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Abstract
In this thesis, we are concerned with the study of cohomol-

ogy with local coefficients and applications to (non-orientable)
real vector bundles. The thesis consists of an introduction and
three separate sections. The introduction gives some motiva-
tion for considering cohomology with local coefficients and an
outline of the results obtained. The first section deals with
a general discussion of such cohomology groups and contains
a Künneth Theorem for such groups. The second section is
devoted to some computations which are needed later and the
final section gives a complete description of the integral coho-
mology of the spaces BO(n) and BSO(n).

Introduction

A great deal of information has been obtained about real vector bundles by
studying various “characteristic classes”. (See, for example, [2] or [9].) Usually,
these results are about the mod 2 classes of an arbitrary bundle or the integral
classes of an orientable bundle. The study of the integral classes of a non-orientable
bundle [12] is complicated by the fact that these are “twisted” cohomology classes.
(See Section 3 for a definition).

That the situation is more difficult in the case of non-orientable bundles is illus-
trated by the following example. It is known [9], [14], that the normal bundle to
an imbedding of an orientable manifold in a Euclidean space always has a trivial
Euler class. However, an example due to Whitney [15] shows that this is not true
for non-orientable manifolds.

It was our original purpose to study non-orientable real vector bundles by study-
ing the twisted integral characteristic classes. We do this by the familiar technique
of studying the universal classes. Explicitly, if BO(n) is the classifying space of the
real orthogonal group O(n) and Z is the local system of twisted integer coefficients
on BO(n) (see [11] or [14]), we describe completely the groups Hq(BO(n),Z) as
well as H∗(BO(n), Z). This is done in Section 3. The first two sections are devoted
to a study of properties of cohomology with local coefficients which are needed in
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Section 3. In particular, Section 1 is concerned with proving a Künneth formula for
cohomology with coefficients in an arbitrary local system.

Section 2 is concerned with the special case of local coefficients with fiber Z,
the group of integers. Here, we give a characterization of the “twisted” Bockstein
homomorphisms induced by the exact coefficient sequence 0 → Z → Z → Z2 → 0
and generalize a result of Massey [8] on the Gysin sequence of a vector bundle.
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1. Homology with local coefficients

The main result of this section is a Künneth formula for homology and cohomol-
ogy of spaces with coefficients in a local system of groups. For a definition of such
homology groups, the reader is referred to Steenrod’s paper [11]. Equivalently, a
local system of coefficients is a locally constant sheaf [4, exposé 14] or, if the base
space is “nice”, it is a bundle of coefficients [12]. The remainder of the section is
devoted to the special case of “twisted integer” cohomology and some results are
developed which are needed in subsequent parts of the paper.

1.1. The Künneth Theorem
Let K be an arcwise connected space and G an abelian group. We recall that a

local system of coefficients [11] with fiber G over K is an element

v ∈ Hom(π1(K),Γ(G)),

where π1(K) is the fundamental group ofK and Γ(G) is the group of automorphisms
of G. We shall write Gv for such a local system and consider G as a right π = π1(K)-
module with the action induced by v.

Theorem 1.1 (Eilenberg). If K is an arcwise connected space with universal cov-
ering space K̃, then there exist natural isomorphisms

Hq(K,Gv) ≈ Hq(G⊗π C(K̃))

and

Hq(K,Gv) ≈ Hq(Homπ(C(K̃), G)),

where tensor products are taken over the group ring Z(π).

Proof. The groups on the right are the “equivariant” homology groups of K̃ with π
operating on the left as covering transformations. For details, see [6, Theorem 24.1]
or [3, p. 355].



Homology, Homotopy and Applications, vol. 8(2), 2006 93

Theorem 1.2. Let X and Y be positive chain complexes with boundaries of degree
−1. If either X or Y is free abelian, then there exists an exact sequence

0 → H(X)⊗H(Y ) → H(X ⊗ Y ) → Tor1(H(X), H(Y )) → 0,

where all the homomorphisms are natural, the first having degree 0 and the second
having degree −1. If X and Y are both free, then the sequence splits.

