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A CATEGORICAL GUIDE TO SEPARATION, COMPACTNESS AND
PERFECTNESS

WALTER THOLEN
(communicated by Cristina Pedicchio)

Abstract
Based on a rather arbitrary class of morphisms in a category, which
play the role of “closed maps”, we present a general approach to sep-
aration and compactness, both at the object and the morphism levels.
It covers essential parts of the classical topological theory, generalizes
various previous categorical treatments of the theme, and allows for a
number of less expected applications outside topology.

1. Introduction

The idea to define an object X to be separated and compact by asking the natural “co-
operations”

X —XxX and X —1

to belong to a given class F of morphisms in a category appears already in Penon’s papers [Pel],
[Pe2], but does not seem to have been investigated much further at this level of generality, with
the notable exception of the factorization-based approach of [HeSS] which in turn builds on
Herrlich’s early works [Hel], [He2]. The essential question in this context is which conditions on
F would allow for a satisfactory general theory of separation and compactness. While Penon
assumes stability of F under pullback and under the formation of fibred products, we find
that closure under composition is essential to fully exhibit the relationships between the two
properties in question, but we take this to be our only condition on F. However, we effectively
enforce pullback stability by replacing F by its largest stable subclass ¢(F); closure under
fibred products is not used here since we mostly concentrate on finite properties in this paper.

It turns out that this approach not only yields a satisfactory theory of separation and com-
pactness at both, the object and the morphism levels, but also of embeddable and of absolutely-
closed objects which, in topological terms, means: of Tychonoff spaces and of H-closed spaces.
When we assume, in addition to our basic axiom that F be closed under composition, the exis-
tence of the analogue of the Stone-Cech compactification, we obtain at the abstract categorical
F-level analogues of the Isbell-Henriksen characterization of perfect maps between Tychonoff
spaces (Theorem 4.8 ), and of the “constructive existence” of the antiperfect-perfect factor-
ization, i.e., of the map version of the Stone-Cech compactification (Theorem 4.9).

Given the level of generality, it is not surprising that this approach covers a broad range
of applications and special cases, only few of which we mention here in some detail. Within
the realm of “topology”, general studies of separation and compactness appeared previously
in the context of closure operators, with a comprehensive recent account given in [CGT1].
Many of the techniques given in that paper re-appear here in greater generality, although the
reader should notice the fact that separation as defined here may differ from Hausdorffness
of [CGT1] for a closure operator which fails to be weakly hereditary (see 3.10). In any case,
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the current paper covers not only the notions of separated and compact object w.r.t. a closure
operator, but also that of a “discrete object” and of a “local homeomorphism” (see 2.5, 2.6).
We also point out that, although topologically motivated, the closure-theoretic approach is by
no means restricted to “topological” application; we mention here explicitly Diers’ approach
to algebraic sets [Di], in which separated and absolutely-closed objects occur most naturally
(see 4.11).

We refer here to two other groups of examples which appeared recently in the literature.
One is given by the decidable (or separable) objects and morphisms in eztensive categories,
as studied in [CJ]; they capture not only the topos-theoretic notion of decidability but also
the notion of separable algebra (see 2.7). Extensitivity is also used in our general theory,
in order to guarantee closure of separated and compact objects under finite sums (Theorem
3.8). The other group is given by separated objects and morphisms with respect to a pointed
endofunctor, as presented recently in [JT]; this theory is closely connected with Janelidze’s
general approach to Galois- and covering theory [J]. Again, we exploit this “example” also for
our general theory, since the factorization theorem 4.9 is derived from a result in [JT] which,
in turn, generalizes the main result of [CHK].

Parts of the results contained in this paper were presented (under more restrictive condi-
tions) in talks given by the author at the category theory meetings at Halifax (July, 1995),
Antwerp (March, 1998) and Saint John (June, 1998), as summarized in the preliminary article
[T2]. The author is grateful for various valuable comments received during these meetings,
particularly from D. Bourn (for his direction to Penon’s papers). He is also indebted to M. M.
Clementino for providing the example given in 3.10.

