presentations are
equivalent, but we think it is worthwhile to have both methods at hand. In particular,
we remark that we are able to easily deduce the existence of a weight filtration on
KH∗(X).
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We thank F. Guillén and V. Navarro for allowing us to use their preprint [GN03]
and for many helpful discussions. We have also benefited from conversations with
A. Roig.

2. The descent theorem of Guillén-Navarro

In this section we recall the main extension theorem proved by Guillén and Navarro
and present some corollaries of its proof not explicitly stated in [GN02]. We also fix
some notation.

2.1. Descent categories
The descent theorem in [GN02, (2.1.5)] is stated for functors from the category

of smooth varieties to a cohomological descent category. This kind of category is a
(higher) variation of the classical notion of triangulated category. We recall the main
features of descent categories and refer to [GN02, (1.5.3) and (1.7)] for the precise
definitions (see also the proof of Proposition 3.6).

2.1.1.
For any finite set S, the associated cubical set 2S is the ordered set of non-empty
subsets of S and the augmented cubical set 2+

S is the ordered set of subsets of S,
including the empty set. When S = {0, 1, . . . , n}, we simply write 2n (respectively,
2+

n ), which may be identified with the ordered set of n+ 1-tuples (i0, . . . , in), where
ik ∈ {0, 1} such that there is a k with ik 6= 0, and including the (0, . . . , 0)-tuple in the
augmented case. We will write |α| = ∑n

0 ik.
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As usual, we will denote the associated category with the same symbol. Follow-
ing [GN02, (1.1.1)], we denote by Π the category whose objects are finite products
of categories 2S and whose morphisms are the functors associated to injective maps
in each component. The objects of Π will be called cubical index categories. Π is a
symmetric monoidal category.

2.1.2.
Let D be a category. Given a cubical index category 2, a 2-cubical diagram of D is
a functor X : 2 −→ D. We denote by CoDiagΠD the category of cubical diagrams
of D. (According to [GN02, (1.2.2)], we should call these functors cubical codia-
grams, reserving the term diagram for the contravariant functors X : 2op −→ D.)
The objects are the pairs (X,2), where X is a 2-cubical diagram; a morphism from
the diagram (X,2) to the diagram (Y,2′) is a functor δ : 2′ −→ 2 together with a
natural transformation δ∗X = X ◦ δ ⇒ Y .

2.1.3.
A descent category is, essentially, a triple (D, E, s) given by a cartesian category D
with initial object ∗, a saturated class of morphisms E of D, called weak equivalences,
and a functor

s : CoDiagΠD −→ D,
called the simple functor, which satisfies the following properties:

1. Product : For any object X of D, there is a natural isomorphism s20(X ×20)∼= X, and for any 2 ∈ ObΠ and any couple of 2-diagrams (X,Y ), the morphism

s2(X × Y ) −→ s2X × s2Y

is an isomorphism.

2. Factorisation: Let 2,2′ ∈ ObΠ. For any 2×2′-diagram X = (Xαβ), there is
an isomorphism

µ : sαβXαβ −→ sαsβXαβ ,

natural in X.

3. Exactness: Let f : X −→ Y be a morphism of 2-diagrams, 2 ∈ ObΠ. If for all
α ∈ 2 the morphism fα : Xα −→ Yα is a weak equivalence (i.e. it is in E), then
the morphism s2f : s2X −→ s2Y is a weak equivalence.

4. Acyclicity criterion: Let f : X1 −→ X0 be a morphism of D. Then, f is a weak
equivalence if and only if the simple of the 21-diagram

∗ −→ X0
f←− X1

is acyclic, that is, it is weakly equivalent to the final object of D.

The acyclicity criterion has to be also verified for higher cubical diagrams. More
specifically, let X+ be a 2+

n -diagram in D and denote by X the cubical diagram
obtained from X+ by restriction to 2n. Then the acyclicity criterion takes the fol-
lowing form (see Property (CD8)op of Definition (1.5.3) of [GN02]):
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4′. Acyclicity criterion: The augmentation morphism λε : X0 −→ s2X is a weak
equivalence if and only if the canonical morphism ∗ −→ s2+X+ is a weak equiv-
alence.

We remark that the transformations µ and λ of Properties 2 and 4′ are, in fact,
part of the data of a descent structure.

2.1.4.
The categories of complexes give the basic examples of descent categories: if A is
an abelian category, then the category of bounded below cochain complexes C∗(A),
with the class of quasi-isomorphisms as weak equivalences and the total functor of
a multicomplex as simple functor, is a descent category. See [GN02, (1.5.5) and
(1.5.13)], for other examples.

2.1.5.
There is another technical issue in the statement of the Guillén-Navarro theorem, that
of a Φ-rectified functor. If D is a descent category, then for each cubical index cate-
gory 2, the simple functor induces a functor Ho(D2) −→ HoD, so we can define the
homotopy simple object associated to a true 2-diagram in D. There are situations,
particularly those related with resolutions, that are defined up to quasi-isomorphism,
where we are interested in cubical diagrams in HoD; unfortunately, we have not, in
general, a simple functor (HoD)2 −→ HoD. The notion of Φ-rectified functor corre-
sponds, roughly speaking, to the functors F : C −→ HoD defined also, in a compatible
way, on all cubical diagrams in the form F2 : C2 −→ Ho(D2), so that we can take the
composition C2 −→ Ho(D2) s−→ HoD; see [GN02, (1.6)] for the technical details. It
will be enough for us to know that any functor C −→ D induces a Φ-rectified functor.

