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FAMILIES OF HOPF ALGEBRAS OF TREES AND PRE-LIE
ALGEBRAS
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(communicated by U. Rehmann)

Abstract
We study Hopf algebra structures on polynomial algebras

generated by coloured trees. In particular, we establish the
existence of a 2n-parameter family of such structures for trees
coloured by n colours.

1. Introduction

Over the past years, more and more examples of combinatorial Hopf algebras
appeared in the mathematical literature (cf. Kreimer [7], Connes-Kreimer [3],
Loday-Ronco [8], Brouder-Frabetti [1]). In most cases these Hopf algebras are con-
structed one at a time. One of the authors [10] constructs such Hopf algebras in
families, by freely adjoining unary operations to Hopf operads, rather than as iso-
lated examples. For example, the Connes-Kreimer Hopf algebra of rooted trees and
its planar analogue (cf. Foissy [4] for a detailed account) are examples related by
a change of operad (see [10]). The non-planar version corresponds to a particular
coproduct based on the commutative operad, whereas the planar version corre-
sponds to its analogue for the associative operad. In [11], a construction along
these lines is given of the Hopf algebras in [8] and [1], this time by freely adjoining
a binary operation to a suitable operad.

The purpose of this paper is to extend the methods of [10], and prove the exis-
tence of 2n-parameter families of Hopf algebra structures on the symmetric algebra
generated by rooted trees with edges coloured by n colours. We start in Section 2
with the definition of the initial pair (Cn, λn), consisting of a commutative algebra
Cn and a linear map λn : Cn ⊗ · · · ⊗ Cn −→ Cn defined on the n-fold tensor prod-
uct. We show that from the universal property of the pair (Cn, λn) alone, it follows
that there exists a family of Hopf algebra structures on Cn. In Section 3, we identify
Cn with the symmetric algebra on rooted trees with n-coloured edges. Consequently,
the Hopf algebras constructed in Section 2 are bialgebras of trees. In Section 4, we
then derive an explicit formula for the corresponding coproducts in terms of trees.
In Section 5, we give a description of the Lie algebra of primitive elements of the
dual Hopf algebra and we give a criterion for when this is the associated Lie alge-
bra of a pre-Lie algebra. Section 6 interprets the family of coproducts in terms of
deformation theory. Finally, Section 7 sketches the more general framework of Hopf
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operads and lists the results obtained when one starts from associative instead of
commutative algebras.

2. Hopf algebra structures from initial objects

For definiteness, we work in the category of vector spaces over a field k of char-
acteristic zero. (However, with the exception of Sections 5 and 6, our arguments
apply in a much more general context of modules over an algebra in any symmetric
monoidal additive category.) By algebra we will always mean associative algebra
with unit.

Definition 2.1. A commutative n-algebra is a pair (A,α), consisting of a com-
mutative algebra A and a linear map α : A⊗n −→ A. A morphism of n-algebras
f : (A,α) −→ (B, β) is an algebra homomorphism f : A −→ B such that β ◦ f⊗n =
f ◦ α.

We will write Cn for the category of these n-algebras. For general reasons, this
category Cn has an initial object, the free n-algebra on the empty set of generators.
This initial algebra will be denoted by (Cn, λn). It is completely characterised (up to
isomorphism) by the property that any n-algebra (A,α) admits a unique morphism
(Cn, λn) −→ (A,α). We will give an explicit description of this initial algebra in
Proposition 3.2 below.

In this section, we will show that Cn carries a family of bialgebra (in fact Hopf
algebra) structures, derived from its universal property alone. First, we need a
notation. If (A,α) ∈ Cn is a commutative n-algebra and σ1, σ2 : A⊗n −→ A are
two linear maps, A⊗n acquires the structure of a n-algebra by the linear map
(σ1, σ2) : (A⊗A)⊗n −→ A⊗A, defined as

(σ1, σ2) = (σ1 ⊗ α+ α⊗ σ2) ◦ τ.
(Here τ : (A⊗2)⊗n −→ A⊗n ⊗A⊗n is the shuffle isomorphism that separates the
first and second tensor factors from A⊗2.)

We are going to use this in the context where (A,α) is the initial n-algebra
(Cn, λn). First note that (Cn, λn) is an augmented algebra. Indeed, the ground
field k is naturally an n-algebra when equipped with the zero map k⊗n −→ k. So by
initiality of (Cn, λn), there is a unique morphism of n-algebras ε : (Cn, λ) −→ (k, 0).