Theorem 1.3. Same as Theorem 1.2, but replace “degree −1” by “degree 1”
throughout.

Proof. These are standard Künneth theorems for chain complexes and a proof may
be found in [5]. A particularly simple proof is given by Heller in [7].

Theorem 1.4.

(a) Let Ci and Di be right and left Ri modules, respectively, where Ri is a ring
with unit and i = 1, 2. Let Λ be a subring of the center of both R1 and R2.
Then there exists a unique natural isomorphism

T : [C1 ⊗R1 D1]⊗Λ [C2 ⊗R2 D2] → [C1 ⊗Λ C2]⊗R [D1 ⊗Λ D2], (*)

where R = R1 ⊗Λ R2.

(b) If Ci and Di are chain complexes and either C1 and C2 or D1 and D2 have
the trivial grading, then T is an isomorphism of chain complexes.

Proof. We prove (a) by showing that both groups are solutions of essentially the
same “universal mapping problem”.

(a1) The left side of (*) is the solution to the universal mapping problem

f : C1 ×D1 × C2 ×D2 → A,

where A is an arbitrary abelian group and f is a group homomorphism satis-
fying

f(c1r1, d1, c2r2, d2) = f(c1, r1d1, c2, r2d2), (1)

for all ri ∈ Ri, and

f(c1, d1λ, c2, d2) = f(c1, d1, λc2, d2), (2)

for all λ ∈ Λ. This may be seen as follows. If we take c2 to be the unit in R2,
the formula (1) asserts that f is really a map [C1 ⊗R1 D1]× [C2 ×D2] → A.
Similarly, if we take c1 to be the unit in R1, we get that f is a map

[C1 ⊗R1 D1]× [C2 ⊗R2 D2] → A.

To see that f is compatible with the action of Λ, we need only note that
each λ ∈ Λ commutes with every element in both R1 and R2 and then use
formula (2).
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(a2) The right side of (*) is the solution to the mapping problem

g : C1 × C2 ×D1 ×D2 → B

where B is an arbitrary abelian group and g is a group homomorphism satis-
fying

g(c1λ, c2, d1, d2) = g(c1, λc2, d1, d2)
g(c1, c2, d1λ, d2) = g(c1, c2, d1, λd2)

(3)

for all λ ∈ Λ, and

g(c1r1, c2r2, d1, d2) = g(c1, c2, r1d1, r2d2). (4)

As before, this is checked easily and follows from the fact that Λ is a subring
of the center of both R1 and R2. This problem, however, is trivially equiva-
lent to the problem g : C1 ×D1 × C2 ×D2 → B where conditions (3) and (4)
are altered only by transposing the variables to obtain conditions (3′) and
(4′). When this is done, we find trivially that the two mapping problems are
equivalent. The existence and uniqueness of T follows in the usual way.

(b) This assertion follows immediately by computing ∂T and T∂.

Remark 1.5. The two conditions in (3) could be reduced to one as in (1) if we
assumed that Λ contained a unit.

We are now in a position to prove the Künneth Theorems. We give the details
for the case of homology and indicate the proof for cohomology. Furthermore, to
simplify the discussion, we confine ourselves to cell-complexes (see [12] for a defini-
tion). This means that for complexes K1 and K2, we may identify the chain groups
C(K1 ×K2) and C(K1)⊗ C(K2).

For arbitrary arcwise connected spaces which have a universal covering space, the
theorems still hold, but we would have to use a natural chain equivalence between
these chain complexes. Such an equivalence is furnished by the Eilenberg–Zilber
Theorem.

