
Homology, Homotopy and Applications, vol.3(2), 2001, pp.361–384

STACKS AND THE HOMOTOPY THEORY OF SIMPLICIAL
SHEAVES

J.F. JARDINE

(communicated by Gunnar Carlsson)

Abstract
Stacks are described as sheaves of groupoids G satisfying an

effective descent condition, or equivalently such that the clas-
sifying object BG satisfies descent. The set of simplicial sheaf
homotopy classes [∗, BG] is identified with equivalence classes
of acyclic homotopy colimits fibred over BG, generalizing the
classical relation between torsors and non-abelian cohomology.
Group actions give rise to quotient stacks, which appear as pa-
rameter spaces for the separable transfer construction in special
cases.

Introduction

This paper arose from a personal need for a collection of technical statements
about homotopy theoretic objects related to stacks in connection with a project on
transfer maps for presheaves of spectra. This project is briefly described in Example
18 below: there is a very general pairing which is defined for finite maps of integral
Noetherian schemes and arbitrary presheaves of spectra on the category of schemes,
and this map specializes to a transfer in the case where a certain stack has a global
section.

The present paper defines stacks (from several points of view) as sheaves of
groupoids satisfying an effective descent condition, and then discusses the basic
homotopy theoretic properties of their associated classifying simplicial sheaves. It is
shown that any sheaf of groupoids G has a stack completion map η : G → St(G) such
that St(G) is a stack (Lemma 9), and that the induced map η : BG → BG St(G)
of classifying simplicial sheaves is a local weak equivalence (Lemma 7). The stack
completion can be constructed either geometrically (following Giraud [4]) by putting
in the missing cocycles, or by using the strong stack completion functor of Joyal
and Tierney [12]. Either way, the object B St(G) satisfies descent, which means
that every globally fibrant model B St(G) → X in the simplicial presheaf category
is a pointwise weak equivalence in the sense that all maps B St(G)(U) → X(U) of
sections are weak equivalences of simplicial sets (Theorem 6). The Joyal-Tierney
strong stack completion G∧ of a sheaf of groupoids G, in fact, produces a simplicial

This research was supported by NSERC.
Received February 4, 2001, revised August 15, 2001; published on September 13, 2001.
2000 Mathematics Subject Classification: Primary 18G50; Secondary 18F20, 18G30, 14A20.
Key words and phrases: groupoids, stacks, simplicial sheaves, descent.
c© 2001, J.F. Jardine. Permission to copy for private use granted.



Homology, Homotopy and Applications, vol. 3(2), 2001 362

sheaf BG∧ which is globally fibrant on the nose. More generally, there is a case
to be made for defining a stack to be a presheaf of groupoids G such that BG
satisfies descent in the above sense. These results are proved in Sections 2 and 3
of this paper, after an identification of the topos theoretic notion of an internal
equivalence G → H of sheaves of groupoids with a morphism which induces a local
weak equivalence BG → BH of simplicial sheaves (Lemma 1) in Section 1.

Section 4 contains homotopy classification results which expand on the identi-
fication of the non-abelian cohomology object H1(∗, G) for sheaves of groups G
with the set morphisms [∗, BG] from the terminal object to BG in the homotopy
category of simplicial sheaves [8]. Torsors for a sheaf of groupoids G are defined by
internal functors Y → BG such that Y is weakly equivalent to a point. An internal
functor is defined here to be a simplicial sheaf map such that Y is given by a ho-
motopy colimit over G in each section. From this point of view, it is essentially no
surprise that the set of path components of the category of G-torsors is isomorphic
to [∗, BG] for arbitrary sheaves of groupoids G (Theorem 14).

In the case where G is a sheaf of groups and N is a sheaf carrying a G-action, The-
orem 16 identifies path components of the quotient stack with morphisms [∗, EG×G

N ] in the homotopy category taking values in the associated Borel construction, or
classifying space of the translation groupoid. This result is exactly the technical
device that is required for the transfer project, and it specializes to results of Breen
[2] which classify various classes of bitorsors. The result is proven by means of a
direct cocycle argument.

The results displayed here certainly do not tell the end of the story about stacks
and homotopy theory. There is no attempt, for example, to discuss higher non-
abelian cohomology objects, and the range of applications given here is very fo-
cussed. Stacks have been vigorously studied for many years, and the results of this
paper are not particularly new in the sense that most of them are known in some
other form. The synthesis presented here, however, is original and the results of this
paper have not yet been collected together elsewhere.

1. Internal equivalences

This paper makes rather vigorous use of the homotopy theory of simplicial
sheaves and presheaves on a small Grothendieck site C. The site C is a category
equipped with a collection of subfunctors R ⊂ hom( , U), called covering sieves, of
all contravariant functors represented by objects U ∈ C. The covering sieves sat-
isfy various axioms: all functors hom( , U) should themselves be covering, covering
sieves are closed under pullback (if R ⊂ hom( , U) is covering and φ : V → U
is a morphism of C, then φ−1R is a covering sieve of V ), and the local character
axiom should be satisfied. The local character axiom says that if R is a sieve and
S is a covering sieve such that φ−1R is covering for all members φ of S, then R
is covering. Covering families in the sense of pretopologies generate sieves, and the
standard axioms for a pretopology ensure that the associated sieves are covering
sieves for a topology.

Recall that presheaves on C are just contravariant set-valued functors, while
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sheaves are presheaves F satisfying a limit condition

F (U) ∼= lim←−
φ:V→U∈R

F (V )

for all covering sieves R ⊂ hom(U, ) of C.
A simplicial presheaf (respectively sheaf) is a simplicial object in the category

of presheaves (respectively sheaves) on C; a simplicial presheaf is alternatively just
a contravariant functor on C taking values in simplicial sets. The categories of sim-
plicial presheaves and simplicial sheaves have standard closed model structures in
which the cofibrations are monomorphisms and the weak equivalences (called local
weak equivalences) are maps which induce isomorphisms in all sheaves of homotopy
groups, for all local choices of base points. In the presence of enough points, a local
weak equivalence of simplicial presheaves or simplicial sheaves is a map which in-
duces a weak equivalence of simplicial sets in all stalks. A fibration for the theory,
called a global fibration, is a map which has the right lifting property with respect
to all maps which are simultaneously cofibrations and weak equivalences.

The existence of the closed model structure for simplicial sheaves is a result
of Joyal [11], while the closed model structure for simplicial presheaves came a
little later [7]. The canonical map η : X → X̃ from a simplicial presheaf X to its
associated simplicial sheaf is a local weak equivalence; it follows that the categories
of simplicial sheaves and simplicial presheaves are models for the same homotopy
category.