2.2. The Guillén-Navarro theorem
Let k be a field of characteristic zero. We denote by Sch(k) the category of reduced

separated schemes of finite type over k, simply called algebraic varieties, and by
Sm(k) the category of smooth varieties.

2.2.1.
Let

Ỹ
j−−−−→ X̃

g

y
yf

Y
i−−−−→ X

be a cartesian diagram of schemes, which we may consider as a 2+
1 -diagram. We say

that it is an acyclic square if i is a closed immersion, f is a proper morphism and the
induced morphism X̃ \ Ỹ −→ X \ Y is an isomorphism.

We say that an acyclic square is an elementary acyclic square if all schemes in the
diagram are irreducible and smooth, and f is the blow-up of X along Y .
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Theorem 2.1 ([GN02, (2.1.5)]). Let D be a cohomological descent category and

G : Sm(k) −→ HoD
a contravariant Φ-rectified functor satisfying the following conditions:

(F1) G(∅) = 0, and the canonical morphism G(X t Y ) −→ G(X)×G(Y ) is an iso-
morphism,

(F2) If X• is an elementary acyclic square in Sm(k), then sG(X•) is acyclic.

Then there is an extension of G to a Φ-rectified functor

GD : Sch(k) −→ HoD
which satisfies the descent condition

(D) If X• is an acyclic square in Sch(k), then sGD(X•) is acyclic.

Moreover, this extension is essentially unique: if G′ is another extension of G verifying
the descent property (D), then there is a uniquely determined isomorphism of Φ-
rectified functors GD ⇒ G′.

We will say that the functor GD has been obtained from G by cubical descent.
The proof of Guillén-Navarro’s theorem gives more than stated above. In fact, if

X is an algebraic variety and X• −→ X is any cubical hyperresolution (see [GNPP,
I.(2.12)], then it is proved in [GN02, (2.1.5)] that, under the hypothesis of the theo-
rem,

GD(X) = sG(X•),

gives a well-defined functor from Sch(k) to HoD, independent of the chosen hyper-
resolution X•. From this explicit presentation, we easily deduce some more properties
of the descent extension GD.

Proposition 2.2. Suppose that the functor G in Theorem 2.1 is already defined for
all varieties, that is, we have G : Sch(k) −→ HoD, which satisfies (F1) and (F2).
Then there is a natural transformation of Φ-rectified functors G⇒ GD.

Proof. LetX be a variety andX• a cubical hyperresolution ofX, indexed by a cubical
set 2. Taking the simple of the morphism of cubical diagrams G(X ×2) −→ G(X•),
we get the morphism

G(X) = sG(X ×2) −→ sG(X•) = GD(X).

Looking at the construction and properties of cubical hyperresolutions, it may
be proved that the extended functor GD inherits many properties of the functor G
over the smooth varieties. As an example, and in view of their interest in algebraic
K -theory, let us note the two properties enclosed in the following proposition.

Proposition 2.3. Consider the hypothesis of Theorem 2.1.

(1) Suppose that G is homotopy invariant; i.e., for any smooth variety X the pro-
jection X × A1 −→ X induces an isomorphism G(X) ∼= G(X × A1). Then GD
is homotopy invariant: for any variety X, there is an isomorphism GD(X) ∼=
GD(X × A1).
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(2) Suppose that G satisfies the Mayer-Vietoris property; i.e., for any smooth variety
X and any open decomposition X = U ∪ V , the square, induced by inclusions,

G(X) −−−−→ G(U)
y

y
G(V ) −−−−→ G(U ∩ V )

is acyclic in D. Then GD satisfies Mayer-Vietoris for all varieties.

Proof. Given X an algebraic variety we fix X•, a cubical hyperresolution of X.
(1) By the definition of GD and the homotopy invariance of G, we have a sequence

of weak equivalences

GD(X) ∼= sG(X•) ∼= sG(X• × A1) ∼= GD(X × A1),

so the proof follows.
(2) By the definition of cubical hyperresolutions (see [GNPP, (I.§2)]), the restric-

tions of X• to U, V and U ∩ V give hyperresolutions of these varieties. Let
us denote by U•, V• and (U ∩ V )•, respectively, these restrictions. By con-
struction, for any index α we have an open decomposition Xα = Uα ∪ Vα with
Uα ∩ Vα = (U ∩ V )α, so from the Mayer-Vietoris property for G on the category
of smooth schemes, we deduce that the morphisms

G(Xα)−→s




G(Uα)y
G(Vα) −−−−→ G((U ∩ V )α)




are weak equivalences for any α. By the exactness property of descent categories,
we have that

sG(X•)−→sαs




G(Uα)
y

G(Vα) −−−−→ G((U ∩ V )α)




is also a weak equivalence. But, by the factorization axiom of descent categories,
the simple on the right is weak equivalent to

s




sG(U•)y
sG(V•) −−−−→ sG((U ∩ V )•)


 .

So, taking into account the definition of GD, we finally deduce that the mor-
phism GD(X) −→ s(GD(U)←− GD(U ∩ V ) −→ GD(V )) is a weak equiva-
lence; hence the Mayer-Vietoris property for open sets follows.

