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STABLE SPLITTINGS OF CLASSIFYING SPACES OF FINITE
GROUPS: BRIDGING THE WORK OF BENSON–FESHBACH

AND MARTINO–PRIDDY
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Abstract
We provide a direct connection between the work of David

Benson and Mark Feshbach [2], and the work of John Martino
and Stewart Priddy [9] on stable splittings of classifying spaces
of finite groups.

1. Introduction

The journal Topology published two papers in 1992 on stable splittings of clas-
sifying spaces of finite groups. One was written by the pair of David Benson and
Mark Feshbach [2], and the other by John Martino and Stewart Priddy [9]. The
two papers address exactly the same question and essentially reach the same con-
clusion: that the p-complete stable splitting of a classifying space of a finite group,
BG, is obtained from information about the contribution of summands from clas-
sifying spaces of subgroups of G, which in turn is obtained by studying certain
simple modules. However, the approaches taken by the two pairs of authors are
quite different.

Stable decompositions of BG+ can be obtained via idempotent decompositions
of the identity in the ring of stable self maps, {BG+, BG+}. In general, if R is a ring
and 1 = e1 + e2 + · · ·+ en is a primitive orthogonal idempotent decomposition in R,
then each eiR is an indecomposable R-module. If J(R) is the Jacobson radical of R,
then each eiR/eiJ(R) is a simple R-module. The number of copies of a particular
indecomposable module eiR in a decomposition of R is equal to the dimension
of the corresponding simple module over its endomorphism ring. Neither Benson–
Feshbach nor Martino–Priddy directly searches for simple {BG+, BG+}-modules.
Rather, each pair analyzes an associated ring and its simple modules.

Studying the ring {BG+, BG+} was made more feasible with Carlsson’s [3] solu-
tion of the Segal Conjecture. Using this solution, Lewis, May, and McClure [8]
showed that {BG+, BG+} is ring isomorphic to the completion of a kind of double
Burnside ring. That is, {BG+, BG+} ∼= A(G,G)ˆI , where completion is with respect
to filtration by a certain ideal I.

In [2], Benson and Feshbach show that when G = P is a p-group, indecompos-
able summands of BP+ correspond to simple Ā(P, P )-modules, where Ā(P, P ) =
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Fp ⊗Z A(P, P ). They define a “coadjoint” module for Ā(P, P ) whose subquotients
are either zero or simple. The simple modules are parametrized by “types” of sub-
groups Q 6 P and by simple FpOutQ-modules, and form a set of representatives
for the homotopy types of indecomposable summands of BP+. Again, the mul-
tiplicity of a summand in BP+ is equal to the dimension of the corresponding
simple Ā(P, P )-module over its endomorphism ring. Further details on the Benson–
Feshbach method are given in Section 3.

In [9], Martino and Priddy use Nishida’s [10] application of the Segal Conjecture
showing that for all finite p-groups P , Zˆ

pOutP ∼= {BP,BP}/J(P ), where J(P )
is the ideal of {BP,BP} generated by all maps of the form BP → BK → BP ,
with K � P . They obtain splittings of BP from information on simple FpOutQ-
modules, Q 6 P . The multiplicity of a summand X in BP , denoted m(X,BP ), is
determined by measuring the degree of linear independence among the contributions
to m(X,BP ) from classifying spaces of subgroups of P . Further details on the
Martino–Priddy method are given in Section 4.

In his reviews of the two papers, John Harris [7] wrote: “It would be interesting
to see a direct proof that these two [computations of m(X,BG)] are the same.”
Similarly, in Benson’s [1] survey of developments in the study of stable splittings of
classifying spaces of finite groups, he asked “What is the precise relationship between
the matrices of Martino and Priddy and the modules of Benson and Feshbach?” This
paper answers Harris and Benson’s questions.

The organization of this paper is as follows: In Section 2, we remind the reader of
the basic theory of stable splittings. This basic theory is the launching point for the
two papers [2] and [9]. Sections 3 and 4 give further details on the Benson–Feshbach
and Martino–Priddy methods respectively. Section 5 provides a direct connection
between the two theories. We give an example in Section 6 which shows how to
compute the multiplicity of a summand in the splitting of a certain BP using each
method, and illustrate the connection between the two methods.

2. Stable Splittings

Stably, we have

BG+ '
∨

p | |G|
(BG+)ˆp,

where (BG+)ˆp denotes the p-completion of BG+. It makes sense, then, to fix a
prime p and study the p-local stable decomposition of BG+. Moreover, (BG+)ˆp
appears as a summand of BP+, where P is a p-Sylow subgroup of G. Thus, we will
concentrate on the case when G = P is a p-group. Throughout this paper p will
be a prime, P a p-group, BP+ the p-completion of the suspension spectrum of the
classifying space with disjoint basepoint, and {BP+, BP+} the ring of p-complete
self maps. We will always work in the category of p-complete spectra.

A decomposition BP+ ' X1 ∨X2 ∨ · · · ∨Xn corresponds to an idempotent
decomposition in {BP+, BP+}, 1 = e1 + e2 + · · ·+ en. A summand Xi = eiBP+

is the mapping telescope Tel(BP+
ei→ BP+

ei→ · · · ).
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The Segal Conjecture relates the ring {BP+, BP+} to a double Burnside ring
A(P, P ) as follows. Let G and G′ be two finite groups. A(G,G′) is the Grothendieck
group of isomorphism classes of finite G×G′-sets with free right G′ action. Given
H 6 G and a homomorphism φ : H → G′, let XH,φ = (G×G′)/4H,φ, where
4H,φ = {(h, φ(h)) |h ∈ H}. Every transitive G′-free G×G′-set is of this form, so
A(G,G′) is free abelian with basis elements ζH,φ corresponding to conjugacy classes
of pairs (H,φ).