Theorem 1.6. Let K1 and K2 be arcwise connected cell-complexes having universal
coverings and K3 = K1 ×K2. Let Gi be right modules over πi = π1(Ki), where
G3 = G1 ⊗G2 and the action of π3 on G3 is the “product action”. If G1 or G2

is a free abelian group, then there exists a natural exact sequence

0 → H∗(K1, G1)⊗H∗(K2, G2) → H∗(K3, G3)
→ Tor[H∗(K1, G1), H∗(K2, G2)] → 0,

where all homology is with local coefficients and the maps are of degree 0 and −1.
If G1 and G2 are both free, then the sequence splits.

Proof. Let K̃i be the universal covering space of Ki and note that K̃1 × K̃2 = K̃3.
By Theorem 1.1,

H∗(Ki, Gi) ≈ H∗(Gi ⊗πi C(K̃i)).

Since C(K̃i) is free and at least one of the two groups G1, G2 is free, we may apply
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Theorem 1.2 to obtain the exact sequence

0 → H∗(K1, G1)⊗H∗(K2, G2) → H∗[(G1 ⊗π1 C(K̃1))⊗ (G2 ⊗π2 C(K̃2))]
→ Tor[H∗(K1, G1),H∗(K2, G2)] → 0.

Recall that Z(π1 × π2) ≈ Z(π1)⊗ Z(π2). Thus, if we take Ri = Z(πi) and Λ = Z
in Theorem 1.4, we obtain the following natural isomorphisms

H∗(G3 ⊗R3 C(K̃1 × K̃2)) ≈ H∗[(G1 ⊗G2) ⊗
R1⊗R2

(C(K̃1)⊗ C(K̃2))]

≈ H∗[(G1 ⊗π1 C(K̃1))⊗ (G2 ⊗π2 C(K̃2))].

The desired sequence is obtained by substituting in the previous sequence.
The last assertion of the theorem follows from the corresponding assertion of

Theorem 1.2, since Gi free for i = 1, 2 implies Gi ⊗π1 C(K̃i) is also free.

Theorem 1.7. Let Ki, πi, Gi be as before except that Gi is a left πi module and
Cq(Ki) is finitely generated for each q. If either G1 or G2 is free, then there exists
a natural exact sequence

0 → H∗(K1, G1)⊗H∗(K2, G2) → H∗(K3, G3)
→ Tor[H∗(K1, G1), H∗(K2, G2)] → 0,

where the first map has degree 0 and the second has degree 1. If G1 and G2 are both
free, the sequence splits.

Proof. The proof is similar to the proof of Theorem 1.6, this time using the second
formula of Theorem 1.1 and then Theorem 1.3. We need an analogue of Theorem 1.4,
which is furnished by the following lemma.

Lemma 1.8. Let Ci and Di be left πi modules with C3 = C1 ⊗ C2, D3 = D1 ⊗D2

and π3 = π1 × π2. Suppose Ci is a free chain complex and finitely generated in each
dimension. Then there is a natural chain isomorphism

Homπ1(C1, D1)⊗Homπ2(C2, D2) → Homπ3(C1 ⊗ C2, D1 ⊗D2).

Proof. One merely verifies that the map given by

(f1 ⊗ f2)(c1 ⊗ c2) = (f1c1)⊗ (f2c2)

has the desired properties.

Remark 1.9. The requirement in Theorem 1.7 that one of the groups G1, G2 is free
is needed to insure that one of the groups Homπi(C(K̃i), Gi) is free, so Theorem
1.3 applies.

2. Twisted integral cohomology

In this section, we consider local systems on a space with the group Z of inte-
gers as the fiber. Then Γ(Z) ≈ Z2. Given a space K which is arcwise connected, a
local system with fiber Z is given by an element of Hom(π1(K), Z2) as before (see
Section 1). Since the Hurewicz map induces the isomorphism Hom(π1(K), Z2) ≈



Homology, Homotopy and Applications, vol. 8(2), 2006 96

Hom(H1(K), Z2) and by the Universal Coefficient Theorem Hom(H1(K), Z2) ≈
H1(K,Z2), we may identify such a local system with an element v ∈ H1(K,Z2).
We call such a system of coefficients “twisted” and the corresponding cohomology
groups Hq(K,Zv) are twisted integral cohomology groups. Note that if v = 0, we get
ordinary cohomology [12].