2. Stabilization and Derivation of a Class of Morphisms

2.1 In a category C with finite limits, we fiz a class F of morphisms which is always assumed
to be closed under composition with isomorphisms. Denoting by h*(f) the pullback of f along
h, as in

. (2.1)

we form the class
c(F):={f|Vh:h*(f) € F}.

Then ¢(F) is stable under pullback (in fact, it is the largest stable subclass of F); in particular,
c(F) is left-cancellable w.r.t. monomorphisms (so that m - f € ¢(F) with m monic implies
f € ¢(F)). Furthermore, ¢(F) is closed under composition and contains all isomorphisms if F
has the respective property.

2.2 For a morphism f : X — Y, we denote by d; the diagonal of its kernelpair, that is :
0 =<lx,1x>: X = X xy X, and we let

d(F) :={f |05 € c(F)}.

Of course, when F N RegMonoC (with RegMonoC the class of regular monomorphisms of
C) is stable under pullback, the definition of f € d(F) simplifies to 0y € F, and d(F) = F'
as defined in [JT]. But the definition of d(F) as given here enables us to derive all wanted
properties without imposing conditions on F. First, for f : X - Y and g : Y — Z, one has
pullback diagrams
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df
X XXyX Y
Og-1 fxf
X ! Xx,; X Y xz X (2.2)

which give the formula d,.; = (f x f)*(d4) - 07. Secondly, given the pullback on the right one
has the pullback on the left in the following diagram:

On=(f) h*(f)
W W xz W w Z
h l l h'xh' l h' l h
X X xy X X Y
5y f (2.3)

Hence, 0y () = (' xh')*(67). With these formulas one sees immediately that d(F) is pullback-
stable and left-cancellable (with respect to all morphisms), and that d(F) is closed under
composition if F is; also, d(F) contains all monomorphisms if F contains all isomorphisms.

2.3 The morphism class F naturally induces the class
Fl={X|!x € F}

of objects in C; here !x : X — 1 is the unique morphism of the object X into a (fixed) terminal
object of C. We can now form the classes

C(F):=c(F) ={X|VY:(py: X xY = Y)€F},
D(F):=d(F)' ={X | (6x : X - X x X) € ¢(F)};

note that the projections py are precisely the pullbacks of !x, and that we write dx instead
of d1, . Properties of the classes C(F) and D(F) will be given in Section 3.

Of course, while here we defined C(F), D(F) in terms of ¢(F), d(F), we could have pro-
ceeded conversely. The reason for this is the fact that “stabilization and derivation commute
with slicing”, as follows. For an object B in C, put

FP = (Sp) M (F),
with ¥p : C/B — C the forgetful functor of the category of C-objects over B. Then
o(FB) = ¢(F)P and d(FP) =d(F)",
and in particular
C(FP) = «(FP) = (e«(F)F)" and D(FF) = d(FP)' = (d(F)P)".
Hence, for f: X — Y in C one has
fEC(F) <= (X,f) € C(FP) and f € d(F) < (X, [f) € D(FP).

2.4 For the sake of completeness we mention that both
¢,d : MORC — MORC

are right adjoint functors of the partially ordered “conglomerate” MORC of all morphism
classes of C (which are closed under composition with isomorphisms). Their left adjoints assign
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to a class G the classes
G =1{h*(g9) | h € MorC,g € G} and G= {h*(64) | h € MoxC, g € G},

respectively.