Global fibrations are somewhat mysterious objects; they are constructed from sets
of generating cofibrations by transfinite inductions that involve cardinality counts
which depend on the size of the site C. A useful rule of thumb is that globally fibrant
objects behave like injective resolutions, and are the subject of descent theory: a
simplicial presheaf X is said to satisfy descent if there is a local weak equivalence
X → GX with GX globally fibrant, such that all maps in sections X(U) → GX(U)
are weak equivalences of simplicial sets. In general, a local weak equivalence X → Y
with Y globally fibrant is said to be a globally fibrant model for X. Any map
Z → W which induces weak equivalences in all sections is said to be a pointwise
(or sectionwise) weak equivalence. In particular, a simplicial presheaf X satisfies
descent if some and hence any globally fibrant model for X is a pointwise weak
equivalence.

We shall also encounter local fibrations [6] in this paper. In the presence of
enough points, a local fibration is a map of simplicial presheaves f : X → Y which
induces Kan fibrations in all stalks. More generally, a local fibration is characterized
by a local right lifting property with respect to all inclusions Λn

k ⊂ ∆n of horns in
simplices: f : X → Y is a local fibration if the lifting problem

Λn
k

α
//

��

X(U)

f
��

∆n
β

//

<<

Y (U)

has a local solution in the sense that there is some covering sieve R ⊂ hom( , U)
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such that the liftings exist in all diagrams

Λn
k

φ∗α
//

��

X(V )

f
��

∆n
φ∗β

/ /

<<

y

y

y

y

y

y

y

y

y

Y (V )

associated to φ : V → U in R.
It is a theorem [6, 7] that a map is a local fibration and a local weak equivalence

if and only it has the local right lifting with respect to all inclusions ∂∆n ⊂ ∆n.
Such maps are also, variously, called acyclic local fibrations or hypercovers.

Now suppose, for the moment, that f : G → H is an ordinary functor of small
groupoids. Then it’s well known and easy to see that the functor f induces a weak
equivalence f∗ : BG → BH of the associated classifying simplicial sets if and only if
f is an equivalence of categories. Put a different way, this means that the following
two conditions hold:

1) the diagram of functions

Arr(G)
f

//

(s,t)
� �

Arr(H)

(s,t)
��

Ob(G)×Ob(G)
f×f

/ / Ob(H)×Ob(H)

(1)

is a pullback, and
2) for every object x of H there is an object y of G and a morphism x → f(y)

in H.

Here, s = d1 is the source map and t = d0 is the target.
The first condition says that the functor f is fully faithful, while the second says

that objects of H should lift to G up to isomorphism. In the context of classifying
spaces, the first condition says simultaneously that f induces a monomomorphism
π0BG → π0BH and an isomorphism on π1(BG, x) → π1(BH, f(x)) on all possible
automorphism groups, while the second says that the map π0BG → π0BH is sur-
jective. Every groupoid is equivalent to a disjoint union of groups, whose classifying
spaces have no higher homotopy groups, so that these two conditions are enough to
show that BG → BH is a weak equivalence.

Condition 2) above can be translated into diagram theoretic terms. Consider the
picture

Ob(G)×Ob(H) Arr(H)
f∗

//

t∗
��

Arr(H) s
/ /

t
��

Ob(H)

Ob(G)
f

// Ob(H)

Then condition 2) above is equivalent to the following:
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2’) the composite function

Ob(G)×Ob(H) Arr(H)
f∗−→ Arr(H) s−→ Ob(H) (2)

is surjective.

Conditions 1) and 2’) are easily translated into the topos theoretic setting, as
has been done in several places [3], [12]. Say that a map f : G → H of sheaves
of groupoids (on a small site C) is an internal equivalence if the diagram (1) is a
pullback of sheaves, and the composite map (2) is an epimorphism of sheaves. Note
that (2) is an epimorphism if and only if for every section x ∈ Ob(H)(U) there is a
covering sieve R for U such that φ∗(x) is isomorphic to an object in the image of
the functor G(V ) → H(V ) for every φ : V → U in R.

Lemma 1. Suppose that f : G → H is a morphism of sheaves of groupoids. Then
the map f induces a local weak equivalence of simplicial sheaves f∗ : BG → BH if
and only if f is an internal equivalence.

Proof. Condition 1) is equivalent to the assertion that f is fully faithful in the
sense that the induced maps f : G(x, y) → H(fx, fy) is an isomorphism of sheaves
on C ↓ U for all U ∈ C and for all x, y ∈ Ob(G)(U). This means that the map
G(x, y)(U) → H(fx, fy)(U) is a bijection for all U ∈ C and all x, y ∈ Ob(G)(U).

Suppose that f∗ : BG → BH is a weak equivalence of simplicial sheaves. Then
all induced maps f : G(x, x) → H(fx, fx) are isomorphisms of sheaves on C ↓ U for
all U ∈ C and for all x ∈ Ob(G)(U). If G(x, y)(U) 6= ∅, then there is a morphism
α : x → y in G(U) and there is a commutative diagram

G(x, x)
f∗

/ /

α∗ ∼=
��

H(fx, fx)

f(α)∗∼=
��

G(x, y)
f∗

// H(fx, fy)

so that the induced map f∗ : G(x, y) → H(fx, fy) is an isomorphism of sheaves. If
H(fx, fy)(U) 6= ∅, then since π0BG → π0BH is an isomorphism of sheaves there
is a covering sieve R ⊂ hom( , U) such that φ∗(x) and φ∗(y) are in the same
component of G(V ) for all φ : V → U in R. It follows that G(x, y)(V ) 6= ∅ for all
φ ∈ R, and the isomorphisms

G(x, y)(V )
f−→ H(fx, fy)(V )

induce an isomorphism G(x, y)(U) → H(fx, fy)(U). If H(fx, fy)(U) = ∅ then
G(x, y)(U) = ∅. It follows that G(x, y)(U) → H(fx, fy)(U) is an isomorphism
for all x, y ∈ Ob(G)(U) and for all U ∈ C, giving condition 1). Condition 2) is a
consequence of the fact that the map π0BG → π0BH is an isomorphism and hence
an epimorphism of sheaves under the assumption that f∗ : BG → BH is a weak
equivalence.

For the converse, it is evident that all maps

G(x, x) → H(fx, fx)
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are isomorphisms under the assumption that the first condition is satisfied, so that
f induces an isomorphism in all fundamental groups for all local choices of base
point. The second condition implies that the induced map π0BG → π0BH is an
epimorphism of sheaves. To see that this map is a monomorphism, it suffices to
show that the underlying presheaf map πp

0BG → πp
0BH is a monomorphism of

presheaves, but this is a consequence of the assumption that all maps

G(x, y)(U) → H(fx, fy)(U)

are isomorphisms. All sheaves of higher homotopy groups for BG and BH are
trivial.