2.1. The Bockstein Coboundary
Given a twisted local system Zv on a space K, by the Bockstein coboundary βv

we mean the coboundary induced by the exact sequence 0 → Zv
2→ Zv

ρ→ Z2 → 0,
where Z2 is the group of integers mod 2 and the maps are multiplication by 2 and
reduction. Define β̄v = ρ ◦ βv.

Definition 2.1. For any space K, define

β̄ : H1(K,Z2)×Hq(K,Z2) → Hq+1(K,Z2)

by
β̄(v, x) = β̄v(x).

Lemma 2.2. β̄ is a cohomology operation in two variables.

Proof. We must show that for any continuous map g : K ′ → K and elements
v ∈ H1(K,Z2), x ∈ Hq(K,Z2), we have g∗β̄(v, x) = β̄(g∗v, g∗x). Let v ∈ H1(K,Z2)
be fixed and Zv, Zg∗v be the indicated local coefficient systems overK andK ′, where
g∗v ∈ H1(K ′, Z2). Then, it is clear that Zg∗v is the local system over K ′ induced by
g : K ′ → K in the usual sense and it follows from the usual properties of the Bock-
stein homomorphism [12] that g∗βv(x) = βg∗v(g∗x). Since g∗ also commutes with
reduction, we get g∗β̄(v, x) = g∗β̄v(x) = β̄g∗v(g∗(x)) = β̄(g∗v, g∗x) which completes
the proof of the Lemma.

Theorem 2.3. β̄(v, x) = vx+ Sq1x.

Proof. By looking at the universal example K(Z2, 1)×K(Z2, q) for such operations
(see for example [13]), we find immediately that

β̄(v, x) = aqv
q+1 + bqvx+ cqSq

1x,

where q is the degree of x and aq, bq, cq ∈ Z2 depend only on q.
We note that for any space, if v = 0, then Zv is ordinary integral cohomology

and β̄0 = Sq1. Thus we have

Sq1(x) = β̄(0, x) = cqSq
1x⇒ cq = 1.

On the other hand, we have

0 = β̄(v, 0) = aqv
q+1 ⇒ aq = 0,

and

β̄(v, x) = bqvx+ Sq1x.

In particular,

β̄(v, vq) = bqv
q+1 + Sq1vq = bqv

q+1 + qvq+1 mod 2.
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But it is a trivial computation that for v = w1 ∈ H∗(BO(1), Z2) = H∗(Z2, 1, Z2),
we have β̄(w1, w

q
1) = (q + 1)wq+1

1 mod 2. It follows that bq = 1 and the theorem is
proved.

2.2. The Gysin sequence of a sphere bundle
Let (E, π,B, Sk−1) be a fiber bundle where k > 1. Then Thom has proved [14]

that there exist Gysin sequences

H∗(B,G) -π∗
H∗(E,G)

@
@

@@Iµ
¡

¡
¡¡ª

ψ

H∗(B,G⊗ Zw1)

,

where G is any local system with fiber G over B and we also write G for the system
induced on E by π : E → B. The local system Zw1 is the one determined by the
first Stiefel–Whitney class of the bundle. Furthermore, if G = Z, then µ is given by
µ(x) = Wkx where Wk ∈ Hk(B,Zw1) is the “Euler class” of the bundle. Note that
Wk is an ordinary cohomology class if and only if w1 = 0.