2.3. Extension with compact support
In [GN02], the authors present some variations on the main theorem. In particular,

they prove, in [GN02, (2.2.2)], that with the same hypothesis of Theorem 2.1 there
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is an extension Gc of G with compact support: if Schc(k) denotes the category of
varieties and proper morphisms, then there is an extension of G to a Φ-rectified
functor

Gc : Schc(k) −→ HoD
which satisfies the descent property (D) and, moreover,
(Dc) If Y is a subvariety of X, then there is a natural isomorphism

Gc(X − Y ) ∼= s
2

+
0
(Gc(X) −→ Gc(Y )).

3. The descent category of spectra

In this section we prove that the category of Ω-spectra, with the homotopy limit
as a simple functor, is a (cohomological) descent category in the sense of [GN02].

3.1. Fibrant spectra
We will work in the category of fibrant spectra of simplicial sets. Our main ref-

erences will be the paper by Bousfield-Friedlander [BF] and Section 5 of Thoma-
son’s [T80].

Recall that a prespectrum is a sequence of pointed simplicial sets Xn, n > 0,
together with structure maps ΣXn −→ Xn+1, where for a pointed simplicial set K,
ΣK = S1 ∧K. A prespectrum X is a fibrant spectrum, also called Ω-spectrum, if each
Xn is a fibrant simplicial set and the maps Xn −→ ΩXn+1, obtained by adjunction
of the structure maps, are weak equivalences. Morphisms between prespectra and
between fibrant spectra are defined as maps in each degree that commute with the
structure maps. We denote by PreSp and Sp the categories of prespectra and fibrant
spectra, respectively.

The homotopy groups of a prespectrum X are defined by the direct limit

πk(X) = lim−→πk+n(Xn), k ∈ Z,
so that if X is a fibrant spectrum, then πk(X) = πk+n(Xn) for k + n > 0, and, more
specifically, for k > 0, πk(X) = πk(X0). A map f : X −→ Y of prespectra is a weak
equivalence if it induces an isomorphism on homotopy groups. In this way, a map of
fibrant spectra is a weak equivalence if and only if it induces weak equivalences in
each degree.

3.2. Homotopy limit
Let X be a functor from an index category I to Sp. The homotopy limit spaces

holimXn, n > 0, in the sense of Bousfield-Kan, [BK, Chapter XI], define a fibrant
spectrum holimX; see [T80, 5.6]. In fact, one can see that PreSp has a structure of
a simplicial closed model category (see [S, Proposition 2.1.5]) so that we can apply
the general theory of homotopy limits for these categories [H, Chapter 18].

The main properties we need of homotopy limits between fibrant spectra are:
(i) Functoriality and exactness on fibrant spectra: Let f : X −→ Y be a morphism

of I-diagrams spectra. Then there is a natural morphism holimf : holimX −→
holimY . If for each α ∈ I the morphism fα : Xα −→ Yα is a weak equivalence,
then holimf is a weak equivalence.
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(ii) Functoriality on the index category and cofinality theorem: Given a functor
δ : I −→ J and a diagram X : J −→ Sp, there is a natural map holimJX −→
holimIδ

∗X, where δ∗X = X ◦ δ. If δ is left cofinal, then this morphism is a weak
equivalence.

(iii) For any diagram X : I −→ Sp, there is a natural map limX −→ holimX.

3.2.1.
For a cubical diagram of spectra X : 2 −→ Sp, we define the simple spectrum of X
as the homotopy limit

s2(X) = holim2X.

For a fixed cubical category 2, s2 defines a functor s2 : CoDiag2Sp −→ Sp, and
by the functoriality of the homotopy limit with respect to the index category 2, we
obtain a functor

s : CoDiagΠSp −→ Sp.

3.2.2.
Following [GN02, (1.4.3)], we extend the functor s to augmented cubical diagrams by
using the cone construction. For instance, if f : X −→ Y is a 2+

0 -diagram of spectra,
that is to say, a morphism, then it follows from loc. cit . that

s
2

+
0
(f) = s21(X

f−→ Y ←− ∗),
which is weakly equivalent to the homotopy fiber of f .

Take an isomorphism 2+
n
∼= 2+

0 ×2+
n−1. As the cone construction is compatible

with this product structure, we find

s
2

+
n
X+ = s

2
+
n−1

(s
2

+
0
X+);

that is, by viewing X+ as a morphism of two 2+
n−1-diagrams, f : X+

0 −→ X+
1 , the

simple spectrum associated to X+ is obtained as the simple of the 2+
n−1-cubical

diagram which in each degree α has the homotopy fiber of fα. As a consequence, the
simple spectrum s

2
+
n
X+ is isomorphic to the total fiber space of X+ as defined by

Goodwillie in [G, 1.1].

3.2.3.
If X+ is a 2+

n -diagram and X denotes its restriction to 2n, then it follows from
the general properties of homotopy limits outlined above that there is a natural map
X0 −→ holimX. As a consequence of [G, 1.1b] (compare also with [P, Proposition
(3.3)], for a similar situation), we obtain:

Proposition 3.1. Let X+ : 2+
n −→ Sp be an augmented cubical diagram of spectra

and X be the cubical diagram obtained by restriction to 2n. The simple s
2

+
n
X+ is

isomorphic to the homotopy fiber of the morphism X0 −→ s2X = holimX.