Also the passage F — F' has a left adjoint: it assigns to every (isomorphism-closed) class
B of objects in C the morphism class Hom(B, 1) = {!g | B € B}. Composition with ¢, d yields
two right adjoints

C,D : MORC — OBC,

where OBC is the partially-ordered “conglomerate” of iso-closed object classes in C. We re-
mark that (in a more restricted context) the functor D and its left adjoint were considered
previously in [T1], under the name Salbany correspondence; when translated into the language
of closure operators [DT], the left adjoint of D assigns to a class B precisely the B-regular
closure operator. Also a restriction of the functor C appeared previously in the literature: in
[CHK] it is used to establish the well-known correspondence between factorization systems and
reflective subcategories, a generalization of which is described in [JT].

2.5 Our paradigmatic example is the category C = Top of topological spaces and the class
F = Cl of closed continuous maps. Then ¢(Cl) is the class of proper or stably-closed maps
in the sense of [B] (i.e., of those f : X — Y for which f x 17 is closed for all Z); general
topologists usually call them perfect and define them as closed maps with compact fibres,
although this characterization is not a good starting point for a categorical theory. We reserve
the name perfect for the maps in ¢(Cl) N d(Cl); here d(Cl) is the class of separated maps as
in [Js] (i.e., those f : X — Y for which any = # y with f(z) = f(y) may be separated by
disjoint neighbourhoods in X). Of course, D(Cl) is the class of Hausdorff spaces, and C'(Cl)
the class of compact spaces, thanks to the Kuratowski-Mrowka Theorem. (Note that we use
“compact” in the usual topological sense, defined by the open-cover property, without any
separation condition.) Hence, we use “compact” also for the maps in ¢(Cl).

There is another equally important class in Top, namely, the class Op= ¢(Op) of open
continuous maps. Here C'(Op) = Top, and D(Op) is the class of discrete spaces. Less trivially,
d(Op) is the class of locally injective maps (every point of the domain has a neighbourhood
on which the map maps injectively), while Op N d(Op) is the class of local homeomorphisms.

Next we provide a general reason why Cl and Op should play a distinguished role in Top;
these are classes of “homomorphisms” definable in a much more general context!

2.6 (Closed and Open Morphisms with Respect to a Closure Operator) Let (€, M) be a proper,
stable factorization system in C. By subX we denote the preordered class M /X, and f(m)
denotes the M-part of an (£, M)-factorization of m - f, m € M. A closure operator ¢ =
(ex)xec (cf. [DG1], [DT]) is a family of extensive and monotone maps cx : subX — subX
which satisfy, for every f : X — Y, the following equivalent conditions:

() flex(m) < ev(f(m)) for all m € sub(X),
(i) ex(f*(n)) < f*(cy(n)) for all n € sub(Y),
(iii) ex(m) < f*(ey (f(m))) for all m € sub(X),
(iv) f(cx(f*(n))) n for all n € sub(Y).

Replacing “ < ” by “ 2 ” (which, in the case of (i), (ii) makes f(—), f*(—) a c-homomorphism)
we obtain the notions of f being (i) c-closed, (ii) c-open, (iil) c-initial, (iv) c-final; this defines
the classes Cl(c), Op(c), Ini(c), Fin(c), respectively. Each of these classes is closed under
composition and contains all isomorphisms. The interelationships between them are discussed
in [GT], [CGT2]; we mention in particular:

Pullback Ascent and Descent Theorem. Consider the pullback diagram
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9
U 14

q p
A

and the following two assertions:
(i) fis c-closed (c-open, c-initial, c-final, respectively);
(i) g is c-closed (c-open, c-initial, c-final, respectively);

Then ()= (ii) if q is c-initial, and (ii)=() if p is c-final.

Without additional condition, neither implication holds in general.

When can we expect at least Cl(c) NRegMonoC and Op(c) NRegMonoC to be stable under
pullback? First of all, it is important to distinguish the notion of c-closed morphism (= c-
preserving morphism in [CGT1] and earlier papers) from the notion of c-closed subobject:
m = ¢x(m). Likewise, the notion of c-open morphism must be distinguished from the notion
of c-open subobject m of X, as given in [GT]: mAcx(z) < ex(mAz) for all z € subX . Despite
the dissimilarity in definition, there is a remarkable symmetry in behaviour, as expressed by
the following (slightly tricky):

Lemma. Letm : M — X be a morphism in M. Then m is c-closed (c-open) as a morphism
if and only if m is c-initial and c-closed (c-open) as a subobject of X.