2. Stacks

Suppose that C is a small Grothendieck site. A stack is normally defined to be a
sheaf of groupoids G on C which satisfies the effective descent condition.

The effective descent condition (Definition 2 below) can be a bit of a mouthful
— three equivalent descriptions are given here. Suppose that R ⊂ hom( , U) is a
covering sieve, and use the notation R for the full subcategory of C ↓ U whose
objects are the morphisms φ : V → U of the sieve. In this notation, there is a
canonical functor R → C which is defined by sending φ : V → U to the object V ,
and G|R will denote the restriction of a sheaf or presheaf along this functor.

Following Giraud [4], an effective descent datum x = {xφ} : R → G on R with
coefficients in G consists of objects xφ ∈ G(V ) for each φ : V → U in R, and
isomorphisms cψ : ψ∗xφ → xφψ for each composable pair

W
ψ−→ V

φ−→ U

in R, such that c1 = 1 and for each sequence

W ′ ω−→ W
ψ−→ V

φ−→ U,

the diagram

ω∗ψ∗xφ
ω∗cψ

/ / ω∗xφψ

cω

� �

(ψω)∗xφ cψω
/ / xφψω

commutes.
Alternatively, an effective descent datum can be viewed as a pseudo-natural trans-

formation R → G|R, where R is identified with a functor taking values in discrete
categories, and so a morphism of descent data is most naturally a homotopy of
pseudo-natural transformations. This means that a morphism f : x → y of descent
data on R consists of morphisms fφ : xφ → yφ in G(V ), for each φ : V → U in R
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such that the diagrams

ψ∗xφ
ψ∗fφ

//

cψ

��

ψ∗yφ

cψ

��

xφψ
fφψ

// yφψ

Note that the collection of morphisms x → y of effective descent data x, y :
hom( , U) → G can be identified up to isomorphism with the collection of mor-
phisms xU → yU in G(U).

Finally, there is a homotopy theoretic description of effective descent data which
is quite persuasive even though it depends on the smallness of the underlying site C.
Observe that every covering sieve R ⊂ hom( , U) determines a functor R → Shv(C)
which is defined by sending an object φ : V → U of R to (the sheaf associated to)
V = hom( , V ). The associated translation category ER is best described in terms
of its corresponding classifying object BER, which has sheaf of n-simplices given
by the disjoint union

⊔

φ0→···→φn

V0

indexed over strings of morphisms in R between objects φi : Vi → U . In other words,
BER is the homotopy colimit of the objects appearing in the covering sieve R. From
this point of view, an effective descent datum is a functor ER → G, or equivalently
a simplicial sheaf map BER → BG, and a morphism of effective descent data is a
natural transformation ER × 1 → G, or a simplicial homotopy BER ×∆1 → BG.

Write hom(ER, G) for the groupoid of effective descent data on R with coeffi-
cients in G. Observe that the associated nerve B hom(ER, G) is isomorphic to the
simplicial function space hom(BER, BG). This function space is a Kan complex,
since classifying spaces of groupoids are Kan complexes.

Let EU denote the translation category associated to the covering sieve hom( , U)
which is generated by the identity map 1U on U . The set of path components
π0 hom(EU , G) can be identified with the set π0G(U) of path components of the
groupoid G(U), for any groupoid G. In effect, the functor G(U) → hom(EU , G)
which is defined by x 7→ {φ∗x} is an equivalence of categories.

Definition 2. A sheaf of groupoids G satisfies the effective descent condition if the
restriction functor

hom(EU , G) → hom(ER, G)

is an equivalence of categories for every covering sieve R ⊂ hom(U, ), and all objects
U ∈ C.

This definition is equivalent to the classical statement, which is the requirement
that every effective descent datum on a covering sieve R ⊂ hom( , U) taking values
in G is determined up to isomorphism by some object of G(U). Note that the
composite functor

G(U) → hom(EU , G) → hom(ER, G)



Homology, Homotopy and Applications, vol. 3(2), 2001 368

is already fully faithful, since G is a sheaf. The effective descent condition is therefore
equivalent to the requirement that

π0 hom(EU , G) → π0 hom(ER, G)

is a bijection, or that the function

π0G(U) → π0 hom(ER, G)

is bijective.
The set of simplicial homotopy classes of maps π(BER, BG) coincides with the set

π0(ER, G) of functors mod natural isomorphism. Thus, yet another way of stating
the effective descent condition for G is to require that every simplicial map BER →
BG extends to a map BEU → BG which is unique up to naive homotopy.

Suppose that {φi : Vi → U} is a covering family for the object U of C, and that G
is a stack. Write V• for the Čech resolution of U which is associated to the covering.
A simplicial sheaf map α : V• → BG consists of objects αi ∈ G(Vi) and morphisms

αi,j : αi|Vi×U Vj → αj |Vi×U Vj

of G(Vi×U Vj), which satisfy the obvious cocycle condition (ie. composition law) in
G(Vi ×U Vj ×U Vk). We also require that the morphisms αi,i are identities. Write
hom(V•, BG) for the groupoid of cocyles and isomorphisms of cocycles. The Čech
resolution V• is the nerve of a groupoid, so that the nerve B hom(V•, BG) coincides
with the function space hom(V•, BG), and this function space is a Kan complex.

Suppose that R is the covering sieve associated to the family {Vi → U}. Then R
consists of those maps φ : V → U which factor through some Vi. It is plain that any
simplicial sheaf map BER → BG (for an arbitrary sheaf of groupoids G) restricts
to a cocycle V• → BG: the elements xi ∈ G(Ui) are defined by xi = xφi , and the
map αi,j is defined by the composite isomorphism

pr∗i xi → xpi,j ← pr∗j xj

arising from the diagram

Vi ×U Vj
prj

//

pri

��

pi,j

# #

H

H

H

H

H

H

H

H

H

Vj

φj

��

Vi φi

// U

Restriction plainly preserves isomorphism of the data, so we get a functor

hom(ER, G) → hom(V•, BG)

and hence a function

π(BER, BG) → π(V•, BG)

relating naive homotopy classes.

Lemma 3. Suppose that R is the covering sieve which is generated by a covering
family {φi : Vi → U}. Then the restriction function π(BER, BG) → π(V•, BG) is
a bijection for any sheaf of groupoids G.
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Proof. Suppose that the cocycle α : V• → BG is defined by objects αi ∈ G(Vi) and
isomorphisms αi,j in G(Vi ×U Vj). Choose specific factorizations

V
ψ

//

φ
��

@

@

@

@

@

@

@

@

Vi

φi

��

U

for all φ : V → U in R, where ψ is the identity map if φ = φi for some i. Define
an object xφ ∈ G(V ) by xφ = ψ∗αi for each φ. If τ : W → V is any other mor-
phism, then the isomorphisms αi,j induce a morphism τ∗xφ → xφτ in G(W ), and
the collection of all such elements and morphisms determines an effective descent
datum {xφ} : R → G on account of the cocycle conditions for α. The assignment
{xi} 7→ {xφ} defines a functor hom(V•, BG) → hom(ER, G) which is inverse to the
restriction functor up to isomorphism.