Denote by ∗ the initial object of Sp. The following corollary relates the simple of
a cubical diagram with the simple of an augmented diagram.
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Corollary 3.2. Let X : 2n −→ Sp be a cubical diagram of spectra and let X̃ the
augmented cubical diagram obtained from X by adding X0 = ∗. Then,

s
2

+
n
X̃ = Ωs2nX.

We also deduce the following result, which will be used later:

Corollary 3.3. Let X• be a 2n-diagram of spectra. Then there is a convergent spec-
tral sequence

Epq
1 =

⊕

|α|=p+1

πq(Xα) =⇒ πq−p(s2n
X•).

Proof. Consider the cubical diagrams F pX• defined by

(F pX•)α =

{
Xα, if |α| 6 p+ 1,
∗, if |α| > p+ 1.

Observe that F−1X• is the constant diagram defined by ∗ and that FnX• = X•. We
obtain a sequence of cubical diagrams

FnX• −→ Fn−1X• −→ · · · −→ F 0X• −→ ∗,
which is a degreewise sequence of fibrations of spectra. Hence, taking homotopy limits
there is a sequence of fibrations

s2(FnX•) −→ s2(Fn−1X•) −→ · · · −→ s2(F 0X•) −→ ∗.
The Bousfield-Kan spectral sequence associated to the tower of fibrations obtained by
adjoining identities from the left converges to the homotopy of s2(FnX•) = s2X•.
The E1-terms are Epq

1 = πq−p(sGrpX•), where GrpX• is the 2-diagram obtained
degreewise as the fibers of the morphism s2(F pX•) −→ s2(F p−1X•). But, reasoning
as in the proof of Proposition (3.3) of [P], for these diagrams we have

s2nGr
pX• =

∏

|α|=p+1

ΩpXα;

hence it follows that

Epq
1 = πq−p


 ∏

|α|=p+1

ΩpXα


 =

⊕

|α|=p+1

πq(Xα).

Convergence is a consequence of Lemma 5.48 of [T80].

3.2.4.
We say that an augmented cubical diagram of spectra X+ is acyclic if the canonical
morphism ∗ −→ s2+X+ is a weak equivalence. The acyclic diagrams are also called
homotopy cartesian diagrams (see [G, §1] and [W1]). From Proposition 3.1, the
corollary below follows immediately (see also [W1, Proposition 1.1]):

Corollary 3.4. Let X+ : 2+
n −→ Sp be an augmented cubical diagram of spectra and

X the cubical diagram obtained by restriction to 2n. Then X+ is acyclic if and only
if the natural morphism X0 −→ holimX is a weak equivalence.
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Remark 3.5. Observe that for n = 2 this result reduces to the well-known fact that a
square of fibrant spectra

X −−−−→ Y
y

yh

X ′ k−−−−→ Y ′

is acyclic (or homotopy cartesian) if and only if the natural map from X to the
homotopy limit of X ′ k−→ Y ′ h←− Y is a weak equivalence.

3.2.5.
After the remarks above, we have on Sp a class of weak equivalences and a simple
functor s : CoDiagΠSp −→ Sp. According to [GN02, Définition (1.7.1)] to have a
(cohomological) descent category on Sp we also need the following data:

(i) a natural transformation µ : s2 ◦ s2′ ⇒ s2×2′ ,

(ii) a natural transformation λ2 : idSp ⇒ s2 ◦ i2,

in such a way that (s, µ, λ0) : Π −→ CoRealΠSp defines a comonoidal quasi-strict
functor; see loc. cit . As the homotopy limit is the end of a functor, by the Fubini
theorem (see [M, §IX.8]) there is a natural transformation

µ : s2 ◦ s2′ ⇒ s2×2′ ,

such that for any diagram X, µX is an isomorphism. As for λ, recall that s2(X ×2)
is the function space from the classifying space of the index category 2 to X, so one
defines

λ2(X) : X −→ s2(X ×2)

by constant functions.

Proposition 3.6. The category of fibrant spectra Sp with weak homotopy equiva-
lences as weak equivalences and the homotopy limit holim as a simple functor for
cubic diagrams, and the natural transformations µ, λ defined above, is a cohomologi-
cal descent category.

Proof. The actual definition of a cohomological descent category consists of eight
axioms, which are dual to the axioms (CD1)–(CD8) of [GN02, Definition (1.5.3)] (see
also their (1.7)). Most of them are immediate from the definitions and the properties of
homotopy limits, so we comment on the four axioms summarized in Subsection 2.1.3,
(see also [R, Theorem 5.1] for an extension of this result to stable simplicial model
categories).

It is clear from the definitions that Sp is a cartesian category with initial object
∗.

1. Product : Since the homotopy limit is an end, it is compatible with products, so
for any 2-diagrams X,Y of Sp, there is a natural isomorphism

s2(X × Y ) ∼= s2(X)× s2(Y ).
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2. Factorisation: In addition, because of the Fubini theorem for ends, if X is a
2×2′-diagram, then there are natural isomorphisms

s2s2′Xαβ
∼= s2×2′Xαβ

∼= s2′s2Xαβ ;

see [T80, Lemma 5.7].