Multiplication, A(G,G′)×A(G′′, G) → A(G′′, G′), is given by a double coset for-
mula (see [2], Formula 2.1). When G = G′ = G′′, we get a ring structure on A(G,G).

There is a homomorphism α : A(G,G′) → {BG+, BG
′
+} sending ζH,φ to the com-

posite

BG+
tr+−→ BH+

Bφ+−→ BG′+,

where tr+ is the unreduced transfer map. The map α is an isomorphism only after
completion with respect to a filtration given by powers of a certain ideal I:

A(G,G′)ˆI
∼=→ {BG+, BG

′
+}.

It is convenient to eliminate the disjoint basepoint. Since BG+ ' S0 ∨BG, split-
ting BG+ and splitting BG are equivalent problems.

There is an augmentation homomorphism ε :A(G,G′) → A(G, 1). Let Ã(G,G′) =
Ker ε. Then we have an isomorphism

Ã(G,G′)ˆI
∼=→ {BG,BG′}.

When P is a p-group, I-adic completion on Ã(P, P ) is the same as p-adic completion
so we have

Ã(P, P )ˆp := Zˆ
p ⊗ Ã(P, P ) ∼= Ã(P, P )ˆI ∼= {BP,BP}.

Further reducing Zˆ
p to its residue field Fp and letting Ãp(P, P ) = Fp ⊗Z Ã(P, P )ˆp,

we get maps

{BP,BP} ∼=→ Ã(P, P )ˆp → Ãp(P, P ).

From the idempotent refinement theorem, we see that a primitive orthogonal idem-
potent decomposition of the identity in Ãp(P, P ) lifts to one in Ã(P, P )ˆp. Thus, there
is a one-to-one correspondence between stable homotopy types of indecomposable
summands of BP and isomorphism types of simple Ãp(P, P )-modules.

As mentioned in Section 1, Nishida [10] used the Segal Conjecture to show that
for all finite p-groups P , the composite

Zˆ
pOutP→{BP,BP} → {BP,BP}/J(P ) (1)

is an isomorphism of rings.

Definition 2.1. If a primitive idempotent e ∈ {BP,BP} is not in J(P ), then the
summand eBP is said to originate in BP . Every indecomposable summand of BP
originates in some BQ, Q 6 P (see [10], where the term “dominant” is used instead
of “originate”).
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If X = eBQ originates in BQ, then there is a corresponding idempotent ê ∈
Zˆ
pOutQ. Reducing mod p, we get an idempotent ē ∈ FpOutQ. Though it is not

necessarily primitive, we do obtain a simple right FpOutQ-module M = ēR/ēJ(R),
where R = FpOutQ. The relationship X ↔M is a one-to-one correspondence
between homotopy classes of original indecomposable summands of BQ and
isomorphism classes of simple right FpOutQ-modules (see [11], Proposition 1.2).

A truly seminal theorem in the field of stable splittings came from Priddy in
1988. Before we restate his result, we need some notation. If R = FpG is a group
ring and M is a right R-module, let M∗ denote the corresponding left R-module
with action given by r ·m∗ = m · r∗, where r∗ denotes the image of r ∈ R under
the anti-automorphism

∑
agg 7→

∑
agg

−1. Other notation: the conjugation homo-
morphism is cg(a) = gag−1, gK = gKg−1, and for H,K 6 P we define N(H,K) =
{x ∈ P |H 6 xK}.
Theorem 2.2. ([11], Theorem 0.1) Let X be an original summand of BQ, Q 6 P .
Then X is a summand of BP if and only if there exist subgroups Q′ 6 P ′ 6 P ,
Q′ ∼= Q, and a retraction π : P ′ → Q′, such that γ ·M∗ 6= 0, where M is the simple
right FpOutQ′-module corresponding to X, and

γ =
∑
x

Q′
cx−1→ x−1Q′x 6 P ′ π→ Q′

with the sum running over coset representatives of N(Q′, P ′)/P ′ such that the com-
position π ◦ cx−1 is in OutQ′.

This same theorem appears in [2] (as Theorem 5.2) with slightly different notation
and a different proof. There the sum above runs over double coset representatives
x of Q′ and P ′ in P , satisfying the additional condition that Q′ 6 xP ′.

Catalano explains that the Benson–Feshbach conditions can be replaced by x ∈
P/P ′ and Q′ 6 xP ′, that, in turn, are equivalent to x ∈ N(Q′, P ′)/P ′ (see remarks
in [4] subsequent to Lemma 2.1 and Theorem 2.3).

Definition 2.3. Any subgroup Q′ of P satisfying γ ·M∗ 6= 0 as above is called a
contributor, and Q′ contributes to the multiplicity of X in BP . If a summand
X of BK appears in the splitting of BP , then K is isomorphic to a contributor (see
[4], p. 35).

3. The Benson–Feshbach Method

Benson–Feshbach define a coadjoint module M(P, P ) over A(P, P ) as follows. Let
Q 6 P , ψ : Q→ P ′, and X = XQ,ψ, and define

fQ,ψ : A(P, P ′) → Z by
X 7→ |X4Q,ψ |.

Define M(P, P ′) to be the free abelian group with one basis element fQ,ψ for each
conjugacy class of pairs (Q,ψ). There is an action

A(P1, P2)×M(P1, P3) →M(P2, P3)
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given by

ζH,φ · fQ,ψ =
∑

x∈Q\P1/H
Q6xH

Q∩x(Kerφ)6Kerψ

fφ(x−1Q),ψ◦cx◦φ−1 ([2], Prop. 3.1).