The operator c is hereditary if M CIni(c); hence, in this case there is no need to distin-
guish between the morphism and the subobject notions. In fact, for c-closedness this is true
already when ¢ is weakly hereditary (i.e., when every subobject is c-dense in its c-closure), see
[CGT1]. Since c-closed subobjects are always stable under pullback, also the morphism class
Cl(¢) NRegMonoC has this property when ¢ is weakly hereditary. Unfortunately, we cannot
replace “c-closed” by “c-open” in this statement; we can only say: Op(c) N RegMonoC is stable
under pullback if the class of c-open subobjects has this property and c is hereditary.

Objects and morphisms in D(Cl(c)), d(Cl(c)) are called c-separated, and those in C'(Cl(c)),
¢(Cl(¢)) c-compact. In particular, the papers [DG2], [CGT1] exhibit many examples; the reader
is, however, alerted to the fact that in general, the notion of c-separation used in these papers
may not coincide with the one given here when ¢ fails to be weakly hereditary: see 3.10.

2.7 (Summands in “Lextensive” Categories) As observed recently in [CPR], the finitely com-
plete category C has binary sums (=coproducts) if and only if the sum 141 exists in C and
the functor “pulling back along injections”

pb; :C/1+1—=CxC (2C/1xC/1)
has a left adjoint; in this case, for every pair of objects X, Y,
pbyy :C/X+Y = C/X xC/Y

has a left adjoint, given by sum. Let SumC be the class of all coproduct injections; it is closed
under composition and contains all isomorphisms. Furthermore, if all functors pby y are full
and faithful, then SumC is stable under pullback; this is true particularly when C is extensive
(cf. [CLW], [CJ]), i.e., when pb, ; (and therefore every pby y - see [CPR])) is an equivalence
of categories. But also without this hypothesis it makes sense to call a morphism f decidable
or (separable) if §; is a stable coproduct injection. For lextensive C, the classes D(SumC) and
d(SumC) have been studied in [CJ], but many of their properties remain valid without the
hypothesis of extensivity, as we shall see in the next section. A prominent example of [CJ] is
the dual of the category commutative rings, where a morphism f : A — B is separable if and
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only if A is a separable B-algebra. Another example of [CJ] is C = Top where, in the notation
of 2.5, one has D(SumC) = D(Op) and d(SumC) = d(C1N Op) = d(Cl) Nd(Op).

In general, C'(SumC) is the class of universal summands of 1; hence, C'(SumC/B) is the
class of universal summands of B. Of course, here “universal” is redundant if C (and therefore
C/B) is extensive.

2.8 (Cartesian Morphisms w.r.t. a Pointed Endofunctor) Let T be an endofunctor of C,
“pointed” by a natural transformation n : 1¢ — T, with T1 2 1. The class CarT of all
morphisms for which the np-naturality diagram is a pullback diagram includes all isomorphisms
and is closed under composition. These morphisms are called T-cartesian or trivial T-coverings
in [JT], where those T have been characterized for which (VerT', CarT) forms a factorization
system, with VerT the class of T-vertical morphisms (i.e., of those f : X — Y with 5} (T f) =
1x). They include the semi-left exact or admissible reflections of [CHK], [J], [CJKP], and the
direct reflections of [BG], [Ho]. A particular consequence of those conditions is that CarT is
stable under pullback. But also without this property it makes sense to consider the classes
D(CarT) and d(CarT) of T-separable objects and morphisms in C. The papers referred to
above contain many examples, from both algebra and topology.