Also by initiality, for any pair of n-ary linear maps σ1, σ2 : C⊗n
n −→ Cn as above,

there is a unique morphism ∆ : (Cn, λn) −→ (Cn ⊗ Cn, (σ1, σ2)) in Cn. That is, a
unique algebra morphism ∆ such that the diagram

C⊗n
n

λ //

∆⊗n

²²

Cn

∆

²²
(Cn ⊗ Cn)⊗n

(σ1,σ2) // Cn ⊗ Cn

(1)

commutes. Exactly as in the case where n = 1 treated in [10], one can prove the
following Theorem.
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Theorem 2.2. Let ∆ : Cn −→ Cn ⊗ Cn be the diagonal associated to two linear
maps σ1 and σ2. If both σi satisfy

ε ◦ σi = ε⊗n,

and
∆ ◦ σi = (σi ⊗ σi) ◦ τ ◦∆⊗n;

then this diagonal is coassociative, and provides Cn with the structure of a bialgebra.

Remark 2.3. We will see in the next section that the initial algebra Cn has a natural
grading. The coalgebra structure given by a pair of maps σ1 and σ2 will respect this
grading if these maps σ1 and σ2 do, and consequently there exists an antipode for
the bialgebra structure. A special case of this occurs in Theorems 4.1 and 4.3 below.

Remark 2.4. The algebras Cn together form a simplicial algebra. The simplicial
operations di: Cn −→ Cn−1 and si : Cn −→ Cn+1 are the algebra homomorphisms
determined by

d0(λn)(x1, . . . , xn) = µ(x1, λn−1(x2, . . . , xn))
di(λn)(x1, . . . , xn) = λn(x1, . . . , µ(xi, xi+1), . . . , xn) (i = 1, . . . , n− 1)
dn(λn)(x1, . . . , xn) = µ(λ(x1, . . . , xn−1), xn)
si(λn)(x1, . . . , xn) = λn+1(x1, . . . , xi, 1, xi+1, . . . , xn) (i = 0, . . . , n),

similar to the formulas for the Hochschild complex. We do not know the significance
of this observation.

3. Initial algebras and trees

Definition 3.1. A rooted tree is an isomorphism class t of finite partially ordered
sets which

(i) have a minimal element r ( ∀u 6= r : r < u), called the root, and
(ii) satisfy the tree condition that (v 6= w) ∧ (v < u) ∧ (w < u) implies

(v < w) ∨ (w < v).

In general, we will not be very precise in distinguishing between an isomorphism
class t and any of the posets which represent it; in particular, we will often use t to
denote a representing poset, and refer to it as a tree.

The elements of a tree are called vertices. A pair of vertices v < w is called an
edge if there is no vertex x such that v < x < w. The number of vertices of a tree
t is denoted by |t|. A path from w to v in a tree is a sequence (vi)i of elements
w = vn > vn−1 > · · · > v1 > v0 = v of maximal length. We will say that w is above
v in a tree if there is a path from w to v.

A forest is a finite (possibly empty) multiset (i.e., a set with multiplicities) of
trees. A subforest s of a rooted tree or forest f is a subset of the multiset (repre-
senting) f with the induced partial ordering. For a forest f and a subforest g ⊂ f ,
we will write gc for the complement (as a multiset) of g in f . Thus gc is a again a
forest (even if f and g are trees, gc need not be a tree).
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In the sequel, we need trees with coloured edges. These are isomorphism classes
of posets as above, equipped with a function from the set of edges to a fixed set
of colours. The isomorphisms are required to respect the colours. In particular, an
n-coloured tree is such a tree whose edges are coloured by the set {1, . . . , n} of
colours. We will write Tn for the vector space spanned by the set of such n-coloured
trees, and S(Tn) for the symmetric algebra on Tn.

Proposition 3.2. There is a natural algebra isomorphism between the initial
n-algebra Cn and the symmetric algebra S(Tn) on the set of n-coloured trees.

Proof. The symmetric algebra S(Tn) can be identified with the vector space spanned
by the set of n-coloured forests, with the unit represented by the empty forest and
the product by the disjoint union of forests. There is an operation

λ: S(Tn)⊗n −→ S(Tn)

which takes an n-tuple of n-coloured forests f1, . . . , fn, and combines them into a
single n-coloured tree by adding a new root, while connecting this new root to each
of the roots in the forest fi by an edge of colour i.