We can now prove the following:

Proposition 4. Suppose that G is a stack, and that U is an object of C. Then there
is an isomorphism

[U,BG] ∼= π0G(U).

Proof. There is an isomorphism

[U,BG] ∼= lim−→
V

π(V,BG),

where the colimit is indexed over hypercovers V → K(U, 0) of the object U . We
can assume [6] that these hypercovers are of the form V• → U for some sheaf
epimorphism V → U , and then a cofinality argument allows us to presume that the
sheaf epi

⊔

Vi → U arises from some covering family {Vi → U}. The canonical map

π0G(U) → π(V•, BG)

is the composite

π0G(U) ∼= π0 hom(EU , G) → π0 hom(ER, G) → π0 hom(V•, BG)

if R is the sieve which is generated by the covering family {Vi → U}. This composite
is a bijection by the assumption that G is a stack, along with Lemma 3

Recall that a map f : X → Y of simplicial presheaves on C is said to be a
pointwise weak equivalence if f induces a weak equivalence f : X(U) → Y (U) of
simplicial sets for all objects U ∈ C.

Lemma 5. Suppose that G is a sheaf of groupoids and that x is a global section of
Ob(G). Suppose that BG → X is a globally fibrant model of BG. Then the induced
map ΩxBG → ΩxX is a pointwise weak equivalence.

Proof. The section x is a global choice of basepoint x : ∗ → BG for BG, and ΩxBG
is the corresponding loop object. Let the presheaf of groupoids Gx be the connected
component of x in G in all sections, and observe that the inclusion G(x, x) → Gx is
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an equivalence of groupoids in all sections. Then there is an isomorphism ΩxBG ∼=
ΩxBGx, and there are pointwise weak equivalences of simplicial presheaves

ΩxBGx ← ΩBG(x, x) → PBG(x, x)×BG(x,x) EG(x, x) ← G(x, x)

The “simplicial” object G(x, x) is a sheaf concentrated in degree 0 and is therefore
globally fibrant. It follows that every local weak equivalence ΩxBG → Y with Y
globally fibrant must be a pointwise weak equivalence. The map ΩxBG → ΩxX is
such a map.

The following is the main result of this section. In colloquial terms, it asserts
that classifying spaces of stacks satisfy descent.

Theorem 6. Suppose that G is a stack of groupoids on a small site C, and that
f : BG → X is a globally fibrant model of its associated classifying object. Then f
is a pointwise weak equivalence.

Proof. Consider the restricted map BG|U → X|U on the site C ↓ U . This map is a lo-
cal weak equivalence, and X|U is globally fibrant. The induced map in global sections
is BG(U) → X(U). To show that this map is a weak equivalence of simplicial sets,
it suffices to show that it induces an isomorphism π0BG(U) ∼= π0X(U) and to show
that for any choice of base point x ∈ BG(U) the induced map ΩxBG(U) → ΩxX(U)
is a weak equivalence of simplicial sets (note that X(U) is already a Kan complex,
so this makes sense). The statement about path components is a consequence of
Proposition 4, while the statement about loop spaces is a consequence of Lemma
5.

3. Stack completion

Suppose that R is a covering sieve for U and that G is a sheaf of groupoids. Recall
that the groupoid hom(ER, G) has as objects all effective descent data x = {xφ}
for R, and all morphisms (or isomorphisms) x → y of descent data, defined in
the obvious way. Every refinement S ⊂ R of covering sieves determines a functor
hom(ER, G) → hom(ES , G) defined by restriction x 7→ x|S of descent data. Write

Stp(G)(U) = lim−→
R

hom(ER, G)

for the filtered colimit in the category of groupoids of all such categories of effective
descent data. Every map φ : V → U in the site C and every covering sieve R of U
together determine a functor

φ∗ : hom(ER, G) → hom(Eφ−1R, G),

again by restriction of descent data. This functor respects the restriction functors
coming from an inclusion S ⊂ R of covering sieves, and so φ : V → U induces
a functor φ∗ : Stp(G)(U) → Stp(G)(V ). Write St(G) for the sheaf of groupoids
associated to the presheaf Stp(G). There is a natural morphism

η : G → St(G)
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of sheaves of groupoids.
The object St(G) is the stack completion of G (or “associated stack” in [4]), but

we have to show that the name makes sense. We shall prove that

1) the induced map η∗ : BG → B St(G) is a local weak equivalence of simplicial
sheaves, and

2) the sheaf of groupoids St(G) is a stack.

Lemma 7. Suppose that G is a sheaf of groupoids. Then the induced map η∗ :
BG → B St(G) is a local weak equivalence of simplicial sheaves.

Proof. We verify the conditions 1) and 2’) for η — see Lemma 1.
We have already seen that the functor G(U) → hom(ER, G) is fully faithful, and

η is a filtered colimit of such functors so that η is fully faithful, giving condition 1).
Suppose that x = {xφ} is an object of hom(ER, G), and suppose that φ : V → U

is a morphism of R. Then the covering sieve

φ−1(R) = {α : W → V | φ · α ∈ R}

coincides with hom( , V ). It follows that the class φ∗(x) lifts to G(V ) up to iso-
morphism for all φ : V → U in R. Every element of Ob(St(G))(U) lifts locally
to Ob(StpG), and we have just seen that every element of Ob(StpG)(V ) lifts lo-
cally up to isomorphism to an element of Ob(G). It follows that every element of
Ob(StG)(U) lifts locally up to isomorphism to an element of Ob(G), and condition
2’) is verified.

Lemma 8. Suppose that G is a sheaf of groupoids, and suppose that S ⊂ R ⊂
hom( , U) are covering sieves of U . Then the restriction functor

hom(ER, G) → hom(ES , G)

is fully faithful.

Proof. Suppose that f : x|S → y|S is a morphism of restricted descent data. Suppose
that φ : V → U is a morphism of R, and let ψ : W → V be a morphism of the
covering sieve φ−1S for V . Then there are morphisms Fψ : ψ∗xφ → ψ∗yφ which are
uniquely determined by the commutativity of the diagram

ψ∗xφ
Fψ

/ /

cψ

��

ψ∗yφ

cψ

��

xφψ
fφψ

// yφψ

The maps Fψ are compatible with composition in φ−1S, and therefore uniquely
determine a map Fφ : xφ → yφ.
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Seeing that the diagrams

γ∗xφ
γ∗Fφ

//

cγ

� �

γ∗yφ

cγ

��

xφγ
Fφγ

// yφγ

commute is a matter of applying the same principle that creates the maps Fφ: one
shows that the diagram commutes after applying ω∗, where ω is any map such that
φγω is a member of the sieve S, and this is a consequence of the cocycle condition
for x and y together with the definition of the morphisms Fφ.