It is not difficult to prove that if every morphism nx is a universal regular epimorphism,
then C(CarT') contains exactly those objects X for which T'(X x V) = X x TY (canonically,
for all objects Y). If CarT is stable under pullback, then C(CarT") = Fix T' = {X| nx iso}.

3. A General Finite Theory of Separation and Compactness

3.1 Following our leading example (see 2.5, 2.6), we call objects and morphisms in D(F),
d(F) F-separated, and those in C(F), ¢(F) F-compact. We now derive some basic but useful
properties for them, under the sole hypothesis that our morphism class F C MorC satisfies
the following axiom:

(A1) F is closed under composition and contains all isomorphisms.

Recall from 2.1, 2.2 that then d(F) and ¢(F) are both closed under composition and stable
under pullback, and that d(F) is left-cancellable, while ¢(F) is left-cancellable with respect to
monomorphisms.

3.2 Lemma. An object X is F-separated if and only if for every equalizer diagram

e
E Y C X (3.1)

e lies in F (or, equivalently, in ¢(F)).

Proof. Such equalizers are precisely the pullbacks of dx : X — X x X. |

3.3 Proposition. In each (1) and (2), the three given conditions for an object X are equiv-
alent:

(1)

1) (i) X is F-separated;

(i) every morphism with domain X is F-separated;

(iii) there is an F-separated morphism with domain X and F-separated codomain.
(2) (i) X is F-compact;
(ii) every morphism with domain X and F-separated codomain is F-compact;

(iii) there is an F-compact morphism with domain X and F-compact codomain.

Proof. For a morphism f: X — Y, consider the commutative diagram
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X xY

Dy

/
f
Iy Iy
1 (3.2)

with vy = <lx, f>= (f x 1y)*(dx) the graph of f. Since ¢(F) is closed under composition,
the diagram shows (i)=-(ii) and (iii)=-(i) of (2), while (ii)=-(iii) is trivial (take f =!x). For
(1) it suffices to look just at the lower triangle of (3.2), since d(F) is not only closed under
composition but also left-cancellable. O

X

Remark. Since a compact subspace of a non-Hausdorff space need not be closed, we see in
particular that in general ¢(F) is not left-cancellable. However, the statement that ¢(F) is
left-cancellable with respect to monomorphisms may be strengthened to statement (2) below.

3.4 Corollary.
(1) A morphism f: X — Y with Y F-separated (F-separated and F-compact) is F-separated
(F-compact) if and only if X is F-separated (F-compact).
(2) If g - f is F-compact with g F-separated, then also f is F-compact.
(3) If f is F-compact and g has F-compact domain, then also f*(g) has F-compact domain.
In particular, fibres of F-compact morphisms are F-compact.
Proof. (2) Apply 3.3(2)(i)=(ii) to C® and F? (see 2.3), with B= codomain(g).
(3) Apply 3.3(2)(iii)=(i) to ¢*(f) (rather than to f), and consider in particular the case
domain(g)=1. O

Remark. A morphism f in F with the property that f*(g) has F-compact domain for every
g with F-compact domain need not be F-compact: consider C = Top/B with B a two-point
indiscrete space and F the class of closed maps (see [CGT], 5.14). In particular, morphisms
in F with F-compact fibres need not be F-compact.

3.5 Corollary. D(F) is closed under monomorphisms, and C(F) is closed under morphisms
in c(F).

Proof. Every monomorphism is F-separated; hence, one may invoke 3.3(1)(iii)=(i). The sec-
ond assertion rephrases 3.3(2)(iii)=(i). |

3.6 Proposition. C(F) is closed under finite products, and D(F) and CD(F) = C(F) N
D(F) are closed under finite limits in C.
Proof. Closure of C'(F) and D(F) under binary products follows from

'xxyv = ly -py and dxxy Zdx X 0y = (Lxxx X dy)(0x x ly),

and trivially 1 € CD(F). Furthermore, for the equalizer diagram (3.1), one has e € ¢(F) when
X € D(F), hence E € C(F) when Y € C(F), by 3.5. This shows closure of CD(F) under
equalizers. The same holds true for D(F), again thanks to 3.5. |
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Remark. For the sake of completeness, we mention also the following properties:
(1) if X xY € D(F) with C(1,Y) # 0, then X € D(F);
(2)if X xY € C(F), Y € D(F) with C(1,Y) # 0, then X € C(F).