In what follows, we restrict ourselves to the case G = Z. In this case, we actually
obtain two Gysin sequences

H∗(B,Z) -
π∗1

H∗(E,Z)

@
@

@@Iµ
¡

¡
¡¡ª

ψ1

H∗(B,Zw1)

(G1)

and
H∗(B,Zw1) -

π∗2
H∗(E,Zw1)

@
@

@@Iµ
¡

¡
¡¡ª

ψ2

H∗(B,Z)

. (G2)

Theorem 2.4. ψ1 and ψ2 have the following multiplicative properties:

ψi[(π∗i x)y] = (−1)px(ψiy)
ψi[y(π∗i x)] = (−1)kpx(ψiy),

where p is the degree of x and k > 1 if i = 1 and k > 2 if i = 2.

The proof is exactly the same as the proof of Lemma 1 in [8] since all the
properties of the maps that Massey used are still valid with cohomology in a local
system (see [13]). The one exception is the case k = 1 and i = 2. Here, the proof
in [8] breaks down because the S0-bundle E → B is precisely the one which “kills
off” the element w1 ∈ H1(B,Z2). Thus, the local system induced by Zw1 on E is
not twisted. For this case, we have the following result.

Theorem 2.5. ψ2π∗1(x) = 2x if w1 6= 0.
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Proof. Define Θ(w1, x) = ψ2π∗1(x). We shall show that Θ is a cohomology operation
in two variables.

Note that for any v ∈ H1(B,Z2), we can define the 0-sphere bundle πv : Ev → B
which “kills off” the element v ∈ H1(B,Z2). Then, the two Gysin sequences are
defined as before and so is Θ(v, x). The verification of the fact that Θ is a cohomology
operation proceeds as in the case of the Bockstein coboundary using the fact that
the maps in the Gysin sequence commute with bundle maps.

(a) Θ(0, x) = 0:
This is a triviality since in this case, the two Gysin sequences are the same and

the result follows by exactness.

(b) Computation of Θ(v, x) for v 6= 0:
It is sufficient to compute for the universal example which in this case is

Un = K(Z2, 1)×K(Z, n) and Θ is a map

Θ: H1(Un, Z2)×Hq(Un, Z) → Hq(Un, Z).

If we compute by means of the Künneth formula, we find that for n > 2

H1(Un, Z2) ≈ H1(Z2, 1, Z2)

Hn(Un, Z) ≈ Hn(Z2, 1, Z)⊕Hn(Z, n, Z).

If ν ∈ H1(K(Z2, 1), Zv) is the non-zero element then H∗(Z2, 1, Z) = Z[ν2] is the
polynomial ring in the one generator ν2. Furthermore, ν = v mod 2. We also have
that Hn(Z, n, Z) = Z. Let un ∈ Hn(Z, n, Z) be a generator. Then, we get immedi-
ately that Θ(v, x) = anx for n odd and some an ∈ Z and Θ(v, x) = bnν

n + anx for
n even and some bn ∈ Z2, an ∈ Z. Since Θ(v, 0) = 0, we have

Θ(v, x) = anx,

where n is the degree of x.
Looking at the Gysin sequences corresponding to v ∈ H1(Un, Z), we find that

the two-fold covering is the universal covering Ũn = K̃(Z2, 1)×K(Z, n). Thus,
Hq(Un, Z) ≈ Hq(Z, n) for all q. In particular, Hn(Ũn, Z) ≈ Hn(Z, n). Furthermore,
since ν ∈ H1(Un, Z) is of order 2, we have µ(2un) = 0 and hence un is in the image
of ψ2 by exactness of the sequence (G2). However, since ψ2 is an additive map, it
follows that ψ2(un) = 2un. If we now turn to the sequence (G1), we easily compute
Hn−1(Un, Zv) by the Künneth formula and find that π∗1(un) = un. It follows that
ψ2π∗1un = 2un and therefore Θ(v, x) = 2x.

For the case n = 1, we can compute separately. Here, we note that K(Z2, 1) =
P∞(R) is infinite-dimensional real projective space and the universal example is
P∞(R)× P∞(R). But in this case, all the groups in the Gysin sequence are known
and we can compute ψ2 directly.