We have shown that the restriction map

hom(ER, G)(x, y) → hom(ES , G)(x|S , y|S)

is surjective. The maps fφ : xφ → yφ are uniquely determined by the restriction to
S, by the same argument, so the restriction map is also a monomorphism.

Lemma 9. Suppose that G is a sheaf of groupoids. Then the sheaf of groupoids
St(G) is a stack.

Proof. We have to show that the functor St(G)(U) → hom(ER,St(G)) is an equiv-
alence of categories, for every U ∈ C and for every covering sieve R ⊂ hom( , U).
We already know that the functor

H(U) → hom(ER,H)

is fully faithful for arbitrary sheaves of groupoids H. It suffices to show that every
object of hom(ER, St(G)) lifts to St(G)(U) up to isomorphism.

Suppose that x = {xφ} is an object of hom(ER, St(G)). Then there is a refinement
S ⊂ R such that the restriction of x to S comes equipped with isomorphisms
dψ : η(zψ) → xψ for each ψ : W → U in S — this follows from Lemma 7. The
functor η : G → St(G) is fully faithful, so that a unique descent datum structure in
G for the sieve S is induced on the elements zψ by the descent datum structure on
x|S . In effect, given the string

W ω−→ V
ψ−→ U

the cocycle map cω : ω∗zψ → xψω is the unique morphism which makes the following
diagram of isomorphisms commute:

η(ω∗zψ)

η(cω)
��

ω∗η(zψ)
ω∗dψ

// ω∗xψ

cω

� �

η(zψω)
dψω

// xψω
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The diagram of canonical functors

G(U)
η

//

��

St(G)(U)

��

hom(ES , G) η∗
//

66

m

m

m

m

m

m

m

m

m

m

m

m

hom(ES ,St(G))

(3)

commutes, and we have just seen that x|S is in the image of

η∗ : hom(ES , G) → hom(ES ,St(G))

up to isomorphism. It follows that x|S lifts to an element y ∈ St(G)(U) up to
isomorphism. Finally y|R and x restrict to isomorphic elements on S, so that there
is an isomorphism y|R → x by Lemma 8.

Lemma 10. Suppose that G is a sheaf of groupoids. Then the simplicial presheaf
B Stp(G) satisfies descent, in the sense that any globally fibrant model B Stp(G) →
X is a pointwise weak equivalence.

Proof. It suffices to show that the map η∗ : π0 Stp(G)(U) → π0 St(G)(U) which is
induced by the associated sheaf map is a bijection, and that all presheaves of homo-
morphisms of Stp(G) are sheaves. These two conditions imply that η : B Stp(G) →
B St(G) is a pointwise weak equivalence, and then one can invoke Theorem 6.

There is a commutative diagram of canonical functors

G(U) //

� �

Stp(G)(U) //

��

St(G)(U)

��

hom(ER, G) //

66

m

m

m

m

m

m

m

m

m

m

m

m

m

hom(ER, Stp(G)) // hom(ER, St(G))

for any covering sieve R of U (this diagram refines (3)). For any object x ∈ St(G)(U)
there is a covering sieve R such that the corresponding descent datum {φ∗x} is
isomorphic to a descent datum {η(zφ)} where {zφ} is a descent datum in G. But
then there is an element y ∈ Stp(G)(U) such that η(y) and x restrict to isomorphic
elements in hom(ER,St(G)). It follows that there is an isomorphism η(y) ∼= x.
If two elements x, y ∈ G(U) become isomorphic in Stp(G)(U) then there is an
isomorphism x|R → y|R in hom(ER, G) for some covering sieve R of U . The functor
G(U) → hom(ER, G) is fully faithful, so that x ∼= y in G(U) since G is a sheaf. It
follows that the map

η∗ : π0 Stp(G)(U) → π0 St(G)(U)

is a bijection.
For the sheaf property, we start with a preliminary case. Suppose that x, y ∈

hom(ER, G), and that there are compatible maps αφ : x|φ−1R → y|φ−1R for all
φ ∈ R. Then for all φ : V → U in R, φ−1R = {1V }, so that αφ uniquely determines
an isomorphism αφ : xφ → yφ ∈ G(V ). Any γ : W → V , determines a commutative
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diagram

γ∗xψ
γ∗αψ

//

c

��

γ∗yψ

c

��

xψγ αψγ
// yψγ

where the cocycle structures come from R, since the maps αψ are compatible with re-
striction. The family {αφ} therefore determines a unique map x → y in hom(ER, G).

Suppose that S is a covering sieve of U , and suppose that there are maps
αψ : x|ψ−1R → y|ψ−1R for ψ ∈ S, and that these maps are compatible with re-
striction. Then for all ψ : V → U in the covering sieve R ∩ S, the compatible
family of morphisms αψ uniquely determines a morphism α : x|R∩S → y|R∩S of
hom(ER∩S , G). If φ ∈ S and γ : W → V ∈ φ−1R, then φγ ∈ R ∩ S and there is a
commutative diagram of functors

hom(ER, G) res
//

φ∗

��

hom(ER∩S , G)

(φγ)∗

��

hom(Eφ−1R, G)
γ∗

// hom(EW , G)

The restriction functor is fully faithful by Lemma 8, so that there is a unique
morphism β : x → y such that βR∩S = α. But then

γ∗φ∗(β) = (φγ)∗(α) = αφγ = γ∗αφ

for all γ, so that φ∗(β) = αφ for all φ ∈ S. The morphism β is already determined
by its restriction to R ∩ S, so there is a unique β : x → y in hom(ER, G) such that
φ∗(β) = αφ for all φ ∈ S.

More generally, if we have x, y ∈ hom(ER, G) and a compatible family of mor-
phisms ωφ : xφ → yφ in Stp(G)(V ) for all φ : V → U in the covering sieve S, then
in the diagram

hom(ER, G) //

φ∗

��

Stp(G)(U)

φ∗

��

hom(Eφ−1R, G) // Stp(G)(V )

the canonical functor hom(Eφ−1R, G) → Stp(G)(V ) is fully faithful by Lemma 8,
so that there is a unique morphism αφ of hom(Eφ−1R, G) which maps to ωφ, and
the family {αφ} is compatible. It therefore follows from the previous case that the
presheaf of morphisms Stp(G)(x, y) on C ↓ U is a sheaf.