If P1 = P2 = P3 = P , then M(P, P ) is an A(P, P )-module.
Let M̄(P, P ) = Fp ⊗ZM(P, P ) and Ā(P, P ) = Fp ⊗Z A(P, P ). Every simple

Ā(P, P )-module is a composition factor of M̄(P, P ) ([2], Lemma 3.4). There is
an Ā(P, P )-invariant filtration of M̄(P, P ) given by what Benson–Feshbach call
“types.” The subquotients arising from the filtration will be the simple modules we
want.

Definition 3.1. ([2], Definition 4.3) Let Q1, Q2 6 P and let ψi : Qi → P be homo-
morphisms. Write (Q1, ψ1) º (Q2, ψ2) if there is a surjective homomorphism
α : Q1 → Q2 which extends to a homomorphism Q1CP (Q1) → P , and there is an
element g ∈ P such that ψ1 = cg ◦ ψ2 ◦ α. If (Q1, ψ1) º (Q2, ψ2) and (Q2, ψ2) º
(Q1, ψ1), then we write (Q1, ψ1) ∼ (Q2, ψ2) and say that (Q1, ψ1) has the same
type as (Q2, ψ2). If ψ1 and ψ2 are isomorphisms, then by abuse of notation we
write Q1 ∼ Q2 and talk of types of subgroups.

The partial order º defines an Ā(P, P )-invariant filtration of M̄(P, P ′)
([2], Proposition 4.4). Filtered quotients are denoted L̄(P, P ′)Q,ψ and L̄(P,Q) =
⊕L̄(P,Q)Q,ψ, where the sum is taken over all types with ψ an isomorphism.

Proposition 3.2. ([2], Proposition 4.8) The module L̄(P,Q) has a basis consisting
of the f̄Q′,ψ′ , where Q′ has the same type as Q and ψ′ is an isomorphism from Q′ to
Q. A left action of FpOutQ on L̄(P,Q) is defined by η · f̄Q′,ψ′ = f̄Q′,η◦ψ′ , for η ∈
OutQ. Moreover, if M is a simple right FpOutQ-module then M ⊗FpOutQ L̄(P,Q)
is a left Ā(P, P )-module with action given by

ζH,φ · (s⊗ f̄Q′,ψ′) =
∑

x∈Q′\P/H
Q′6StabP M6xH
Q′∩x(Kerφ)=1

s⊗ fφ(x−1Q′),ψ◦cx◦φ−1 .

We write StabP M for the kernel of the composite

NP (Q′) → OutQ′
∼=→ OutQ→ AutM.

From Michael Catalano we have a bit more information as follows. Let Qi be
a conjugacy class representative of Q in P that has the same type as Q, and let
NP (Qi) be the image of the map

NP (Qi) → OutQi → OutQ
g 7→ cg 7→ ψi ◦ cg ◦ ψ−1

i

(see [2], Lemma 5.3). In [4], Lemma 2.1, we see that

M ⊗FpOutQ L̄(P,Q) ∼= ⊕ki=1M ⊗FpOutQ f̄Qi,ψi .

Furthermore, M ⊗FpOutQ f̄Qi,ψi
∼= M/NP (Qi) (see [5], p. 16). We end up with the

following proposition.
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Proposition 3.3. (Catalano) As Fp-spaces, we have

M ⊗FpOutQ L̄(P,Q) ∼= ⊕ki=1M/NP (Qi)

where k is the number of conjugacy classes of subgroups of P of the same type as
Q, Qi is a conjugacy class representative, and ψi : Qi → Q is an isomorphism.

Benson–Feshbach define a certain maximal submodule M of M ⊗FpOutQ L̄(P,Q)
inductively ([2], Definition 4.9), but Catalano proves M = M0 ([4], Lemma 3.1).
Thus

M = M0 = ∩Imφ∼=QKer ζL,φ.

Let L̄(P,Q,M) = (M ⊗FpOutQ L̄(P,Q))/M.

Theorem 3.4. ([2], Theorem 5.7) The modules L̄(P,Q,M) are either simple or
zero. As Q runs through the types of subgroups of P and M runs through simple
FpOutQ-modules, the non-zero modules of the form L̄(P,Q,M) run through a com-
plete set of representatives for the isomorphism types of simple Ā(P, P )-modules.

The module L̄(P,Q,M) is zero if and only if the original summand of BQ+

corresponding to M does not appear as a summand of BP+. Alternatively, the
module L̄(P,Q,M) is non-zero if and only if the conditions of Theorem 2.2 hold
(specifically, there must exist Q ∼= Q′ 6 P ′ such that γ ·M∗ 6= 0). Finally, if X orig-
inates in BQ then the multiplicity of X in BP equals the dimension of L̄(P,Q,M)
as a module over its endomorphism ring, EndĀ(P,P )L̄(P,Q,M).

There is a ring homomorphism ρ : Ā(P, P ) → FpOutP defined by ρ(ζH,φ) = 0
unless H = P and φ is an automorphism, in which case ρ(ζH,φ) = φ̄ where φ̄ is the
outer automorphism corresponding to φ ([2], p.166). Clearly ρ is a split surjection.
A primitive idempotent is in Ker ρ if and only if the corresponding indecomposable
summand of BP does not originate in BP .

If X = eBP is an original indecomposable summand of BP , then there is a
primitive idempotent ẽ ∈ Ā(P, P ) that is not in Ker ρ. Thus, there is a non-trivial
idempotent ē ∈ FpOutP such that ρ(ẽ) = ē. We see that m(X,BP ) equals the
dimension of M = ēR/ēJ(R) over its endomorphism ringEndFpOutPM .

4. The Martino–Priddy Method

Let X be an original indecomposable summand of BQ, Q 6 P , with correspond-
ing simple right FpOutP -module M . As in [9], define SplitQ to be the set of conju-
gacy classes of retractions πj : Pj → Qj , where Qj ∼= Q. For all j, fix isomorphisms
ψj : Qj → Q.