3. Cohomology of BO(n)

In this section, we apply the preceding results to determine completely the struc-
ture of the cohomology ring H∗(BO(n), Z) as well as the complete structure of
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H∗(BO(n),Z), where Z is the local system Zw1 . We describe these groups in terms
of the cohomology ring H∗(BSO(n), Z) and the two Gysin sequences associated
with the covering BSO(n) → BO(n). To complete the picture, we give a formula
in closed form for the ring H∗(BSO(n), Z).

3.1. Torsion in H∗(BO(n),Z)
It has been shown by Borel and Hirzebruch [3] that all of the torsion in the

groups H∗(BO(n), Z) and H∗(BSO(n), Z) is of order 2. Using these results, we
prove

Theorem 3.1. All the torsion in H∗(BO(n),Z) is of order 2.

Proof. Consider the following diagram

H∗(BO(n), Z2) -
π∗2

H∗(BSO(n), Z2)

?
β1

?
β0

H∗(BO(n),Z) -π∗
H∗(BSO(n), Z)

@
@

@@Iµ
¡

¡
¡¡ª
ψ

H∗(BO(n), Z) ,

where π : BSO(n) → BO(n) is the two-fold covering, β0 and β1 = βw1 are Bockstein
homomorphisms, and the bottom triangle is the Gysin sequence. The top square
commutes by virtue of Lemma 2.2 and it is known that π∗2 is onto. In fact, if wj are
the mod 2 Stiefel–Whitney classes then

H∗(BO(n), Z2) ≈ Z2[w1, . . . , wn]
H∗(BSO(n), Z2) ≈ Z2[w2, . . . , wn]

and π∗2 is given by π∗2(wj) = wj for j 6= 1, and π∗2(w1) = 0. (See, for example,
[9]). Suppose x ∈ Hq(BO(n),Z) and kx = 0 for some non-zero integer k. Then,
0 = π∗(kx) = kπ∗x implies

π∗x = 0 or 2π∗x = 0,

since H∗(BSO(n), Z) has torsion only of order 2.
Suppose π∗x = 0. Then, by exactness of the triangle, x = µ(y) = w1y, where

w1 ∈ H1(BO(n),Z) is the non-zero element. But then 2x = 2w1y = 0.
If 2π∗x = 0, then ∃u ∈ H∗(BSO(n), Z2) with π∗x = β0u by exactness of the

Bockstein sequence. But π∗2 is onto, so there exists v such that π∗2v = u. Then,

π∗β1v = β0π
∗
2v = β0u = π∗x

and π∗(β1v − x) = 0. As before, this implies 0 = 2(β1v − x) = 2β1v − 2x. But 2β1v
= 0 and so 2x = 0.

Theorem 3.2. For n odd, H∗(BO(n),Z) is a direct sum of copies of Z2.
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Proof. For n = 1, this is well known since BO(1) = P∞(R) is infinite-dimensional
real projective space. For n > 3, we have O(n) = SO(n)×O(1) and hence BO(n) =
BSO(n)×BO(1). Applying the Künneth Theorem of Section 1, we get a split exact
sequence. Next we note that Hp(BSO(k), Z) is a direct sum of copies of Z and Z2.
On the other hand,

Hq(BO(1),Z) =
{

0 q even
Z2 q odd .

This may be seen as follows. As noted earlier, BO(1) = K(Z2, 1) = P∞(R). That
H0(BO(1),Z) = 0 follows from [12, Section 31.20]. For the higher groups, we may
approximate P∞(R) by P2q(R), 2q-dimensional projective space over the reals, since
this is the 2q-skeleton. But for a compact non-orientable manifold, we may com-
pute the twisted cohomology from the ordinary homology by the Poincaré duality
theorem [4, exposé 20].

3.2. The twisted Euler class
For orientable bundles with fiber Sk−1, the Whitney sum theorem asserts that

X(ξ ⊕ η) = X(ξ)X(η) where ξ ⊕ η is the Whitney sum of the two bundles and X(ζ)
is the Euler class of ζ (see [2] or [9]). In this section, we prove the corresponding
theorem for non-orientable bundles.