This operation makes S(Tn) into an object of the category Cn. Since initial objects
are unique up to isomorphism in any category, it now suffices to prove that S(Tn)
is initial in Cn.

To this end, let (A,α) be any object of Cn, where α : A⊗n −→ A. Define a mor-
phism

ϕ: (S(Tn), λ) −→ (A,α)

by induction on trees and forests. If f = t1 · · · · · tk is a forest consisting of k trees,
then ϕ(f) = ϕ(t1) · · · · · ϕ(tk), so it suffices to define ϕ on trees. If t is a tree con-
sisting of a root only, then ϕ(t) = α(1, . . . , 1). If t consists of a root r onto which an
n-tuple of n-coloured forests f1, . . . , fn is attached by joining the root of each tree in
fi to r via an edge of colour i, then ϕ(t) = α(ϕ(f1), . . . , ϕ(fn)). It is straightforward
to check that ϕ: (S(Tn), λ) −→ (A,α) thus defined is indeed a morphism in Cn, and
is the unique such.

4. Hopf algebras of trees

In this section, we study a particular example of a family of Hopf algebras which
can be obtained by the general method of Theorem 2.2.

Here and in the sequel |f | denotes the number of vertices in the forest corre-
sponding to f ∈ S(Tn), while the associative multiplication on S(Tn) is denoted
by ·. Below, we write ∆(fi) =

∑
f ′i ⊗ f ′′i reminiscent of the form ∆ takes in a basis.

Theorem 4.1. The symmetric algebra S(Tn) on n-coloured trees has a natural fam-
ily of graded connected Hopf algebra structures, indexed by sequences

(q11, . . . , q1n, q21, . . . , q2n) ∈ k2n.
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The grading is with respect to the number of vertices of the trees. An inductive
description of the coproduct is given by

∆(λ(f1, . . . , fn)) =
∑

q
|f ′1|
11 · · · · · q|f ′n|1n · f ′1 · · · · · f ′n ⊗ λ(f ′′1 , . . . , f

′′
n )

+
∑

λ(f ′1, . . . , f
′
n)⊗ q

|f ′′1 |
21 · · · · · q|f ′′n |2n · f ′′1 · · · · · f ′′n ,

where λ(f1, . . . , fn) is the rooted tree obtained for n forests f1, . . . , fn by adding a
new root and connecting each of the roots of trees in fi to the new root by an edge
of colour i, and where |fi| is the number of vertices in the forest fi.

Proof. We use the identification of the symmetric algebra S(Tn) with the initial
algebra Cn given by Proposition 3.2. For a given sequence q11, . . . , q1n, q21, . . . , q2n

consider the maps σi : S(T − n)⊗ · · · ⊗ S(Tn) −→ S(Tn) defined for fi ∈ S(Tn) by

σi(f1, . . . fn) =


∏

j

q
|fj |
ij


 · f1 · · · · · fn. (2)

These maps are readily seen to satisfy the conditions of Theorem 2.2. Thus there is
a unique bialgebra structure given by a diagonal for which the diagram 1 commutes.
The inductive description in the theorem is another way to express commutativity.
Next, the bialgebra S(Tn) is graded connected with respect to the grading |.|. It is
well known (cf. Milnor and Moore [9]) that any graded connected bialgebra admits
an antipode.

We now turn to the question of finding a more direct description of these Hopf
algebra structures. For a tree t, a subforest g ⊂ t, and a vertex v ∈ g, we denote by
pk(v, g, t) the number of edges of colour k in the path in t from v to the root of t that
have their lower vertex in gc. For forests f , we define pk(v, g, f) as pk(v, g ∩ t, t),
where t is the connected component of f containing v. There is an easy but useful
lemma on the calculus of the pk.

Lemma 4.2. Let g and h be subforests of a forest f . Let v ∈ h and set g′ = g ∪ v,
h′ = h ∩ g′, g′′ = gc ∪ v and h′′ = h ∩ g′′. Then

pk(v, h, f) = pk(v, h′, g′) + pk(v, h′′, g′′),

where g′, g′′, h′ and h′′ are interpreted as subforests of f .

Proof. The lemma follows at once when we observe that a vertex in the path from
v to the root in f that is not in h is either in g′ or in g′′.