Let
ωij =

∑

N(Qi,Pj)/Pj

ψj ◦ πj ◦ cx−1 ◦ ψ−1
i

where the sum runs over coset representatives of N(Qi, Pj)/Pj such that the com-
position

Q
ψ−1
i→ Qi

cx−1→ x−1Qix 6 Pj
πj→ Qj

ψj→ Q
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is in OutQ.
Let n = |SplitQ|, then A(Q) = (ωij) is in Matn(R), where R = FpOutQ. Let

K = EndRM . If dimKM∗ = m, then each ωij can be viewed as an m×m matrix
over K, where ωij acts on the left of the module M∗. Define Wij to be the matrix
in Matm(K) corresponding to ωij , and let A(Q,M∗) = (Wij) ∈ Matnm(K).

Theorem 4.1. ([9], Theorem 0.1) Let X be an original summand of BQ, Q 6 P ,
with corresponding simple right FpOutQ-module M . Then, the multiplicity of X in
BP is m(X,BP ) = rankKA(Q,M∗).

Note that if X is an original summand of BP , then SplitP = {id : P → P} and
m(X,BP ) = rankKA(Q,M∗) = dimEndFpOutPM

∗.

5. Connecting Benson–Feshbach and Martino–Priddy

We have seen that Benson–Feshbach and Martino–Priddy compute the multi-
plicity of an original summand of BP in exactly the same way as dimEndFpOutPM ,
but their computations of m(X,BP ) for non-original summands differ vastly. This
section will show a direct connection between the two computations for m(X,BP )
when X originates in BQ for some Q � P .

5.1. Reducing Martino–Priddy’s Matrix
If X is a non-original summand of BP , Benson–Feshbach show there is only one

type of contributor Q as follows.

Lemma 5.1. (see Proposition 5.9 of [2] and Proposition 2.4 of [4]) If Q′ is a con-
tributor to m(X,BP ), then Q′ is a direct summand of Q′CP (Q′).

The proof of this result in [2] relies almost entirely on that paper’s Theorem 5.2,
which has a Martino–Priddy analogue (as noted after Theorem 2.2 in this paper).
Thus, we may use this Lemma in the Martino–Priddy context.

Theorem 5.2. ([2], p.158) Let X be a summand of BP that originates in BQ,
Q � P . If both Q1

∼= Q and Q2
∼= Q contribute to m(X,BP ), then Q1 and Q2 have

the same type.

Proof. To show (Q1, ψ1) º (Q2, ψ2), we let α be the composite Q1
ψ1→ Q

ψ−1
2→ Q2.

Since Q1 is a contributor, Lemma 5.1 implies Q1CP (Q1) = Q1 ×A1 for some A1 6
P . We see that α extends to Q1CP (Q1) via

Q1CP (Q1) = Q1 ×A1
proj−→ Q1

α→ Q2,

and ψ1 = ce ◦ ψ2 ◦ α. Similarly, (Q2, ψ2) º (Q1, ψ1).

Since only contributors play a role in determining m(X,BP ), we can refine the
definition of SplitQ as follows: Define

SplitTQ = {πj : Pj → Qj}
to be conjugacy classes of retractions where Qj 6 Pj 6 P and Qj has the same type
as Q. As before, we will fix isomorphisms ψj : Qj → Q.
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As in Section 4, let

ωij =
∑

N(Qi,Pj)/Pj

ψj ◦ πj ◦ cx−1 ◦ ψ−1
i ∈ FpOutQ.

For the rest of this section, let n = |SplitTQ|. Define AT (Q) = (ωij) ∈ Matn(R)
and AT (Q,M∗) = (Wij) ∈ Matnm(K) as analogues to A(Q) and A(Q,M∗) respec-
tively.

Theorem 5.3. m(X,BP ) = rankKAT (Q,M∗).

Proof. The proof of Theorem 0.1 in [9] works in this refined setting.

Among the n retractions in SplitTQ are the k identity maps Qj → Qj . Order the
retractions in SplitTQ in such a way that the first k retractions are the k identity
maps.

Let B(Q) be the k × n submatrix of AT (Q) obtained by considering only the first
k rows of AT (Q). Define B(Q,M∗) to be the corresponding km× nm submatrix
of AT (Q,M∗). More specifically, we think of B(Q) as a map (M∗)n → (M∗)k, and
B(Q,M∗) as a map Knm → Kkm.

Proposition 5.4. rankKB(Q,M∗) = rankKAT (Q,M∗).

Proof. Consider row t of the matrix AT (Q), where t > k. We know that Qt = Qi
for some i = 1, . . . , k. Thus, ωtj = ωij for all j = 1, . . . , n. The matrix AT (Q,M∗)
row reduces to a matrix that has B(Q,M∗) in the top km× nm block, followed by
a (n− k)m× nm block of zeroes. Clearly rankKB(Q,M∗) = rankKAT (Q,M∗).

5.2. The map from Benson–Feshbach to Martino–Priddy
The basic idea is to define Φ: M ⊗R L̄(P,Q) → (M∗)n by sending s⊗ f̄Qi,ψi to

the image of s∗ under the action of row i of B(Q). We will essentially show that
KerΦ = M and ImΦ = ImB(Q,M∗). Thus, L̄(P,Q,M) ∼= ImB(Q,M∗) and the
dimension of L̄(P,Q,M) equals the rank of B(Q,M∗).