Joyal and Tierney show [12] that there is a closed model structure on the category
of sheaves of groupoids on a small Grothendieck site C for which the cofibrations
are the functors G → H that are injective on objects, and the weak equivalences are
the internal equivalences. They say that a sheaf of groupoids G is a strong stack if
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it is fibrant for this closed model structure, and a strong stack completion H → H∧

for a sheaf of groupoids H is a choice of fibrant model within their closed model
structure.

Observe that if f : X → Y is a local weak equivalence of simplicial sheaves
on C, then the associated morphism f∗ : π(X) → π(Y ) of sheaves of fundamen-
tal groupoids is an internal equivalence. Also, if f is a cofibration of simplicial
presheaves, then the map f∗ : π(X) → π(Y ) is injective on objects, and hence is
a cofibration of sheaves of groupoids in the sense of Joyal and Tierney. The funda-
mental groupoid construction is left adjoint to the classifying space construction, so
the simplicial sheaf BG is globally fibrant if G is a strong stack. It follows that any
strong stack completion H → H∧ induces a globally fibrant model BH → BH∧ of
the classifying simplicial sheaf BH of H. The strong stack completion H∧ is itself
a stack, since we have the following:

Lemma 11. Any covering sieve R ⊂ hom( , U) of an object U induces a local weak
equivalence BER → K(U, 0) of simplicial presheaves.

The lemma implies that the induced map

BH∧(U) ∼= hom(K(U, 0), BH∧) → hom(BER, BH∧)

is a weak equivalence of simplicial sets since BH∧ is globally fibrant.

Proof of Lemma 11. Suppose that W ∈ C, and consider the induced map of W -
sections

⊔

φ0→···→φn

hom(W,V0) → hom(W,U).

The fibre Fφ over a fixed morphism φ : W → U is the nerve of the category of
factorizations

V

ψ
� �

W

>>

}

}

}

}

}

}

}

}

φ
// U

of φ with ψ ∈ R. If φ : W → U is a member of R and then this category is non-empty
and has an initial object, namely the picture

W

φ
��

W

1
==

|

|

|

|

|

|

|

|

φ
// U

Find a factorization of the canonical map

BER

i
��

// K(U, 0)

F

π

::

t

t

t

t

t

t

t

t

t

t
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where i is a pointwise weak equivalence and π is a pointwise Kan fibration. In W -
sections, and in the case where the fibre Fφ of the canonical map over φ : W → U
is non-empty, then the fibre of π over φ is a fibrant model of Fφ, and if φ is in R
this space is contractible. It follows that all lifting problems

∂∆n
//

��

F (W )

π

��

∆n
// K(U, 0)(W )

have solutions if n > 0. But also every vertex φ : W → U lifts locally to BER since
φ−1(R) is a covering sieve for W . It follows that the map π : F → K(U, 0) is a local
trivial fibration, and hence a local weak equivalence.

We now have the following corollaries of Theorem 6, Lemma 7 and Lemma 9

Corollary 12. Suppose that G is a stack on the site C. Then any strong stack
completion G → G∧ induces a pointwise weak equivalence BG → BG∧. In other
words, the groupoid G(U) is equivalent to G∧(U) in each section.

Corollary 13. Suppose that G is a sheaf of groupoids on C. Then the stack com-
pletion St(G) is pointwise equivalent to any strong stack completion G∧ of G.

We’re henceforth going to take the most inclusive point of view, and say that a
presheaf of groupoids G is a stack if the associated simplicial presheaf BG satisfies
descent. A morphism G → H of presheaves of groupoids is an internal equivalence if
the associated map BG → BH is a local weak equivalence of simplicial presheaves.
Finally, a stack completion of a presheaf of groupoids H is an internal equivalence
H → H ′ such that H ′ is a stack. Stack completions exist from several points of
view: one is entitled to use the composites

H
η−→ H̃ → H̃ ′

where η is the associated sheaf functor, and H̃ ′ can be any of the strong stack
completion H̃∧, the stack completion St(H̃) or the “pre-stack completion” Stp(H̃).
Any two stack completions of a presheaf of groupoids H are pointwise equivalent
by the standard tricks [7].

The cocycle approach which is implicit in the construction H 7→ Stp(H) appears
most often in geometric applications. If, for example, G is a sheaf of groups, then
the usual argument relating cocyles and torsors specializes to the assertion that the
groupoid Stp(G)(U) is equivalent to the groupoid of G-torsors Tors(U,G) over an
object U in C.

4. Some classification results

Suppose that G is a sheaf of groups on C, and recall that a left G-torsor is a
sheaf P equipped with a free left G-action G× P → P , such that the sheaf P/G is
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isomorphic to the terminal sheaf ∗, and such that there is a sheaf epi U → ∗ with
an associated G-equivariant isomorphism

G× U ∼= U × P.

Recall that it suffices to take U =
⊔

i Ui, where Ui is a set of representables, by
standard nonsense. Furthermore, triviality of P over U in the sense of the isomor-
phism above amounts to the existence of a section σ : U → P of P , for then the
displayed isomorphism is defined by the map

(g, u) 7→ (u, g · σ(u)).

In particular, the G-torsor P is trivial, or equivariantly isomorphic to G, if and only
if it has a global section.

The non-abelian cohomology object H1(C, G) is the set of isomorphism classes
of G-torsors on the site C, as usual.

It is shown in [8] that there is an identification

H1(C, G) ∼= [∗, BG], (4)

where the thing on the right is morphisms in the homotopy category of simplicial
sheaves (or presheaves) on the site C. The proof of this result starts with the Verdier
hypercovering characterization

[∗, BG] ∼= lim−→
V

π(V,BG)

of morphisms in the homotopy category (BG is locally fibrant), where π( , ) indi-
cates simplicial homotopy classes of maps and the filtered colimit is indexed over the
hypercovers (or local trivial fibrations) V → ∗. Simplicial homotopy classes of maps
V → BG can be formally identified with homotopy classes of functors π(V ) → G
of sheaves of groupoids, where π(V ) is the fundamental groupoid of V in the sheaf
category, and then the heart of the demonstration of the identification (4) is to
show that map V → cosk0 V0 is isomorphic to the canonical map V → Bπ(V ), or
that π(V ) is isomorphic to the trivial groupoid on the sheaf V0. Homotopy classes
of functors π(V ) → G may then be identified with equivalence classes of cocycles
cosk0 V0 → BG for the covering V0 → ∗, and so there is an isomorphism

lim−→
V

π(V, BG) ∼= lim−→
V0

π(cosk0 V0, BG).

Thus, [∗, BG] is identified with the Čech invariant Ȟ1(C, G), which is well known
to coincide with the set of isomorphism classes of G-torsors.