Define for a subforest g of a forest f

q(g, f) :=
∏

j

(∏
v∈g

q
pj(v,g,f)
1 j ·

∏
v∈gc

q
pj(v,gc,f)
2 j

)
. (3)

More intuitively, q(g, f) counts for v ∈ g the number of edges of colour j in the path
from v to the root that have their lower vertex in gc and adds a factor q1j for each
of these, and q(g, f) counts for v ∈ gc the number of edges of colour j in the path
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from v to the root that have their lower vertex in g and adds a factor q2j for each
of these.

Theorem 4.3. Let S(Tn) be the symmetric algebra on n-coloured trees as in
Theorem 4.1.

(i) For a forest f ∈ S(Tn) the coproduct defined by (q11, . . . , q2n) ∈ k2n is given
by the formula

∆(f) =
∑

g⊂f

q(g, f) g ⊗ gc,

where the sum is over all subforests g of f .
(ii) The antipode of the Hopf algebra S(Tn) with the coproduct of part (i) is

given by

S(f) =
|f |∑

k=1

∑

∪igi=f

(−1)kg1 · · · · · gk

∏

16j<k

q(gj , gj ∪ · · · ∪ gk),

where we only sum over (ordered) partitions f = g1 ∪ · · · ∪ gk of the forest
f with all forests gi non-empty.

Proof. We use induction with respect to the number of applications of λ to show
the first result. The formula is trivial for the empty tree. Let t = λ(f1, . . . , fn) be a
tree and suppose (as the induction hypothesis) that the formula holds for all trees
with less than |t| vertices. Since ∆ is an algebra morphism, it is clear the formula
also holds for the forests fi since these consist of trees with less than |t| vertices.
Subforests of t are either of the form g = ∪igi, a (disjoint) union of subforests of the
fi, or of the form g = r ∪ (∪igi), a (disjoint) union of subforests of the gi together
with the root. By definition and the induction hypothesis,

∆(t) =
∑

gi⊂fi

g1 · · · · · gn ⊗ λ(gc
1, . . . , g

c
n) ·

∏

i

q
|gi|
1i q(gi, fi)

+
∑

gi⊂fi

λ(g1, . . . , gn)⊗ gc
1 · · · · · gc

n ·
∏

i

q
|gc

i |
2i q(gi, fi).

But by Lemma 4.2,

∏
q
|gi|
1i q(gi, fi) =

∏

j

(∏
v∈g

q
pj(v,g,t)
1 j ·

∏
v∈gc

q
pj(v,gc,t)
2 j

)

for g = ∪igi = g1 · · · · · gn and gc = r ∪ (∪ig
c
i ) = λ(gc

1, . . . , g
c
n); and

∏
q
|gc

i |
2i q(gi, fi) =

∏

j

(∏
v∈g

q
pj(v,g,t)
1 j ·

∏
v∈gc

q
pj(v,gc,t)
2 j

)

for g = r ∪ (∪igi) = λ(g1, . . . , gn) and gc = ∪igi = gc
1 · · · · · gc

n. Putting these
together proves the formula for the coproduct.

To prove part (ii), consider for the moment an arbitrary graded connected bialge-
bra A. Write Ā =

⊕
n>1A

n for its augmentation ideal. The antipode on A applied
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to x ∈ Ā is given by

S(x) =
∞∑

k=0

(−1)k+1µ(k) ◦ ∆̄(k)(x), (4)

where ∆̄ = ∆− (id⊗ 1 + 1⊗ id), and µ(k) : A⊗k+1 −→ A and ∆̄(k) : A −→ A⊗k+1

are defined using (co)associativity for k > 0 and µ(0) = id = ∆̄(0). (The sum in the
formula for S(x) is of course finite, and stops at k for a homogeneous element x
of degree k.) For the special case of the bialgebra S(Tn), part (i) of the theorem
shows that the formula (4) for S(x) specialises to the formula stated in part (ii).
This proves the result.

Example 4.4. The Hopf algebra C1 with the coproduct defined by q11 = 1 and
q21 = 0 is the Connes-Kreimer Hopf algebra of rooted trees [3], [7], [10].

5. Primitives of the dual

Since S(Tn) is commutative, we know by the Milnor-Moore Theorem [9] that
the graded linear dual S(Tn)∗ is the universal enveloping algebra of the Lie algebra
of its primitive elements. The result below provides an explicit formula for the Lie
bracket on these primitive elements.