Consider elements of M as rows, while elements ofM∗ will be written as columns.
Let f̄Q′,ψ′ ∈ L̄(P,Q) where Q′ has the same type as Q and ψ′ : Q′ → Q is an iso-
morphism. Define

Φ: M ⊗R L̄(P,Q) → (M∗)n

by Φ(s⊗ f̄Q′,ψ′) = [ωψ′1 · s∗, ωψ′2 · s∗, · · · , ωψ′n · s∗]T where

ωψ′j =
∑

x∈N(Q′,Pj)/Pj

(Q
(ψ′)−1

→ Q′
cx−1→ Pj

πj→ Qj
ψj→ Q)

is an element of FpOutQ. (Note: If ψ′ = ψi for some i, then ωψ′j = ωij .)
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If ν =
∑k
i=1 si ⊗ f̄Qi,ψi is a typical element of M ⊗R L̄(P,Q), then

Φ(ν) =
k∑

i=1

Φ(si ⊗ f̄Qi,ψi)

=




ω11 · s∗1
ω12 · s∗1
...
ω1n · s∗1


 + · · ·+




ωk1 · s∗k
ωk2 · s∗k
...
ωkn · s∗k




=




∑k
i=1 ωi1 · s∗i

...∑k
i=1 ωin · s∗i




= B(Q)T ·




s∗1
s∗2
...
s∗k


 ∈ (M∗)n

.

Proposition 5.5. The map Φ is well-defined.

Proof. Let α ∈ NP (Qi), where α = ψi ◦ cg ◦ ψ−1
i for some g ∈ NP (Qi). We need

Φ(s⊗ f̄Qi,ψi) = Φ(sα⊗ f̄Qi,ψi).
Now Φ(sα⊗ f̄Qi,ψi) = Φ(s⊗ f̄Qi,α◦ψi) = [⊕nj=1ω(α◦ψi)j · s∗]T , where

ω(α◦ψi)j =
∑

x∈N(Qi,Pj)/Pj

(Q
(α◦ψi)−1

−→ Qi
cx−1−→ Pj

πj→ Qj
ψj→ Q).

Now
∑

x∈N(Qi,Pj)/Pj

ψj ◦ πj ◦ cx−1 ◦ (α ◦ ψi)−1 =
∑
ψj ◦ πj ◦ cx−1 ◦ ψ−1

i ◦ α−1

=
∑
ψj ◦ πj ◦ cx−1 ◦ ψ−1

i ◦ ψi ◦ cg−1 ◦ ψ−1
i

=
∑
ψj ◦ πj ◦ cx−1 ◦ cg−1 ◦ ψ−1

i

=
∑
ψj ◦ πj ◦ cx−1g−1 ◦ ψ−1

i .

Since g ∈ NP (Qi) and x ∈ N(Qi, Pj), we know gx ∈ N(Qi, Pj). Furthermore, the
map x 7→ gx is a bijection of NP (Qi). Thus

∑

x∈N(Qi,Pj)

ψj ◦ πj ◦ cx−1g−1 ◦ ψ−1
i =

∑

x∈N(Qi,Pj)

ψj ◦ πj ◦ cx−1 ◦ ψ−1
i .

We have ω(α◦ψi)j = ωij for all j = 1, . . . , n, and so Φ(sα⊗ f̄Qi,ψi) = Φ(s⊗ f̄Qi,ψi).

We need to consider the action of elements of Ā(P, P ) on L̄(P,Q,M), especially
those corresponding to the retracts.
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Lemma 5.6. ζPj ,πj (si ⊗ f̄Qi,ψi) = si · ω∗ij ⊗ f̄Qj ,ψj .

Proof. We have

ζPj ,πj (si ⊗ f̄Qi,ψi) =
∑

x∈Qi\P/Pj
Qi6StabP M6xPj
Qi∩x(Kerπj)=1

si ⊗ fπj(x−1Qi),ψi◦cx◦π−1
j
.

The condition x ∈ Qi\P/Pj can be replaced by x ∈ P/Pj ([4], p.34), and the
condition Qi 6 StabP M 6 xPj can be replaced by Qi 6 xPj ([2], Lemma 4.2). The
two replacement conditions are equivalent to the condition x ∈ N(Qi, Pj)/Pj .

Now x−1Qix 6 Pj and x−1Qix ∩Kerπj = 1, so πj is one-to-one, hence onto,
when restricted to x−1Qix. Thus we have πj(x

−1
Qi) = Qj .

Consider a summand of ωij ,

ωij(x) : Q
ψ−1
i→ Qi

cx−1→ x−1Qix 6 Pj
πj→ Qj

ψj→ Q,

so ωij =
∑

x∈N(Qi,Pj)/Pj

ωij(x). Each ωij(x) in the sum is an element of OutQ. As in

the proof of Lemma 5.1, we can write

ωij =
∑

x∈N(Qi,Pj)/Pj

ωij(x) =
∑

x∈N(Qi,Pj)/Pj
Qi∩x(Kerπj)=1

ωij(x).

Each ωij(x) is invertible. Let

ω−1
ij (x) = Q

ψ−1
j→ Qj

π−1
j→ x−1Qix

cx→ Qi
ψi→ Q.

Then ω∗ij =
∑

x∈N(Qi,Pj)/Pj
Qi∩x(Kerπj)=1

ω−1
ij (x).

Thus, we have

ζPj ,πj (si ⊗ f̄Qi,ψi) =
∑

x∈N(Qi,Pj)/Pj
Qi∩x(Kerπj)=1

si ⊗ f̄Qj ,ψi◦cx◦π−1
j

=
∑
si ⊗ f̄Qj ,ψi◦cx◦π−1

j ◦ψ−1
j ◦ψj

=
∑
si ⊗ f̄Qj ,ω−1

ij (x)◦ψj
=

∑
si · ω−1

ij (x)⊗ f̄Qj ,ψj
= si · ω∗ij ⊗ f̄Qj ,ψj .

Proposition 5.7. KerΦ = M.