3. Exactness: If f : X −→ Y is a morphism of 2-diagrams in Sp such that for
any α ∈ 2 the morphism fα is a weak equivalence, then s2f : s2X −→ s2Y is a
weak equivalence, since the homotopy limit preserves weak equivalences between
fibrant spectra; see [T80, 5.5]. Observe that this property is not true for pre-
spectra.

4′. Acyclicity criterion: This is exactly the result of Corollary 3.4.

4. Descent algebraic K-theory

4.1.
Let X be a noetherian separated scheme. We denote by K(X) the K-spectrum

associated to the category of perfect complexes on X; see [TT, Definition 3.1]. It
defines a contravariant functor from the category of noetherian separated schemes to
the category of spectra Sp ([TT, 3.14]), so it defines a rectified functor; see 2.1.5.
Moreover, it is a covariant functor for perfect projective maps and for proper flat
morphisms ([TT, 3.16]).

Theorem 4.1. Let k be a field of characteristic zero. The rectified functor

K : Sm(k) −→ HoSp

admits a unique extension, up to a unique isomorphism of Φ-rectified functors, to a
functor

KD : Sch(k) −→ HoSp

such that it satisfies the descent property (D):

(D) if X• is an acyclic square in Sch(k), then sKD(X•) is acyclic.

Proof. By Proposition 3.6, we know that Sp is a descent category. So, in order to
apply the Guillén-Navarro descent theorem 2.1, we have to verify properties (F1)
and (F2). The first one is immediate, while (F2) follows from Thomason’s calculation
in [T93, Théorème], of the algebraicK-theory of a blow up along a regularly immersed
subscheme, as has been observed by many authors (see, for example, [H, Theorem
3.6], [GS, Theorem 5], or [CHSW, Remark 1.6]).

In the context of cubical spectra we propose the following presentation of property
(F2). Consider an elementary acyclic square as in 2.2.1 and the square of spectra
obtained by application of the algebraic K functor

K(X) i∗−−−−→ K(Y )

f∗
y

yg∗

K(X̃)
j∗−−−−→ K(Ỹ ).
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We have to prove that this square is an acyclic square of spectra. If N is the conormal
bundle of Y in X, then Ỹ = P(N), so the morphism Ψ:

∏dK(Y ) −→ K(Ỹ ) induced
by the functor which is defined on a sequence of perfect complexes by

(E0, . . . , Ed−1) 7→
d−1⊕

i=0

OP(N)(−i)⊗ Lg∗Ei

is a weak equivalence; see [TT, Theorem 4.1] and also [T91].
For the blown up variety X̃, it has been proved by Thomason (see [T93, Théorème

2.1]) that the morphism Φ: K(X)×∏d−1K(Y ) −→ K(̃,X), which is induced by the
functor on perfect complexes given by

(F,E1, . . . , Ed−1) 7→ f∗F ⊕
d−1⊕

i=1

j∗(OP(N)(−i)⊗ Lg∗Ei)

is also a weak equivalence.
Define

j′ : K(X)×
d−1∏
K(Y ) −→

d∏
K(Y )

componentwise by g∗i∗ on the first component and the morphism given by multi-
plication by λ−1(N) in the Y -components. After the self-intersection formula [T93,
(3.1.4)], the diagram

K(X)×∏d−1K(Y ) Φ−−−−→ K(X̃)

j′
y

yj∗

∏dK(Y ) Ψ−−−−→ K(Ỹ )

is commutative. Since Φ,Ψ are weak equivalences, it is an acyclic diagram.
Consider now the augmented commutative cubical diagram

K(X)

xxx
xxxxxx

xxxxxxx
xx

// K(X)×∏d−1K(Y )
Φ

wwoooooooooooo

j′

²²

K(X)

i∗

²²

f∗ //

²²

K(X̃)

j∗

²²

K(Y )

xxx
xxxxxx

xxxxxxx
xx

// ∏dK(Y )
Ψ

wwoooooooooooo

K(Y )
g∗ // K(Ỹ ),

where the horizontal back arrows are the inclusion on the first factor.
As the right and left side squares are acyclic, it follows from the definition in 3.2.2

that it is an acyclic cubical diagram. But the back square is acyclic because the two
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horizontal morphisms have the same cofiber, so the front square must be acyclic,
which is what has to be proved.

For a k-variety X, we will denote by KD∗(X) the homotopy groups of KD(X),

KD∗(X) := π∗(KD(X)).

The descent property (D) gives rise to exact sequences:

Corollary 4.2. Let X• an acyclic square in Sch(k). Then there is an exact sequence

· · · → KDn(X)
f∗−i∗−−−−→ KDn(X̃)⊕KDn(Y )

j∗+g∗−−−−→ KDn(Ỹ ) δ−→ KDn−1(X)→ · · · .

More generally, if X is a k-variety, then KD(X) is defined as the simple of the
cubical diagram of spectra K(X•), where X• is a cubical hyperresolution, so from
Proposition 3.3 we deduce:

Proposition 4.3. Let k be a field of characteristic zero and X be an algebraic k-
variety. Let X• be a cubical hyperresolution of X. Then there is a convergent spectral
sequence

Epq
1 =

⊕

|α|=p+1

Kq(Xα) =⇒ KDq−p(X).

If X is of dimension d, then we can take cubical hyperresolutions of size 6 d
(see [GNPP, I.2.15]), so it follows:

Corollary 4.4. Let k be a field of characteristic zero and X be an algebraic k-variety
of dimension d. Then,

KDn(X) = 0, n < −d.