Let p : BO(n− 1) → BO(n) be the (n− 1)-sphere bundle induced by the inclu-
sion O(n− 1) → O(n) ([2]). According to Thom [14], we have the Gysin sequences
(G1) and (G2) as in Section 2.2 and the map µ is multiplication by a fixed element
wn ∈ Hn(BO(n),Z). Furthermore, it is also shown in [14] that wn is equal to the
first obstruction to a cross-section of the bundle (see [12]) with a change of sign.
The class wn (or its negative) is usually called the universal twisted Euler class. As
usual, the Euler class of a sphere bundle is defined by means of the classifying map
of the bundle [9].

Theorem 3.3. For any two sphere bundles ξ, η (not necessarily orientable) the
Whitney sum theorem is valid. That is χ(ξ) · χ(η) = χ(ξ ⊕ η), where χ(ζ) is the
Euler class of the bundle ζ.

Proof. It is sufficient to check this for the universal classes. Let

π : BO(n)×BO(m) → BO(n+m)

be the fibering induced by the inclusion O(n)×O(m) → O(n+m) (as in [12]). We
then obtain the following diagram:

Hn+m(BO(n + m), R) ¾
ρ

Hn+m(BO(n + m), Z) -
ρ2

Hn+m(BO(n + m), Z2)
↓ π∗ ↓ π∗ ↓ π∗

Hn+m(BO(n)×BO(m), R)¾
ρ

Hn+m(BO(n)×BO(m), Z)-
ρ2

Hn+m(BO(n)×BO(m), Z2) ,

where R is the local system of twisted rationals, and ρ and ρ2 are induced by the
coefficient homomorphisms of inclusion and reduction mod 2.

(a) ρ2π
∗wn+m = ρ2(wn ⊗wm).

The assertion is simply that the Whitney sum theorem holds for the mod 2 Euler
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class (top Stiefel–Whitney class) since ρ2wn+m = wn+m. This is proved, for exam-
ple, in [9].

(b) ρπ∗wn+m = ρ(wn ⊗wm).

If either n or m is odd, this is a triviality since one computes by the Künneth
formula and Theorem 3.1 that Hn+m(BO(n)×BO(m),R) = 0.

Suppose both n andm are even and let jq : BSO(q) → BO(q) be the two-fold cov-
ering. Then j∗q (wq) = Wq ∈ Hq(BSO(q), Z) by naturality of characteristic classes.
But the Whitney sum theorem is known for orientable bundles [9]. Thus, it is suf-
ficient to prove that

j∗ : Hq(BO(q),R) → Hq(BSO(q),Q)

is a monomorphism for q even, where Q denotes the field of rational numbers. By
exactness of the Gysin sequence of the 2-fold covering, the kernel would have to be
the same as the image of

Hq−1(BO(q),Q)
µ→ Hq(BO(q),R).

But for q even Hq−1(BO(q),Q) = 0 (see [3]). This completes the proof of (b).

(c) π∗wn+m = wn ⊗wm.

Since BO(n) has only 2-torsion, the same holds true for BO(n)×BO(m) as can
be checked by the Künneth formula. But then an element is completely determined
by its image in the rationals and reduction mod 2.

3.3. The Gysin sequences of BSO(n) → BO(n)
In this section we determine completely the maps in the Gysin sequences of

π : BSO(n) → BO(n) and thus determine completely the structure of the cohomol-
ogy of BO(n) in terms of BSO(n).

We will write pj for the integral Pontryagin classes of BO(n) and BSO(n), and
wn and Wn for the universal twisted and ordinary Euler classes respectively.