Proof. Let ν =
∑k
i=1 si ⊗ f̄Qi,ψi ∈M = ∩Imφ∼=QKer ζL,φ, where L 6 P and φ :

L→ P .
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In particular, for all j = 1, . . . , n we have

0 = ζPj ,πj (ν)
=

∑k
i=1 ζPj ,πj (si ⊗ f̄Qi,ψi)

=
∑k
i=1(si · ω∗ij ⊗ f̄Qj ,ψj )

= (
∑k
i=1 si · ω∗ij)⊗ f̄Qj ,ψj .

Now by ([5], Lemma 5.21), this implies that for all j = 1, . . . , n

0 =
∑k
i=1 si · ω∗ij

=
∑k
i=1 ωij · s∗i .

Thus we have Φ(ν) = 0 and M⊆ KerΦ is proved.
Now let ν =

∑k
i=1 si ⊗ f̄Qi,ψi ∈ KerΦ. If ν 6∈ M, then there is a pair (L, φ), where

φ : L→ P and Imφ ∼= Q, for which ν 6∈ Ker ζL,φ. Consider

ζL,φ(ν) =
∑k
i=1 ζL,φ(si ⊗ f̄Qi,ψi)

=
∑k
i=1




∑
x∈N(Qi,L)/L
Qi∩x(Kerφ)=1

si ⊗ f̄φ(x−1Qi),ψi◦cx◦φ−1


 .

There must exist at least one pair (Qi, x) satisfying the conditions in the sum. Let
(Qi, x) be such a pair. Note that x ∈ N(Qi, L) implies x−1Qix 6 L, and x−1Qix ∩
Kerφ = 1 implies φ|x−1Qix is one-to-one, hence onto φ(L) = Q̄. Let φ̄ = φ|x−1Qix so
φ̄ : x−1Qix→ Q̄ is an isomorphism. Consider the composition

rx : L
φ→ Q̄

φ̄−1

−→ x−1Qix.

Now rx is a retraction onto a conjugate of Qi, so the pair (L, rx) is conjugate
to a pair (Pt, πt) ∈ SplitTQ for some t = 1, . . . , n. Since ν ∈ Ker Φ, we know that
0 =

∑k
i=1 ωij · s∗i =

∑k
i=1 si · ω∗ij for all j = 1, . . . , n. Because (Pt, πt) is conjugate to

(L, rx), we have ζL,rx(ν) = ζPt,πt(ν) = (
∑k
i=1 si · ω∗ij)⊗ f̄Qj ,ψj = 0⊗ f̄Qj ,ψj . Since

Imφ ∼= Q and Kerφ = Ker rx, we again see from Lemma 5.21 of [5] that ζL,φ(ν) = 0.
This is a contradiction, so we must have ν ∈M.

This completes the proof that KerΦ = M.

5.3. Alternative Transformations
Define a K-linear version of the homomorphism Φ as follows. Let ν =

∑k
i=1 ~si ⊗

f̄Qi,ψi ∈M ⊗R L̄(P,Q), where we now let ~si represent an m-dimensional vector in
the K-module M . Define Ψ: M ⊗R L̄(P,Q) → Knm by

Ψ(ν) = B(Q,M∗)T ·




~s1
∗

~s2
∗

...
~sk
∗


 ∈ K

nm.

Following the proofs of Propositions 5.5 and 5.7, we see that Ψ is well-defined
and KerΨ = M.
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Taking this one step further, let d = dimFpK and let B(Q,M∗) denote the matrix
B(Q,M∗) considered as a dkm× dnm matrix over Fp. Define χ : M ⊗R L̄(P,Q) →
Fdnmp as an Fp-linear analog to Φ and Ψ. Again, we have that χ is well-defined and
Kerχ = M. Since Fp is a field, rankFpB(Q,M∗)T = rankFpB(Q,M∗).

5.4. Computing Multiplicity
Again, according to Benson–Feshbach, the multiplicity of X in BP , where X

originates in BQ, is

mBF(X,BP ) = dimEndĀ(P,P )L̄(P,Q,M)L̄(P,Q,M).

(The “BF” subscript simply refers to Benson and Feshbach.)
On the other hand, according to Martino–Priddy, the multiplicity of X in BP is

mMP(X,BP ) = rankKB(Q,M∗).

Catalano proves that when L̄(P,Q,M) 6= 0, EndĀ(P,P )L̄(P,Q,M) ∼= K (see [4],
Lemma 3.2).

Finally,
mBF(X,BP ) = dimEndĀ(P,P )L̄(P,Q,M)L̄(P,Q,M)

= dimKL̄(P,Q,M)
= ( 1

d )dimFpL̄(P,Q,M)
= ( 1

d )dimFpImχ
= ( 1

d )dimFpImB(Q,M∗)T

= ( 1
d )rankFpB(Q,M∗)T

= ( 1
d )rankFpB(Q,M∗)

= rankKB(Q,M∗)
= mMP(X,BP ).

We see, then, a bridge from the work of Benson–Feshbach to the work of Martino–
Priddy.

6. An Example

Using the notation of Hall and Senior [6], let P = 16Γ2c1 = (A×B)o C, where
A = Z4〈a〉, B = Z2〈b〉, and C = Z2〈c〉 with cac−1 = ab. Martino and Priddy deter-
mined the complete stable splitting of BP in [9].

Let Q = Z2〈c〉. The elements of order 2 in P are a2, b, c, a2b, a2c, bc, a2bc. These
elements fall into 5 conjugacy classes: Cl(a2) = {a2}, Cl(b) = {b}, Cl(c) = {c, bc},
Cl(a2b) = {a2b}, and Cl(a2c) = {a2c, a2bc}. Take as conjugacy class representatives
of groups of the same type asQ the elements c and a2c. LetQ1 = 〈c〉 andQ2 = 〈a2c〉.