4.2. Some properties of KD
As explained in Section 1, KD inherits many properties of the algebraic K-theory

of smooth schemes. For example, from Proposition 2.3 and the properties of homotopy
invariance and Mayer-Vietoris for the K-theory of smooth schemes (see [Q, 7.1 and
7.3.5]), we deduce immediately:

Proposition 4.5. The descent KD-theory satisfies:

(1) KD is homotopy invariant; that is, for any variety X, the projection X × A1

−→ X induces a weak equivalence KD(X) ∼= KD(X × A1).

(2) KD has the Mayer-Vietoris property; that is, if X = U ∪ V , with U, V open sets,
then the square

KD(X) −−−−→ KD(U)
y

y
KD(V ) −−−−→ KD(U ∩ V )

is homotopy cartesian.
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One may prove in a similar manner that KD satisfies the fundamental Bass the-
orem. Also, following [T80, Proposition 2.3], or [W1, Corollary 5.2], one can prove
the existence of a Brown-Gersten type spectral sequence:

Epq
2 = Hp(X, K̃D−q)⇒ KD−p−q(X),

where K̃D∗ stands for the sheaf in the Zariski topology associated to the presheaf
KD∗.

4.3. Equivalence with homotopy algebraic K-theory
In [H, Theorem 3.5], Haesemeyer has proved that the homotopy algebraic K-

theory KH of an algebraic variety X defined by Weibel in [W1] (see also [TT,
Exercise 9.11]), satisfies the descent axiom (D). As the KH-theory coincides with
K-theory for smooth varieties, we can apply the uniqueness property of the extension
theorem 2.1 to obtain:

Corollary 4.6. Let X be an algebraic variety over a field of characteristic zero. There
is a natural morphism KD(X) −→ KH(X), in HoSp, which is a weak equivalence.

This may also be stated as a uniqueness result for KH-theory:

Corollary 4.7. Let k be a field of characteristic zero. The homotopy algebraic K-
theory KH is the unique (Φ-rectifiable) functor Sch(k) −→ HoSp, up to equivalence,
which satisfies the descent property (D) and is equivalent to the algebraic K-functor
K over smooth algebraic varieties.

4.4. Algebraic K-theory with compact support
We can apply the same arguments of the proof of Theorem 4.1 jointly with the

compact support extension theorem in [GN02, (2.3.6)], to extend the algebraic K-
theory of smooth projective varieties over a field of characteristic zero to a theory
with compact support:

Theorem 4.8. Let k be a field of characteristic zero and V(k) be the category of
smooth projective k-varieties. The rectified contravariant functor

K : V(k) −→ HoSp

admits a unique extension, up to unique isomorphism of Φ-rectified functors, to a
functor

Kc : Schc(k) −→ HoSp

such that it satisfies the descent property (D) and the compact support descent prop-
erty:

(Dc) If Y is a subvariety of X, then there is a natural isomorphism

Kc(X \ Y ) ∼= holim(Kc(X) −→ Kc(Y )←− ∗).
In other words, property (Dc) says that the sequence

Kc(X \ Y ) −→ Kc(X) −→ Kc(Y )



ALGEBRAIC K-THEORY AND CUBICAL DESCENT 19

is a fibration sequence in HoSp, so that taking homotopy groups and writing Kc
∗(X)

= π∗(Kc(X)), it gives rise to a long exact sequence

· · · −→ Kc
n(X \ Y ) −→ Kc

n(X) −→ Kc
n(Y ) −→ Kc

n−1(X \ Y ) −→ · · · .

In [GS, Theorem 7], Gillet-Soulé defined a K-theory with compact support satis-
fying (Dc), so by the uniqueness of the compact support extension we find:

Corollary 4.9. Let X be an algebraic variety over a field of characteristic zero. Then
Kc(X) is naturally isomorphic in HoSp to the algebraic K-theory with compact sup-
port introduced by Gillet and Soulé in [GS, Theorem 7].

5. Weight filtration

In this section we prove that there are well-defined filtrations on the groups
KD∗(X), or equivalently on KH∗(X), and on the groups Kc

∗(X), which are trivial
for X smooth. In the compact support case we recover the weight filtration obtained
by Gillet-Soulé [GS].

We fix a field k of characteristic zero.

5.1.
Let X be an algebraic variety. The spectral sequence in Proposition 4.3 associated

to a cubical hyperresolution X• of X induces a filtration on the groups KDn(X). Our
next goal is to prove that this filtration on KDn(X) is independent of the cubical
hyperresolution X•. We will follow Section 3 of [GN03] closely, where the authors
analyze the weight filtration in an abelian setting.

5.2. Towers of fibrant spectra
First, we introduce a cohomological descent structure on the category of towers of

fibrations tow(Sp).

5.2.1.
A tower of fibrations X(−) is a sequence of fibrations of spectra

· · · −→ X(n) −→ X(n− 1) −→ · · · −→ X(1) −→ X(0) −→ ∗.
A morphism of towers of fibrations is a morphism of diagrams. We denote by tow(Sp)
the category of towers of fibrations.

