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IDEMPOTENTS AND LANDWEBER EXACTNESS IN BRAVE
NEW ALGEBRA

J.P. MAY

(communicated by Gunnar Carlsson)

Abstract
We explain how idempotents in homotopy groups give rise to

splittings of homotopy categories of modules over commutative
S-algebras, and we observe that there are naturally occurring
equivariant examples involving idempotents in Burnside rings.
We then give a version of the Landweber exact functor theorem
that applies to MU -modules.

In 1997, not long after [6] was written, I gave an April Fool’s talk on how to
prove that BP is an E∞ ring spectrum or equivalently, in the language of [6], a
commutative S-algebra. Unfortunately, the problem of whether or not BP is an E∞
ring spectrum remains open. However, two interesting remarks emerged and will be
presented here. One concerns splittings along idempotents and the other concerns
the Landweber exact functor theorem.

One of the nicest things in [6] is its one line proof that KO and KU are com-
mutative S-algebras. This is an application of the following theorem [6, VIII.2.2],
or rather the special case that follows.

Theorem 1. Let R be a cell commutative S-algebra, A be a cell commutative R-
algebra, and M be a cell R-module. Then the Bousfield localization λ : A −→ AM of
A at M can be constructed as the inclusion of a subcomplex in a cell commutative
R-algebra. In particular, the commutative R-algebra AM is a commutative S-algebra
by neglect of structure.

The cell assumptions can always be arranged by use of the cofibrant replacement
constructions in [6], so they result in no loss of generality. The theorem specializes
as follows to algebraic localizations at elements of R∗ = π∗(R) [6, VIII.4.2].

Theorem 2. Let R be a cell commutative S-algebra and X a set of elements of R∗.
The localization λ : R −→ R[X−1] that induces the algebraic localization R∗ −→
R∗[X−1] can be constructed as the unit of a cell commutative R-algebra.

The connective real K-theory spectrum ko is a commutative S-algebra by multi-
plicative infinite loop space theory [11], and KO is the localization ko[β−1] obtained
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by inverting the Bott class. Therefore KO is a commutative ko-algebra and thus a
commutative S-algebra. That’s the one line. Complex K-theory works similarly.

As a matter of algebra, idempotents give localizations. Since MU arises in nature
as an E∞ ring spectrum, that being the paradigmatic example that led to the
definition [10], one might try to prove that BP is a Bousfield localization of MU
and thus a commutative MU -algebra. That is April Fool’s nonsense, but the basic
idea has a correct version with other applications, as we shall explain. Essentially
the same idea occurred independently to Schwänzl, Vogt, and Waldhausen, who
gave quite different applications [13, 14].

Definition 3. Let R be a cell commutative S-algebra and let e ∈ R0 be an idem-
potent element. As a matter of algebra, R∗[e−1] = eR∗. Define eR to be the cell
commutative R-algebra R[e−1] of Theorem 2.

Theorem 4. Let 1 = e1 + · · ·+ en where the ei are orthogonal idempotents in R∗.
Then the canonical map

ε : R −→ e1R× · · · × enR

of commutative R-algebras is a weak equivalence. Therefore the category of R-
modules is Quillen equivalent to the product of the categories of eiR-modules.

Proof. The first statement is obvious. The second statement follows from the next
two results. The first is implicit in [6, III.4.2 and VII.4.8] and explicit in [9, I.3.6]
and the second is proven by an easy formal argument.

Theorem 5. If f : R −→ Q is a weak equivalence of commutative S-algebras, then
the extension of scalars functor f∗ : MR −→ MQ and the pullback of structure
functor f∗ : MQ −→ MR specify a Quillen equivalence of model categories.

Theorem 6. If R is a product of commutative S-algebras Ri with projections εi :
R −→ Ri, then the functor that sends an R-module M to the tuple (εi∗M) is the
left adjoint of a Quillen equivalence from MR to the product of the categories MRi .
The right adjoint sends (Ni) to the product of the R-modules ε∗i Ni.

Theorem 4 shows that the homotopy theory of R-modules entirely decomposes
into the homotopy theories of the modules over the eiR. The ring spectra that
algebraic topologists usually work with have no non-trivial idempotents. However,
interesting examples do arise naturally in algebraic K-theory, as observed in [13].

Remark 7. If R is connective, we have a map R −→ HR0 that induces an isomor-
phism on π0 [6, IV.3.1]. Here, if X ⊂ R0 and we apply the functor (−) ∧R HR0 to
λ : R −→ R[X−1], we obtain a model for the localization

λ : HR0 ∼= R ∧R HR0 −→ R[X−1] ∧R HR0 ∼= (HR0)[X−1] ∼= H(R0[X−1]).

In particular, for an idempotent e ∈ R0, eR ∧R HR0 is equivalent to H(eR0). This
observation is the starting point of [13, 14].