Corollary 5.1. Let S(Tn) be the symmetric algebra on rooted trees with n-coloured
edges, and let ∆ be the coproduct defined by (q11, . . . , q2n) ∈ k2n (cf. Theorem 4.3).
The graded dual S(Tn)∗ is the universal enveloping algebra of the Lie algebra which
as a vector space is spanned by elements Dt, where t is a rooted tree in S(Tn). The
bracket is given by [Ds, Dt] = Dt •Ds −Ds •Dt, where

Dt •Ds =
∑

x

∑
s⊂x, sc=t

q(s, x)Dx.

In this formula, the first sum ranges over all rooted trees x, and the second sum over
subtrees of x which are isomorphic to s and whose complement sc is isomorphic to t.

Proof. For any cocommutative Hopf algebra we can define an operation • on the
primitive elements, such that its commutator is the Lie bracket on primitive ele-
ments. Simply define • as the truncation of the product at degree > 1, with respect
to the primitive filtration F . In this case, FmC

∗
n is spanned by the elements Df dual

to forests f consisting of at most m trees. The product in S(Tn)∗ is determined by
the coproduct in S(Tn). For trees s and t, and for a forest f , we can write the
multiplication in C∗n as

(DtDs)(f) = (Dt ⊗Ds)∆(f),

thus, for a fixed f we get a contribution q(f, s)Df for every subtree isomorphic to
s in f with t as complementary forest. The desired formula for Dt •Ds is obtained
when we then restrict to the primitive part, i.e. the part where the forest f is a tree
(denoted x in the formula).
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Recall (cf. Chapoton and Livernet [2]) that a pre-Lie algebra is vector space L
together with a bilinear operation • satisfying the identity

(x • y) • z − x • (y • z) = (x • z) • y − x • (z • y).
The free pre-Lie algebra Ln on n generators is given by the vector space spanned by
rooted trees with vertices labelled by elements of the set {1, 2, . . . , n}. The pre-Lie
algebra product is given by grafting trees. For trees s and t, and a vertex v in t,
denote by t ◦v s the tree obtained from t and s by attaching the root of s to the
vertex v in t by a new edge. Grafting preserves the labelling of the vertices. The
pre-Lie algebra structure on Ln is given by

t • s =
∑
v∈t

t ◦v s,

for trees s and t.
Below, we denote by χS the characteristic function of a subset S ⊂ X which

has value 1 on S and value 0 on X − S, and denote the vector space of primitive
elements of a coalgebra C by P (C).

Theorem 5.2. Let p ⊂ {1, . . . , n} and define q1j = χp(j) and q2j = 0 for j = 1, . . . ,
n. Consider the Hopf algebra structure on the symmetric algebra S(Tn) on rooted
trees with n-coloured edges that corresponds to this choice of qij.

(i) The product Dt •Ds =
∑

x

∑
s⊂x,sc=t q(s, x)Dx of Corollary 5.1 defines a

pre-Lie algebra structure on the vector space of primitive elements P (C∗n)
of S(Tn)∗.

(ii) If p = {1, . . . , n}, then there is a natural inclusion of this pre-Lie algebra
into the free pre-Lie algebra on n generators. This inclusion identifies the
vector space P (C∗n) with the subspace of the free pre-Lie algebra spanned by
all sums

∑
i∈p ti, of trees with vertices coloured by p that only differ in that

the colour of the root of ti is i.

Proof. Consider the general formula for Dt •Ds in Corollary 5.1. Note that for
qij ∈ {0, 1} the coefficients q(s, x) are either 0 or 1. We can be more precise. Let
x and t be trees. A product of subtrees s = s1 · · · · · sm ⊂ x is t-admissible if sc

contains the root of x while s is grafted onto t = sc by edges of colours i1, . . . , im ∈ p
to vertices v1, . . . , vm respectively, each of which is connected to the root by edges
having colours in p. We only use this terminology for m = 1, 2. Note that q(s, x) = 0
unless the corresponding subtree s is t-admissible.

For trees s, t, and u, the pre-Lie identity follows from

(Dt •Ds) •Du −Dt • (Ds •Du) =
∑

x

∑
s·u⊂x

Dx,

where the second sum is over t-admissible products s · u. This proves part (i) since
the expression is symmetric in s and u.