6.1. The Martino–Priddy Matrix
If Pj → Qj is a retract, then ωij will be zero for all i unless StabP M is a subgroup

of a conjugate of Pj . Since OutQ = 1, there is only one simple F2OutQ-module,
namely M = F2 with trivial action. In this case, StabP M = NP (Qi) which equals
〈a2, b, c〉 for i = 1, 2. The only subgroups L of P for which 〈a2, b, c〉 is a subgroup of
a conjugate of L are L = 〈a2, b, c〉 and L = P .
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There are 4 retracts from 〈a2, b, c〉 to each of Q1 and Q2. For the retracts to Q1,
the generators a2, b, c map to e, e, c respectively under the first retract π1, to e, c,
c under the second π2, to c, e, c under π3, and to c, c, c under π4. For the retracts
to Q2, the generators a2, b, c map to e, e, a2c under the first retract π5, to e, a2c,
a2c under the second π6, to a2c, e, e under π7, and to a2c, a2c, e under π8.

There are two retracts from P to Q1 (and two to Q2). The first retract sends the
generators a, b, c to e, e, c respectively (and to e, e, a2c in Q2), while the second
retract maps the generators to c, e, c respectively (and to a2c, e, a2c in Q2). The
retracts to Q1 will be denoted π9 and π10, while the retracts to Q2 are π11 and π12.

There are a total of 12 elements in SplitTQ.
Since OutQ = 1, the entries of the 2× 12 matrix B(Q) will be sums of 0’s and

1’s. When Pj = 〈a2, b, c〉, N(Qi, Pj)/Pj = P/Pj = 〈ā〉 ∼= Z2. When Pj = P ,
N(Qi, Pj)/Pj = P/P = ē. We get

B(Q)=
[

1 + 1 1 + 0 1 + 1 1 + 0 1 + 1 1 + 0 0 + 0 0 + 1 1 1 1 1
1 + 1 1 + 0 0 + 0 1 + 0 1 + 1 1 + 0 1 + 1 1 + 0 1 1 1 1

]

=
[

0 1 0 1 0 1 0 1 1 1 1 1
0 1 0 1 0 1 0 1 1 1 1 1

]
.

Since M = F2 has dimension 1 and trivial action, B(Q) = B(Q,M∗). We see that
the matrix has rank 1, so there is one copy of BZ2 in BP .

6.2. The Benson–Feshbach Modules
Let ψ1 : Q1 → Q and ψ2 : Q2 → Q be isomorphisms. As above M = F2 is the triv-

ial F2OutQ-module. We know that F2 ⊗ L̄(P,Q) = (F2 ⊗ f̄Q1,ψ1)⊕ (F2 ⊗ f̄Q2,ψ2).
When computing ζL,φ(1⊗ f̄Qi,ψi), we need only consider those subgroups L of

P for which StabP F2 is a subgroup of a conjugate of L. As we saw in the previous
section, this implies L = 〈a2, b, c〉 or L = P .

Suppose φ : L→ Qi is surjective. If L = P , then Kerφ is isomorphic to Z2 × Z2 ×
Z2 or Z4 × Z2.

There is only one copy of Z2 × Z2 × Z2 in P , namely 〈a2, b, c〉. In this case,
when computing ζP,φ(1⊗ f̄Qi,ψi), the sum runs over all x ∈ N(Qi, P )/P = P/P
such that Qi ∩x Kerφ = 1. But when x = e, Qi ∩e Kerφ = Qi ∩ 〈a2, b, c〉 6= 1. So
Ker ζP,φ = M ⊗ L̄(P,Q).

There are two conjugacy classes of subgroups of P isomorphic to Z4. Choose
conjugacy class representatives L1 = 〈a〉 and L2 = 〈ac〉. No matter what i and j
are, Li ×Qj = 〈a, c〉. In this case, when computing ζP,φ(1⊗ f̄Qi,ψi), the sum runs
over all x ∈ N(Qi, P )/P = P/P such that Qi ∩x Kerφ = 1. But when x = e, Qi ∩e
Kerφ = Qi ∩ 〈a, c〉 6= 1. So Ker ζP,φ = M ⊗ L̄(P,Q).

Now suppose L = 〈a2, b, c〉, then Kerφ is isomorphic to Z2 × Z2. There are 7
subgroups of P isomorphic to Z2 × Z2: K1 = 〈a2, b〉, K2 = 〈a2, c〉, K3 = 〈a2, bc〉,
K4 = 〈b, c〉, K5 = 〈b, a2c〉, K6 = 〈a2b, c〉, and K7 = 〈a2b, a2c〉.

No matter what the kernel is, when computing ζL,φ(1⊗ f̄Qi,ψi), the sum runs over
all x ∈ N(Qi, L)/L = P/L = {ē, ā} such that Qi ∩x Kerφ = 1. Conjugation by a on
the Ki yields: aK1 = K1, aK2 = K3, aK3 = K2, aK4 = K4, aK5 = K5, aK6 = K7,
and aK7 = K6.
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Suppose the image of φ is Qj , then we get the following intersections and actions:

Q1 ∩ K1 = 1, Q1 ∩ aK1 = 1 ⇒ ζL,φ(1⊗ f̄Q1,ψ1) = 2(1⊗ f̄Qj ,ψj ) = 0
Q1 ∩ K2 6= 1, Q1 ∩ aK2 = 1 ⇒ ζL,φ(1⊗ f̄Q1,ψ1) = 1⊗ f̄Qj ,ψj
Q1 ∩ K3 = 1, Q1 ∩ aK3 6= 1 ⇒ ζL,φ(1⊗ f̄Q1,ψ1) = 1⊗ f̄Qj ,ψj
Q1 ∩ K4 6= 1, Q1 ∩ aK4 6= 1 ⇒ ζL,φ(1⊗ f̄Q1,ψ1) = 0
Q1 ∩ K5 = 1, Q1 ∩ aK5 = 1 ⇒ ζL,φ(1⊗ f̄Q1,ψ1) = 2(1⊗ f̄Qj ,ψj ) = 0
Q1 ∩ K6 6= 1, Q1 ∩ aK6 = 1 ⇒ ζL,φ(1⊗ f̄Q1,ψ1) = 1⊗ f̄Qj ,ψj
Q1 ∩ K7 = 1, Q1 ∩ aK7 6= 1 ⇒ ζL,φ(1⊗ f̄Q1,ψ1) = 1⊗ f̄Qj ,ψj