Defining weak equivalences of towers of fibrations and simple functors for cubical
diagrams degreewise, it is immediate to prove the following result:

Proposition 5.1. The category of towers of fibrations tow(Sp) together with weak
equivalences and simple functors for cubical diagrams defined degreewise is a descent
category.
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5.2.2.
We now introduce a second descent structure on tow(Sp). Recall that if X(−) is a
tower of fibrations, then there is a functorial spectral sequence

Epq
1 = πq−p(F (p)) =⇒ πq−p(X),

where F (p) is the fiber of the morphism X(p) −→ X(p− 1) and X = limX(p); see
[T80, 5.43] (where convergence is understood in the sense of Bousfield-Kan).

Definition 5.2. We say that a morphism of towers f : X(−) −→ Y (−) is an E2-weak
equivalence if the morphism E∗∗2 (f) induced on the E2-terms of the corresponding
spectral sequences is an isomorphism.

Observe that if fp : X(p) −→ Y (p) is a weak equivalence, for all p > 0, then f
induces an isomorphism in the E1-terms of the spectral sequence and hence it is also
a E2-weak equivalence.

5.2.3.
Now we define a simple construction, for cubical diagrams of type 2,

s2 : (2, tow(Sp)) −→ tow(Sp),

compatible with the E2-weak equivalences: given a tower of fibrations X(−) and a
positive integer n > 0, we denote by X[n](−) the tower of fibrations defined by

X[n](p) :=

{
∗, 0 6 p < n,

X(p− n), p > n,

with the evident morphisms, so that the new tower is obtained by translating n places
to the left the tower X(−).

Definition 5.3. Let 2 be a cubical category and X•(−) be a 2-diagram of towers
of fibrations. Denote by dX(−) the 2-diagram of towers of fibrations given by

(dX)α(−) = Xα[|α| − 1](−),

with morphisms induced by X•. We define the s2 simple of X•(−) as the tower of
fibrations obtained by applying homotopy limits in each cubical degree of dX•(−);
that is,

s2(X•)(p) := s(dX•(p)) = holimαXα(p− |α|+ 1).

For example, given a 21-diagram X•(−) of towers of fibrations

· · · −−−−→ X(1) −−−−→ X(0) −−−−→ ∗
y

y
· · · −−−−→ Y (1) −−−−→ Y (0) −−−−→ ∗

x
x

· · · −−−−→ Z(1) −−−−→ Z(0) −−−−→ ∗
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the new diagram dX•(−) is the diagram

· · · −−−−→ X(1) −−−−→ X(0) −−−−→ ∗
y

y
· · · −−−−→ Y (0) −−−−→ ∗ −−−−→ ∗

x
x

· · · −−−−→ Z(1) −−−−→ Z(0) −−−−→ ∗
and it follows that its s2 simple in degree p corresponds to the spectrum

holim(X(p) −→ Y (p− 1)←− Z(p)).

Lemma 5.4. For any cubical diagram of towers of fibrations X•(−) there is a canon-
ical quasi-isomorphism of complexes of abelian groups

E∗q1 (s2X•(−)) −→ s(α 7→ E∗q1 (Xα(−))).

Proof. The notation s(α 7→ E∗q1 (Xα(−))) refers to the ordinary simple functor for
complexes of abelian groups, also called the total complex associated to a cubical
complex. The group in degree p of this complex is

s(α 7→ E∗q1 (Xα(−)))p = s(α 7→ πq−rFα(r)) =
⊕

|α|+r=p+1

πq−r(Fα(r)),

while the differential is induced by the differentials of the Bousfield-Kan spectral
sequence of the tower Xα(−).

On the other hand, by definition, for each p, s2X•(p) is the ordinary simple of the
cubical diagram of spectra dX•(p), so the complex E∗q1 (s2X•(−)) is the E1-term of
the Bousfield-Kan spectral sequence associated to the tower of fibrations

· · · −→ sdX•(p) −→ · · · −→ sdX•(1) −→ sdX•(0) −→ ∗ .
Denote by Fα(p) the fiber of the fibration Xα(p) −→ Xα(p− 1). Since homotopy
limits commute, the fiber of the fibration

sdX•(p) −→ sdX•(p− 1)

is isomorphic to the simple spectrum associated to the cubical diagram dF•(p). But,
in this diagram all morphisms are constant, so

sdF•(p) =
∏
α

Ω|α|−1Fα(p− |α|+ 1) =
∏

|α|+r=p+1

Ωp−rFα(r);

hence its homotopy groups are given by

Epq
1 = πq−p(sdF•(p)) =

⊕

|α|+r=p+1

πq−r(Fα(r)).

The differential is also induced by the differentials of the Bousfield-Kan spectral
sequence of the tower Xα(−).

Proposition 5.5. The simple s2 and the E2-weak equivalences define a cohomological
descent category structure on tow(Sp).
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Proof. Observe that a morphism between towers of fibrations f is a E2-weak equiv-
alence if and only if the morphism E1(f) of the corresponding spectral sequence is
a quasi-isomorphism of complexes. If GrC∗(Z) denotes the category of graded com-
plexes of abelian groups, then the functor

E1 : tow(Sp) −→ GrC∗(Z)
X(−) 7−→ E∗1

commutes with direct sums and, by the previous result, it commutes with the simple
s2 functor, so the result follows from [GN02, (1.5.12)].