Before we prove (ii) we study the pre-Lie algebra structure • in more detail. Let
m(t, s, x) be the number of t-admissible subtrees s ⊂ x. The operation • is then
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given by

Dt •Ds =
∑

x

m(t, s, x)Dx,

where the sum is over all rooted trees. For our aims, it is better to use a different
description of this pre-Lie algebra. We closely follow the strategy of Hoffman [6] in
this respect. If m(t, s, x) 6= 0, it is exactly the order of the orbit of the root of the
subtree s under the action of the group Aut(x) of automorphisms of x. If s and
t are n-coloured trees and v is a vertex in t, denote by t ◦(v,i) s the tree obtained
from t and s by connecting the root of s to the vertex v by an edge of colour i. Let
n(t, s, x) be the number if vertices v ∈ t such that t ◦(v,i) s = x for some i ∈ p. Then
for any such vertex v, the order of the orbit of v in t under the action of Aut(t) is
exactly n(t, s, x).

Define another pre-Lie algebra structure •′ on the same vector space P (C∗n), by

Dt •′ Ds =
∑

x

n(t, s, x)Dx,

and denote this pre-Lie algebra by P (C∗n)′. For a subtree s ⊂ x, denote by Auts(x)
the automorphisms of x that pointwise fix s. Then, if m(s, t, x) 6= 0 we can write,
following Hoffman [6],

m(t, s, x) =
|Aut(x)|

|Auts(x)| · |Aut(t)|
n(t, s, x) =

|Aut(s)|
|Aut{v}(t)|

,

for a vertex v such that t ◦(v,i) s = x for some i. Since |Auts(x)| = |Aut{v}(t)|
it follows that Dt 7−→ |Aut(t)|Dt defines an isomorphism of pre-Lie algebras
P (C∗n) −→ P (C∗n)′ (in characteristic 0).

In the remainder of the proof, let p = {1, 2, . . . , n}. We prove (ii) by constructing
an inclusion P (C∗n)′ −→ Ln. Note that

Dt •′ Ds =
∑
v∈t

∑

i∈p

Dt◦(v,i)s.

For an n-coloured tree t, denote by ↑i(t) the tree with coloured vertices obtained
by moving the colour of each edge up to the vertex directly above it and colouring
the root by i. Note that

↑j(t ◦(v,i) s) = ↑j(t) ◦v ↑i(s).

Let p = {1, . . . , n} and consider S(Tn) with the corresponding Hopf algebra struc-
ture as defined above. Define ϕ : P (S(Tn)∗)′ −→ Ln from the pre-Lie algebra of
primitives to the free pre-Lie algebra on n generators by

ϕ(Dt) =
n∑

j=1

↑j(t).
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Then ϕ is a linear embedding. Moreover, ϕ preserves the pre-Lie algebra structure
since

ϕ(Dt •′ Ds) =
∑

(v,i)

ϕ(Dt◦(v,i)s)

=
∑

(v,i)

∑

j

↑j(t ◦(v,i) s)

=
∑

v

∑

i,j

↑j(t) ◦v ↑i(s)

= ϕ(Dt) • ϕ(Ds).

Example 5.3. In the case of the Connes-Kreimer Hopf algebra (Example 4.4),
Theorem 5.2 states that the dual Hopf algebra is the universal enveloping alge-
bra of the free pre-Lie algebra on one generator. This was first proved by Chapton
and Livernet [2].

6. Infinitesimal coalgebra deformations

In this section, we consider how the different Hopf algebra structures of Theorem
4.1 are related from the point of view of deformation theory. For simplicity we
restrict our attention to the case n = 1.

Let A be a Hopf algebra. Recall (e.g., Gerstenhaber-Shack [5]) the bicomplex
Cp q(A) = Hom(A⊗p, A⊗q) for p, q > 1. For q fixed, the horizontal complex C∗ q is
the Hochschild complex of the algebra A with coefficients in the A-A bimodule A⊗q.
For p fixed, the vertical complex Cp ∗ is the Hochschild complex of the coalgebra A
with coefficients in the A-A bicomodule A⊗p.

Write k[δ] = k[x]/(x2) for the ring of dual numbers, and A[δ] = A⊗ k[δ].
An infinitesimal coalgebra deformation ∆δ of a Hopf algebra A is a k[δ]-linear

map ∆δ : A[δ] −→ A[δ]⊗k[δ] A[δ] for which ∆δ makes A[δ] with the same multipli-
cation and counit a Hopf algebra over k[δ], and such that evaluation at δ = 0 gives
the original Hopf algebra structure on A.