Q2 ∩ K1 = 1, Q2 ∩ aK1 = 1 ⇒ ζL,φ(1⊗ f̄Q2,ψ2) = 2(1⊗ f̄Qj ,ψj ) = 0
Q2 ∩ K2 6= 1, Q2 ∩ aK2 = 1 ⇒ ζL,φ(1⊗ f̄Q2,ψ2) = 1⊗ f̄Qj ,ψj
Q2 ∩ K3 = 1, Q2 ∩ aK3 6= 1 ⇒ ζL,φ(1⊗ f̄Q2,ψ2) = 1⊗ f̄Qj ,ψj
Q2 ∩ K4 = 1, Q2 ∩ aK4 = 1 ⇒ ζL,φ(1⊗ f̄Q2,ψ2) = 2(1⊗ f̄Qj ,ψj ) = 0
Q2 ∩ K5 6= 1, Q2 ∩ aK5 6= 1 ⇒ ζL,φ(1⊗ f̄Q2,ψ2) = 0
Q2 ∩ K6 = 1, Q2 ∩ aK6 6= 1 ⇒ ζL,φ(1⊗ f̄Q2,ψ2) = 1⊗ f̄Qj ,ψj
Q2 ∩ K7 6= 1, Q2 ∩ aK7 = 1 ⇒ ζL,φ(1⊗ f̄Q2,ψ2) = 1⊗ f̄Qj ,ψj

We see that Ker ζL,φ is either all ofM ⊗ L̄(P,Q), or just the submodule generated
by 1⊗ f̄Q1,ψ1 + 1⊗ f̄Q2,ψ2 . Thus M = 〈1⊗ f̄Q1,ψ1 + 1⊗ f̄Q2,ψ2〉, and L̄(P,Q,M) is
one-dimensional.

6.3. The map Φ

We will make a couple of computations to show how the map Φ works, and to
confirm that M = Ker Φ.

Consider ν = 1⊗ f̄Q1,ψ1 + 1⊗ f̄Q2,ψ2 ∈M.

Φ(ν) =




0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1
1 1
1 1
1 1
1 1




·
[

1∗

1∗

]
=




0
0
0
0
0
0
0
0
0
0
0
0




.

So we see that M⊆ KerΦ.
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Now let ν =
∑2
i=1 si ⊗ f̄Qi,ψi ∈ Ker Φ. Then

Φ(ν) =




0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1
1 1
1 1
1 1
1 1




·
[
s∗1
s∗2

]
=




0
s∗1 + s∗2

0
s∗1 + s∗2

0
s∗1 + s∗2

0
s∗1 + s∗2
s∗1 + s∗2
s∗1 + s∗2
s∗1 + s∗2
s∗1 + s∗2




= ~0.

We see that either s1 = s2 = 0 or s1 = s2 = 1.
Assume s1 = s2 = 1, and consider ζL,φ(ν) where L = 〈a2, b, c〉 and φ : L→ Q2

sends each of the generators a2, b, and c to a2c in Q2. In particular, note that φ is
not a retract.

Now

ζL,φ(ν) = ζL,φ(1⊗ f̄Q1,ψ1) + ζL,φ(1⊗ f̄Q2,ψ2)
=

∑
1⊗ f̄φ(x−1Q1),ψ1◦cx◦φ−1 +

∑
1⊗ f̄φ(x−1Q2),ψ2◦cx◦φ−1

,

where the first sum runs over x ∈ N(Q1, L)/L with Q1 ∩x (Kerφ) = 1 and the sec-
ond sum runs over x ∈ N(Q2, L)/L with Q2 ∩x (Kerφ) = 1

As we saw in Section 6.2, for i = 1, 2 we have N(Qi, L)/L = P/L = Z2〈ā〉. Since
Kerφ = K7, we know that Q1 ∩ e(Kerφ) = 1 and Q1 ∩ a(Kerφ) 6= 1. Also,
φ(e

−1
Q1) = Q2 and ψ1 ◦ ce ◦ φ−1 = ψ2. Thus, ζL,φ(1⊗ f̄Q1,ψ1) = 1⊗ f̄Q2,ψ2 . On the

other hand, Q2 ∩ e(Kerφ) 6= 1, while Q2 ∩ a(Kerφ) = 1. Also, φ(a
−1
Q2) = Q2 and

ψ2 ◦ ca ◦ φ−1 = ψ2. Thus, ζL,φ(1⊗ f̄Q2,ψ2) = 1⊗ f̄Q2,ψ2 . We conclude that
1⊗ f̄Q1,ψ1 + 1⊗ f̄Q2,ψ2 ∈ Ker ζL,φ.

Now φ : L→ Q2 is not a retract, but ra = φ̄−1 ◦ φ (as defined in the proof of
Proposition 5.7) is a retract to a−1Q2a. In that proof we argued that ζL,φ acts like
ζPj ,πj for some j. It is easy to confirm that the pair (L, ra) is conjugate to the
pair (P8, π8). Moreover, one can see from the work above that ζP8,π8(ν) = 2(1⊗
f̄Q2,ψ2) = 0.
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