Suppose that I is a small category. A set-valued functor X : I → Sets determines
a simplicial set EX and a map π : EX → BI such that if 0 : 0 → n is the ordinal
number map which picks out the object 0 then the diagram

EXn
0∗

//

π

� �

EX0

π

��

BIn 0∗
// BI0
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is a pullback. In effect, EX is the homotopy colimit, with

EXn =
⊔

i0→···→in

X(i0),

and π is the obvious map.
Conversely, if π : Y → BI is a simplicial set map such that all diagrams

Yn
0∗

//

π
��

Y0

π
� �

BIn 0∗
/ / BI0

(5)

are pullbacks, then Y ∼= EX for some functor X : I → Sets. To see this, set
X(i) = π−1(i) for the map Y0 → BI0. Also

Yn =
⊔

i=i0→···→in

π−1(i)

The pullback squares (5) induce isomorphisms π−1(i) ∼= π−1(i0) = X(i0) of fibres,
which together determine an isomorphism over BI of the simplicial set Y with a
simplicial set having n-simplices of the form

⊔

i0→···→in

X(i0)

such that all diagrams

X(i0)
1

//

ini
� �

X(i0)

ini0

��

⊔

i0→···→in
X(i0)

0∗
//

⊔

i X(i)

commute. The map

d0 :
⊔

α:i0→i1

X(i0) →
⊔

i

X(i)

defines functions α∗ : X(i0) → X(i1) on summands. Any ordinal number map
θ : m → n such that θ(0) = 0 necessarily induces a function

θ∗ :
⊔

i0→···→in

X(i0) →
⊔

j0→···→jm

X(j0)

which restricts to identity maps on summands, by comparison of pullbacks. It follows
that an arbitrary ordinal number map γ : r → n induces a function

⊔

i0→···→in

X(i0) →
⊔

j0→···→jr

X(j0)

which is induced on summands by the maps X(i0) → X(iθ(0)) determined by the
morphism i0 → iθ(0) in the underlying index category I. The assignments of α∗ :
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X(i) → X(j) to the maps α : i → j therefore determine a functor X : I → Sets
such that EX ∼= Y .

It follows that the category of functors X : I → Sets and natural transformations
is equivalent to the category of simplicial set maps π : Y → BI satisfying the
pullback condition (5), with fibrewise maps over BI as morphisms. The equivalence
arises from the homotopy colimit construction.

This equivalence is natural, and therefore gives an internal description of sheaf-
valued functors I → Shv(C) defined on a small sheaf of categories I over a site
C.

Suppose now that G is a sheaf of groupoids on C. A G-torsor on C can be
defined to be a simplicial sheaf map Y → BG which satisfies the pullback condition
(5), and such that the canonical map Y → ∗ is a local weak equivalence. From the
development above, Y is the nerve EX of a sheaf of groupoids, so that the condition
that Y → ∗ is equivalent to requiring that G acts transitively and effectively on the
sheaf Y0. If G is a sheaf of groups, then this definition says that a G-torsor is the
G-space Y0 and

Y ∼= EG×G Y0 ' ∗,

which is equivalent to the classical definition. The set of G-torsors and natural
transformations (or deck transformations) between them forms a category which
will be denoted by Tors(∗, G).

The sheaf of path components π0G of BG determines a local fibration BG →
π0G. Take a global section x ∈ π0G(∗). Then the fibre over x is the classifying
object BGx of a sheaf of groupoids Gx which we shall call the path component of
x. Note that Gx is locally connected. If Y → BG is a G-torsor, then Y is locally
connected so that it factors through a unique path component BGx ⊂ BG of G. If
α : Y → Y ′ is a morphism of G-torsors, then Y and Y ′ factor through the same
path component BGx. It follows that

Tors(∗, G) =
⊔

x∈π0G(∗)

Tors(∗, Gx).

If Gx has a global section y, then the inclusion Gx(y, y) → Gx is an internal
equivalence, and any map θ : Y → Y ′ of Gx-torsors pulls back to a morphism θ∗ of
Gx(y, y)-torsors. This map θ∗ of group-valued torsors must be an isomorphism, so
that θ is an isomorphism as well since Gx is locally connected. It follows that every
morphism of G-torsors is an isomorphism, for arbitrary sheaves of groupoids G.

Every G-torsor Y → BG has within it a hypercover Y → ∗, and every morphism
Y → Y ′ of torsors is a morphism of hypercovers. It follows that the map

ObTors(∗, G) → [∗, BG]

defined by sending Y → BG to the composite ∗ '←− Y → BG in the homotopy
category factors through a function

π0 Tors(∗, G) → [∗, BG]

Theorem 14. The function π0 Tors(∗, G) → [∗, BG] is a natural bijection for all
sheaves of groupoids G.
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Proof. All sheaf theoretic cocycles V• → BG and all G-torsors Y → BG are of the
form Bf : BI → BG where f : I → G is a functor defined on a groupoid I which is
trivial in the sense that I(x, x) = ∗ for all local choices of objects x and I is locally
connected.

Suppose given such a functor f : I → G, and make the homotopy colimit con-
struction

BI(U)

f

��

⊔

x0→···→xn
B(f ↓ x0)

α
'

oo

��

β
//

⊔

x0→···→xn
π0B(f ↓ x0)

h(f)

��

BG(U) BG(U)
1

oo

1
// BG(U)

on the presheaf level in each section. The map α is the standard weak equivalence
associated to the functor f : BI(U) → BG(U), and the map β is induced by the
simplicial set maps B(f ↓ x0) → π0B(f ↓ x0) — these maps are weak equivalences
since all components of the groupoid I(U) are trivial. The presheaf map h(f) there-
fore represents a G-torsor. This map is canonically isomorphic to f : BI → BG if f
is a G-torsor, or homotopy colimit of sheaves over G: in that case I = EX for some
functor X, and there is a natural isomorphism π0B(f ↓ x0) ∼= X(x0).

Given a cocycle g : V• → BG, the associated G-torsor h(g) represents an element
mapping to the class of g via the function

π0 Tors(∗, G) → [∗, BG].

If f : Y → BG is a G-torsor then h(f) ∼= f in the category Tors(∗, G). Further,
any homotopy BI ×∆1 → BG extends to a map BI × BG(1) → BG where G(1)
is the trivial groupoid on two objects. If I is locally connected and trivial, then so
is I × G(1). Thus, any homotopy g ' g′ of cocycles determines torsors h(g) and
h(g′) which are in the same component of Tors(∗, G). It follows that G-torsors f
and f ′ are in the same component of Tors(∗, G) if the corresponding cocycles are
homotopic up to refinement.

Remark 15. The homotopy colimit construction in the proof of Theorem 14 special-
izes to the standard construction of a G-torsor from a G-cocycle, in the case where
G is a sheaf of groups.