5.3. An extension criterion for towers
In the next result we write Ho2(tow(Sp)) for the homotopy category obtained

from tow(Sp) by inverting E2-weak equivalences.
The following result, remarked by V. Navarro several years ago in the abelian

context, is the key point in order to extend some functors on Sm(k) with values
in the category of spectra to functors defined for all varieties and taking values in
Ho2(tow(Sp)).

Proposition 5.6 (Compare with [GN03, Proposition (3.10)]). Let G : Sm(k) −→
HoSp be a Φ-rectifiable functor and denote also by

G : Sm(k) −→ Ho2(tow(Sp))

the associated constant functor. Then, G satisfies property (F2) if and only if for
every elementary acyclic square the sequence

0 −→ πnG(X)
f∗−i∗−→ πnG(X̃)⊕ πnG(Y )

j∗+g∗−→ πnG(Ỹ ) −→ 0

is exact.

Proof. By the acyclicity criterion on descent categories, the property (F2) of Theo-
rem 2.1 for the extended functor G says that the morphism

E∗,q1 (G(X)) −→ E∗,q1 s2G(X•)

is a quasi-isomorphism. Observe that we have

E∗,q1 (G(X)) =

{
πq(G(X)), p = 0,
0, p 6= 0.

On the other hand, the E1-page of the spectral sequence of s2G(X•) reduces to the
exact sequence

πnG(X̃)⊕ πnG(Y )
j∗+g∗−→ πnG(Ỹ ),

so the (F2) property is equivalent to the fact that the morphism of complexes of
abelian groups

πnG(X)
f∗−i∗−→ (πnG(X̃)⊕ πnG(Y )

j∗+g∗−→ πnG(Ỹ ))

is a quasi-isomorphism, which is precisely the condition stated in the proposition.
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5.3.1.
We return now to the applications to algebraic K-theory. The following proposition
has also been proved by Gillet-Soulé directly from Thomason’s calculations; see [GS,
Theorem 5]:

Proposition 5.7. For any elementary acyclic square of Sm(k) and any n > 0, the
sequence

0 −→ Kn(X)
f∗−i∗−→ Kn(X̃)⊕Kn(Y )

j∗+g∗−→ Kn(Ỹ ) −→ 0

is exact.

Proof. As we have recalled in the proof of Theorem 4.1, an elementary acyclic square
gives rise to a homotopy cartesian square of algebraic K-theory spectra, so we have
an exact sequence

· · · −→ Kn(X)
f∗−i∗−→ Kn(X̃)⊕Kn(Y )

j∗+g∗−→ Kn(Ỹ ) δ−→ Kn−1(X) −→ · · · .
But, by Thomason’s calculation of the algebraic K-theory of a blow up ([T93,
Théorème 2.1]), there are isomorphisms

ϕ : Kn(X)
d−1⊕

i=1

Kn(Y ) −→ Kn(X̃),

ψ :
d−1⊕

i=0

Kn(Y ) −→ Kn(Ỹ ),

given, respectively, by

ϕ(x, y1, . . . , yd−1) = f∗(x) +
d−1⊕

i=1

j∗(`−i ∪ g∗(yi)),

ψ(y0, y1, . . . , yd−1) =
d−1⊕

i=0

j∗(`−i ∪ g∗(yi)).

With this identifications the morphism f∗ corresponds to the inclusion of Kn(X) on
the first factor of Kn(X̃), and so the morphism f∗ − i∗ is injective. This splits the
exact sequence above into the required short exact sequences.

Now, by Propositions 5.6 and 5.7 we can apply the extension criterion of Theo-
rem 2.1, so we find:

Corollary 5.8. Let k be a field of characteristic zero. The constant algebraic K-
theory functor K : Sm(k) −→ Ho2(tow(Sp)) admits an essentially unique extension
KD(−) : Sch(k) −→ Ho2(tow(Sp)) which satisfies the descent property (D). More-
over, for any variety X, the tower of fibrations KD(−)(X) satisfies KD(n)(X) =
KD(X) for nÀ 0.

Proof. We have only to justify the last sentence. Take an algebraic variety X and
an hyperresolution X•, whose type 2 is of length `. By the definition of the descent
functor KD(−), the tower KD(−)(X) is the s2-simple tower associated to the diagram
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of constant towers K(X•); that is, it is the tower whose spectra are the homotopy
limits of the diagram dK(X•)(n) for each n (see Definition 5.3). Observe that this
diagram is constant for n > ` and, moreover, it is precisely the cubical diagram K(X•),
so the result follows.

Since the spectral sequence of a tower of fibrations is functorial in the category
Ho2(tow(Sp)) from the E2-term on, we deduce from the corollary above:

Corollary 5.9. There is a well-defined and functorial finite-increasing filtration F p

on KDn(X) which is trivial for smooth varieties.

Remark 5.10. Equivalently, by 4.6, for any variety X the last corollary defines a
functorial finite filtration on the homotopy algebraic K-theory groups KHn(X).

5.4.
Finally, we observe that the same procedure may be applied to the algebraic K-

theory with compact support. In this case, from the uniqueness property of descent
extensions and [GS, Theorem 7], we deduce:

Corollary 5.11. There is a well-defined and functorial finite-increasing filtration
W pKc

n(X) which is trivial for complete smooth varieties. This filtration coincides
with the weight filtration defined by Gillet-Soulé in [GS, Theorem 7].
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onal 647, 08028 Barcelona, Spain.