The vector spaces Der(A,A⊗q) of algebra derivations form the kernel of the
horizontal differential at the edge of the complex C∗q(A), and thus a subcomplex
of the coalgebra Hochschild complex. This complex starts out as

Der(A,A) d−→ Der(A,A⊗2) d−→ Der(A,A⊗3),

where for ϕ ∈ Der(A,A) and a ∈ A,

dϕ(a) =
∑

a′ ⊗ ϕ(a′′)−∆ϕ(a) +
∑

ϕ(a′)⊗ a′′,

and for ψ =
∑
ψ′ ⊗ ψ′′ ∈ Der(A,A⊗2),

dψ(a) =
∑

a′ ⊗ ψ(a′′)−
∑

∆ψ′(a)⊗ ψ′′(a)

+
∑

ψ′(a)⊗∆ψ′′(a)−
∑

ψ(a′)⊗ a′′.
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Infinitesimal coalgebra deformations of the Hopf P -algebra A are in 1-1 corre-
spondence with classes in H2(Der(A,A⊗∗)).

Let us now turn to the example of the Hopf algebra S(T1) with the coproduct
on trees given by ∆(s) = s⊗ 1 + 1⊗ s. (This is the coproduct induced by σ1 =
σ2 = u ◦ ε, the composition of the unit and the counit.) If q1, q2 ∈ δ · k[δ] and if we
write λ := λ1, then the map ∆q1,q2 : S(T1)[δ] −→ S(T1)[δ]⊗k[δ] S(T1)[δ] inductively
defined by

∆q1,q2(λ(f)) =
∑

(f)

λ(f ′)⊗ q
|f ′′|
2 f ′′ + q

|f ′|
1 f ′ ⊗ λ(f ′′)

defines a coalgebra deformation of S(T1).
The Hopf algebra S(T1) is graded. Let us write Der0(S(T1), S(T1)⊗∗) for the

subcomplex of Der(S(T1), S(T1)⊗∗) consisting of those derivations that preserve
the degree. Classes in H2(Der0(S(T1), S(T1)⊗∗)) correspond to graded coalgebra
deformations. The result below studies the deformations ∆q1,q2 as graded coalgebra
deformations.

Proposition 6.1. Consider S(T1) with the coproduct induced by σ1 = σ2 = u ◦ ε.
(i) The boundaries in Der0(S(T1), S(T1)⊗2) are the derivations ϕ that can be

written as
ϕ(s) =

∑

f

cs,f ∆̄(f),

for all trees s, and constants cs,f ∈ k, and where the sum ranges over all
forests f such that |s| = |f |. As usual, ∆̄ = ∆− (id⊗ 1 + 1⊗ id).

(ii) Let q1 ≡ c1δ, q2 ≡ c2δ, and q′1 ≡ d1δ, q
′
2 ≡ d2δ. Two graded infinitesimal co-

algebra deformations ∆q1,q2 and ∆q′1,q′2 are equivalent iff c1 − c2 = d1 − d2.

Proof. Let ψ ∈ Der0(S(T1), S(T1)). Then ψ(1) = 0, and ψ is determined by its val-
ues on trees. Write ψ in matrix form as ψ(s) =

∑
f cs,ff , where the sum ranges

over forests, and cs,f ∈ k are constants. Since we assume ψ is graded, cs,f = 0 if
|f | 6= |s|. Compute

dψ(s) = (ψ(s)⊗ 1 + 1⊗ ψ(s))−∆(ψ(s))

=
∑

f

cs,f (f ⊗ 1 + 1⊗ f)− cs,f∆(f)

= −
∑

f

cs,f ∆̄f.

For ψ : S(T1) −→ S(T1) as above define the endomorphism Ψ of S(T1)[δ] by Ψ(x) =
x+ ψ(x)δ for x ∈ S(T1)[δ]. Two infinitesimal coalgebra deformations ∆q1q2 and
∆q′1q′2 are equivalent iff we can find a derivation ψ such that the corresponding
map Ψ satisfies, for all trees s,

∆q′1q′2 ◦Ψ(s) ≡ Ψ⊗Ψ ◦∆q1,q2(s),

or equivalently

∆q′1q′2(s+ ψ(s)δ) ≡ ∆q1,q2(s) + (ψ ⊗ 1)(∆q1,q2(s))δ + (1⊗ ψ)(∆q1,q2(s))δ.
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To compute this we only have to consider terms in ∆q′1q′2(s) and ∆q1,q2(s) corre-
sponding to subforests g ⊂ s, such that