The last major result of this section identifies the stack completion of a Borel
construction.

Suppose that G is a sheaf of groups and that N is a sheaf on C carrying a G-
action. A G-torsor over N consists of a G-torsor P , together with a G-equivariant
map p : P → N . There is a groupoid Tors(C, G)/N of such things, whose objects
are the G-torsors over N , and whose morphisms are the G-equivariant commutative
diagrams

P

θ ∼=
��

p
((

Q

Q

Q

Q

Q

Q

N

P ′ p′

66

n

n

n

n

n

n
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The groupoid Tors(C, G)/N is the groupoid of global sections of a stack

Tors(C, G)/N,

which is usually called the quotient stack for the action of G on the sheaf N .
Write EGN for the translation groupoid which is associated to the action of G on

N . The sheaf of objects of the category EGN is N , and the sheaf of morphisms is the
product G×N , with composeability and composition of morphisms defined in the
standard way. The classifying object B(EGN) coincides with the Borel construction
EG×G N .

The path components of the groupoid Tors(C, G)/N can be characterized up to
isomorphism as follows:

Theorem 16. Suppose that G is a sheaf of groups on a site C, and that N is a
sheaf carrying a G-action. Then there is a bijection

π0(Tors(C, G)/N) ∼= [∗, EG×G N ].

Proof. Suppose that U → ∗ is a sheaf epi, and let T (U) be the associated trivial
groupoid with objects U and morphisms U × U . It suffices to show that the set
π(T (U), EGN) of homotopy classes of functors T (U) → EGN is isomorphic to the
set of isomorphism classes of G-torsors P → N which trivialize over U .

If the object p : P → N trivializes over U , there is a section σ : U → P , and the
composite

U σ−→ P
p−→ N

is the object level map for a functor T (U) → EGN ; the map of morphisms is the
map U × U → G × N which is defined in sections by the assignment (u1, u2) 7→
(τ(u1, u2), pσ(u1)). The element τ(u1, u2) is the unique element such that
τ(u1, u2)σ(u1) = σ(u2) — τ is, in other words, the usual cocycle defined by the
section σ. If σ′ : U → P is a second such section, then σ(u) = h(u)σ′(u) for some
unique element h(u) of G, and the associated cocyles τ and τ ′ are conjugate by
h in the usual way. The map h : U → G × N given by u 7→ (h(u), pσ(u)) defines
a homotopy of the functors T (U) → EGN associated to σ and σ′. It follows that
isomorphic objects of Tors(C, G)/N which trivialize over U determine homotopic
functors.

If f : T (U) → EGN is a functor, then the composite

T (U)
f−→ EGN → BG

determines a G-torsor P which trivializes over U in the usual way, via the G-
equivariant coequalizer

G× U × U ⇒ G× U → P,

where the parallel arrows are defined, respectively, by

(g, u1, u2) 7→ (gτ(u1, u2), u1) and

(g, u1, u2) 7→ (g, u2).
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Here τ is induced by the functor f in the sense that

f(u1, u2) = (τ(u1, u2), f(u1)).

Composing with the G-equivariant map f∗ : G×U → N defined by (g, u) 7→ g ·f(u)
has the same effect on the parallel pair defining P , and so f∗ factors through a
unique G-equivariant map p : P → N . If the functors

f, f ′ : T (U) → EGN

are homotopic via some map h : U → G×N , with h(u) = (h1(u), f(u)), (so that h
is a homotopy f → f ′) then the morphism G× U × U → G× U × U defined by

(g, u1, u2) 7→ (gh1(u2), u1, u2)

and h∗ : G× U → G× U defined by

(g, u) 7→ (gh1(u), u)

together determine a G-equivariant isomorphism h∗ : P ′ → P on the coequalizer
level. At the same time the G-equivariant diagram

G× U

h∗
��

f ′∗
))

S

S

S

S

S

S

N

G× U f∗

55

k

k

k

k

k

k

commutes, so that the induced diagram

P ′

h∗
��

f ′∗
( (

P

P

P

P

P

P

N

P f∗

6 6

m

m

m

m

m

m

commutes as well.

Suppose again that G is a sheaf of groups. Recall [2] that a G-bitorsor consists
of a G-torsor P and a G-equivariant map P → Aut(G), where G acts on the sheaf
of automorphisms of G by conjugation. A morphism of G-bitorsors is the obvious
thing, namely a commutative diagram

P
) )

S

S

S

S

S

S

f

��

Aut(G)

P ′
5 5

k

k

k

k

k

k

where f is G-equivariant. More generally, given sheaves of groups G and H which are
locally isomorphic, a (G,H)-bitorsor consists of a G-torsor P and a G-equivariant
map P → Iso(H,G) where G acts on the sheaf of isomorphisms Iso(H, G) by
composition with conjugation. A morphism of (G,H)-torsors is a G-equivariant
commutative diagram, by analogy with the above.

Corollary 17. 1) The set [∗, EG×G Iso(H,G)] is isomorphic to the set of iso-
morphism classes of (G,H)-bitorsors.
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2) The set [∗, EG×G Aut(G)] is isomorphic to the set of isomorphism classes of
G-bitorsors.

Proof. Statement 2) is the case G = H of statement 1), and 1) follows from Theorem
16.

Example 18. Suppose that S is a Noetherian scheme which is of finite dimension,
and is integral and normal. Let Sch|S denote the category of schemes which are of
finite type over S.

Following [15], suppose that π : X → S is a finite surjective morphism such that
X is integral, and let f : Y → S be the normalization of X in a normal extension
of k(S) which contains k(X). Then the natural map

homS(Y, X) → homk(S)(k(X), k(Y ))

is bijective since Y is normal, and the map f : Y → S is a pseudo-Galois covering
in the sense that k(Y )/k(S) is normal and the natural homomorphism

AutS(Y ) → Gal(k(Y )/k(S))

is an isomorphism. Write G for the Galois group of the extension k(Y )/k(S).
Suppose that F is a presheaf of spectra on Sch|S which is globally fibrant for

some topology. There is a universal pairing

tπ : π∗(F |X) ∧ (EG×G Y )+ → F (6)

in the stable category of presheaves of spectra on Sch|S , and global sections σ :
P → Y of the quotient stack St(EGY ) (if they exist — they may not) determine
transfer maps

tπ,σ : F (S′ ×S X) → F (S′),

Of course, the meaning of this statement varies with the topology on the site Sch|S .
This is really a separable transfer, in contrast with the transfer maps constructed
in [15], as only the separable degree of the extension k(X)/k(S) appears in calcu-
lations. This construction specializes to a well defined transfer for all finite étale
maps π, for both the étale and the qfh topologies. The pairing (6) is the subject of
[10].
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Berlin (1990), 401–476.
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