Interesting examples also arise in equivariant algebraic topology. The results
above generalize directly to the equivariant setting of commutative SG-algebras
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and their modules [6, 9, 12], where G is a compact Lie group and SG is the sphere
G-spectrum. Here, for a commutative SG-algebra R, we take R∗ = π∗(RG). In
particular, (SG)∗ is the equivariant stable homotopy groups of spheres and (SG)0 is
isomorphic to the Burnside ring A(G). The ring A(G), and more so its localizations
at subrings of the rationals, usually does have non-trivial idempotents [5, 8].

The splittings of Theorem 4 give model theoretic refinements of splittings in
equivariant stable homotopy theory that are discussed in [8, V] and [12, XVII§6].
Those sources describe splittings of homology and cohomology theories, and it is
now apparent that these splittings arise from splittings of corresponding equivari-
ant stable categories. The splittings involve change of group functors, and these are
discussed model theoretically in the contexts both of SG-modules and of orthog-
onal G-spectra in [9]. Briefly, by [9, VI.1.2], for an inclusion ι : H ⊂ G, there is
a Quillen adjoint pair (G+ ∧H (−), ι∗) relating HM to GM . Let WH = NH/H
and let ε : NH −→ WH be the quotient homomorphism. By [9, 3.12], there is
also a Quillen adjoint pair relating NHM to WHM . This remains true after local-
ization at a prime or rationalization. Thus we can split localized stable categories
along idempotents and identify the pieces as equivalent to stable categories over
subquotient groups.

We now turn to a completely different topic, but one that also arises naturally
from consideration of spectra constructed from MU , namely the Landweber exact
functor theorem. In fact, that result has the following more structured version in
the category of MU -modules. We say that an MU∗-module M∗ is Landweber exact
if, for each prime p, the set {vi|i > 0} is a regular sequence for M∗. Here v0 = p and
the vi for i > 0 are indecomposable elements of degree 2pi− 2 with Chern numbers
divisible by p.

Theorem 8. If M∗ is a Landweber exact MU∗-module, then there is an MU -module
M such that π∗(M) = M∗ and, for any finite cell MU -module X,

π∗(X)⊗MU∗ M∗ ∼= π∗(X ∧MU M).

As a matter of algebra, Landweber [7, 2.6] proved the following result. Let MU
denote the category of comodules over MU∗(MU) that are finitely presented as
MU -modules.

Theorem 9 (Landweber). The functor (−) ⊗MU∗ M∗ on the category MU is
exact if and only if the MU∗-module M∗ is Landweber exact.

By the following two results, MU -modules naturally gives rise to objects of MU .

Lemma 10. If X is a finite cell MU -module, then π∗(X) is a finitely presented
MU∗-module.

Proof. This is proven by exactly the same induction on the number of cells as in
the classical special case X = MU ∧Y , where Y is a finite CW spectrum. Of course,
in that case π∗(X) = MU∗(Y ). For example, the proof is clear from the algebraic
argument given by Adams [1, pp. 132–133].

Lemma 11. If X is an R-module, where R is a commutative S-algebra such that
R∗R is R∗-flat, then the Hurewicz map gives X∗ a structure of R∗R-comodule.
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Proof. This is proven by diagram chasing as in Adams [1]. It is the starting point
of the development of an Adams spectral sequence in brave new algebra [3]. The
main point is that

R∗R⊗R∗ X∗ ∼= π∗((R ∧R) ∧R X) ∼= π∗(R ∧R X).

Of course, this applies with R = MU . The previous three results imply the
following conclusion.

Proposition 12. Let M∗ be a Landweber exact MU∗-module. Then the functor
π∗(X)⊗MU∗ M∗ specifies a homology theory on finite cell MU -modules X.

Applying Adams’ variant [2] of Brown’s representability theorem, which applies
since MU∗ is countable [6, III.2.13], we obtain the MU -module M promised in
Theorem 8. The construction of M is non-uniquely functorial: given a map f∗ :
M∗ −→ N∗ of Landweber exact MU -modules, there is a map f : M −→ N of MU -
modules that realizes f∗, but f will not be unique unless the relevant lim1 groups
vanish.

Example 13. Recall that KU∗ = Z[u, u−1], where deg (u) = 2, and give it the
MU∗-module structure specified by the ring homomorphism MU∗ −→ KU∗ that
sends [M2n] to Td(M2n)un. We know by the methods of [6, V§4] that KU is an
MU -module and in fact an MU -ring spectrum. There results an isomorphism

π∗(X)⊗MU∗ KU∗ −→ KU∗(X)

for finite cell MU -modules X. Alternatively, granting that there is a unique ring
spectrum KU with the cited homotopy groups, we can construct KU as an MU -
module by Theorem 8 and then show that it is an MU -ring spectrum by the methods
of [6, V§4]. The resulting map Td : MU −→ KU is a map of MU -ring spectra.
The calculation of Td∗ in terms of the Todd genius is evident from the present
approach, but is not clear from the approach of [6, V§4]. In any case, this gives
a generalization to MU -modules of the Conner-Floyd theorem that MU -theory
determines KU -theory.

Of course, if BP is a commutative S-algebra, then the Landweber exact functor
theorem will admit a precisely analogous and more useful version for BP∗-modules.
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