∑
v∈g

p(v, g, s) +
∑
v∈gc

p(v, gc, s) 6 1,

which means that either g = s, or gc = s, or s = g ◦r λ(1), or s = gc ◦r λ(1). We
only need to consider terms in ∆q′1q′2(ψ(s)) corresponding to g ⊂ s, such that

∑
v∈g

p(v, g, s) +
∑
v∈gc

p(v, gc, s) = 0,

which means that either g = s, or gc = s. From this it follows that Ψ defines an
equivalence of the two infinitesimal deformations iff the coefficients of δ match,
which is to say

∑

{g⊂s|s=g◦rλ(1)}
d1g ⊗ λ(1) + d2λ(1)⊗ g +

∑

f

cs,f∆(f)

=
∑

{g⊂s|s=g◦rλ(1)}
c1g ⊗ λ(1) + c2λ(1)⊗ g +

∑

f

cs,ff ⊗ 1 + cs,f1⊗ f.

Of course cs,ff ⊗ 1 + cs,f1⊗ f is the primitive part of
∑

f cs,f∆(f). For the equal-
ity, we thus need cs,f = (c1 − d1)msg = (c2 − d2)msg if f = λ(1)g for an g such that
s = g ◦r λ(1) and msg is the cardinality of the orbit of the vertex in s− g under the
automorphism group of s. Choose the other cs,f equal to 0.

7. The general approach in the associative case

The construction of bialgebras can be performed in much greater generality.
Starting from an arbitrary Hopf operad P one can construct the operad P [λn]
which has as algebras P -algebras together with an n-ary operation. Under condi-
tions similar to those in Theorem 4.1 one can find a Hopf-P algebra structure on
the initial P [λn]-algebra (see [10], [11]). The explicit calculations for P = Com∗,
the operad for unital commutative algebras, is presented in the previous sections.
These calculations can also be carried out for the operad Ass∗ for unital associative
algebras. In this section, we briefly state some of the resulting formulas.

Definition 7.1. Let An be the category which has as objects pairs (A,α), consist-
ing of an associative unital algebra A and a linear map α : A⊗n −→ A, and which
has as morphisms An((A,α), (B, β)) the algebra homomorphisms f : A −→ B such
that β ◦ f⊗n = f ◦ α.

Let (An, λn) be the initial object in the category An. Then An can be described
as the free associative algebra on trees with edges coloured by {1, . . . , n} where in
addition at each vertex the incoming edges with the same colour are endowed with
a separate linear ordering. We also refer to these trees as planar n-trees.
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Theorem 7.2. The tensor algebra An on planar n-trees has a natural family of
graded connected Hopf algebra structures, indexed by sequences (q11, . . . , q1n,
q21, . . . , q2n) ∈ k2n. The inductive description of the coproduct is given by the for-
mula of Theorem 4.1.

The An together again form a simplicial algebra (cf. Remark 2.4).

Corollary 7.3. Let An be the free associative algebra on the planar n-trees.

(i) The coproducts on An of Corollary 7.3 are given by the closed formula

∆(t) =
∑
g⊂t

∏

j

(∏
v∈g

q
pj(v,g,t)
1 j ·

∏
v∈gc

q
pj(v,gc,t)
2 j

)
g ⊗ gc,

where the product of trees is associative, non-commutative. The order of
multiplication is given on the roots of the trees defined by the linear order
on the incoming edges at each vertex and the partial order on the vertices.

(ii) The vector space of primitive elements of the dual is spanned by elements
dual to planar n-trees. The Lie bracket is the commutator of the (non-
associative) product • given by

Ds •Dt =
∑

x

∑
s⊂x, sc=t

∏

j

(∏
v∈s

q
pj(v,s,x)
1 j ·

∏
v∈t

q
pj(v,t,x)
2 j

)
Dx,

where s, t and x are trees with a linear ordering on the incoming edges of
the same colour at each vertex and the inclusions of s and t in x have to
respect these orderings.

Proof. One can copy the proof of the commutative case almost verbatim. The
only change is that we have to remember the ordering of up-going edges at each
vertex.

Remark 7.4. Independently, Foissy [4] has found the formula for the Lie bracket in
the case where n = 1, q11 = 1 and q12 = 0 (and Ass∗ is the underlying operad). He
uses this formula to give an explicit isomorphism between the Hopf algebras A1 and
A∗1 with this coproduct.
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