Theorem 3.4. For BO(n) and BSO(n), the maps ψ1, ψ2 of the Gysin sequences
(G1) and (G2) in Section 2.2 are given by:

1. ψi(x) = 0 if 2x = 0,
2. ψ1(m(p1, . . . , pn)) = 0, ψ1(Wnm(p1, . . . , pn)) = 2wnm(p1, . . . , pn),
3. ψ2(m(p1, . . . , pn)) = 2m(p1, . . . , pn), ψ2(Wnm(p1, . . . , pn)) = 0,

where pn = w2
n = W 2

n and m is a monomial.

Proof. For the first assertion, it is enough to look at the mod 2 Gysin sequence
and in that case ψ = 0 because π∗ is onto. The second and third assertions follow,
respectively, from Theorem 2.4 and Theorem 2.5 of Section 2 once we note that
π∗(wn) = Wn and π∗(pj) = pj .

3.4. The ring H∗(BSO(n), Z)
We now develop a closed formula for the cohomology ring H∗(BSO(n), Z). We

shall carry through the computation only for n odd. The case n = 2k is then easily
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handled since the cohomology ring of BSO(2k) can be obtained from BSO(2k − 1)
by adjoining the Euler class W2k.

Let R = R2n+1 be the graded commutative polynomial ring over Z in the gener-
ators Wj , 2 6 j 6 2n+ 1, with the relations 2W2j+1 = 0. For any strictly increasing
sequence of integers I = {j1, . . . , jk} with 1 6 j1 < jk 6 n and k > 2 define

WI = W2j1W2j2 · · ·W2jk

and

VI = WI

∑

j∈I

W2j+1

W2j
.

Theorem 3.5. H∗(BSO(2n+ 1), Z) is isomorphic to the subring G = G2n+1 of R
generated by the elements W2j+1,W

2
2j for 1 6 j 6 n and VI for all strictly increasing

sequences I = {j1, . . . , jk} as above.

Proof. Define maps

ϕ0 : G→ H∗(BSO(2n+ 1),Q) and ϕ2 : G→ H∗(BSO(2n+ 1), Z2),

where Q is the field of rationals, as follows. ϕ0(W2j+1) = 0, ϕ0(W 2
2j) = pj = jth

Pontryagin class. Extend ϕ0 to G so that it is a ring homomorphism. We can define
ϕ2 : R→ H∗(BSO(2n+ 1), Z2) by ϕ2(Wj) = wj = jth Stiefel–Whitney class and
then restrict ϕ2 to G. We then have the following diagram:

G2n+1
-

ϕ0
H∗(BSO(2n+ 1),Q)

ϕ2 ↓ ↑ ρ
H∗(BSO(2n+ 1), Z2) ¾

ρ2
H∗(BSO(2n+ 1), Z) .

It is clear that imageϕ0 = image ρ. The theorem will be proved if we can show that
imageϕ2 = image ρ2.

Let F ⊕ T = H∗(BSO(2n+ 1), Z) be a decomposition into a free and torsion
subring. That is, T = Tors H∗(BSO(2n+ 1), Z) and F is the subring generated by
the Pontryagin classes. Then it is clear that ρ2(F ⊕ T ) = ρ2(F )⊕ ρ2(T ). Accord-
ing to [3] we have that ρ2(T ) = imageSq1 and by [1] we also have that Sq1(wj) =
jwj+1 mod 2. By straightforward computation, since Sq1 is a derivation, we have
Sq1(wI) = VI . Now suppose that m(w2, . . . , wn) is any monomial in Stiefel-Whitney
classes. Then, we can write m as a product of monomials m = m1 ·m2 · w2j or m =
m1 ·m2 · wI where m1 = m1(w3, w5, . . . , w2n+1) and m2 = m2(w2

2, w
2
4, . . . , w

2
2n).

Then Sq1mm2 = 0 and Sq1m = m1m2w2j+1 or Sq1m = m1m2VI . Since ρ2(pj) =
w2

2j it follows that ρ2(F ⊗ T ) = ρ2(F )⊗ ρ2(T ) = ϕ2(G).
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