In fact, the hypothesis of (2) gives py € ¢(F) with 3.3(2)(i)=(ii), and for every y : 1 — Y one
has !x = y*(py), hence X € C(F). This proves (2), and for (1) one proceeds analogously.

3.7 Proposition. Let £ be a pullback-stable class of morphisms with the property that F is
right-cancellable w.r.t. £ (so that g-f € F and f € £ imply g € F). Then, for f : X - Y in &
one has:

(1) X F-compact implies Y F-compact;
(2) Y F-separated and f F-compact imply X F-separated.

Proof. (1) Stability of £ and the cancellation property of pullbacks show that with F also
c(F) is right-cancellable w.r.t. £. Hence, !x =!x - f € ¢(F) implies !y € ¢(F).

(2) With f € ¢(F) also f x f = (1y x f)(f x 1x) € ¢(F). Hence, oy x f = (f X f)-dx € c(F)
implies dy € ¢(F). O

Remarks. (1) In Top, with F = Cl or F = Op, we may choose for £ the class of epimor-
phisms. More generally, in the setting of 2.6, with F = Cl(c¢) or F = Op(c), & satisfies the
hypothesis of 3.7.

(2) We note that in 3.7(2) we only use that ¢(F) is right-cancellable w.r.t. ¢(F) N &. This
property holds also in the setting of 2.8 when we take for £ those morphisms f for which T'f
is a descent morphism (i.e., a universal regular epimorphism).

3.8 In order to discuss closedness of C(F) and D(F) under finite sums, we assume C to be
extensive (see 2.7) and prove:

Theorem. Let C be extensive and F be closed under finite sums (so that with f; : X; = Y;
also fi1 + fo lies in F). Then also ¢(F) and d(F) are closed under finite sums. Furthermore,
C(F) and D(F) are closed under finite sums if and only if 1 +1 € C(F) and 1 +1 € D(F),
respectively.

Proof. Extensivity gives the formulas

Ofitfs 208 + 0,

h*(fr + f2) = hi(fi) + hy(f2),

with h: Z = Y1 + Y3, hy = 57 (h), and j; : ¥ = Y1 + Y5 a coproduct injection. These show
closedness of ¢(F) and d(F) under finite coproducts. Since

'ty = - (Ix+ly)

with 2 2 1 + 1, the corresponding statement for C'(X) follows immediately. For D(X), one
uses the formula (observed in [CJ])

dxyy = k- (0x +dy),

with k =< +77 718 +77>: (X x X))+ (Y xY) = (X +Y) x (X +Y). By extensitivity, (7% +
7Y, m 4+ 7)) is the kernelpair of !x+!y, so that k is the equalizer of (!x+!y)m, (\x+!y ).

Hence, if 1 + 1 € D(F), with 3.2 one obtains k € ¢(F).

Remarks. (1) The assertions concerning d(F) and D(F) require closedness under finite sums
only for 7 N RegMonoC, not for the whole class F.

(2) The trivial example F = IsoC shows that the conditions 1+ 1 € C(F) and 1+ 1 € D(F)
do not come for free, even when F (and therefore ¢(F) and d(F)) are closed under finite sums.
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3.9 In general, neither D(F) nor C(F) is closed under infinite products in C. For example,
in Top, failure of a countable product of discrete spaces to be discrete confirms this claim not
only for D(Op) but also for C'(F), with F the class of maps which preserve b-closed sets; here
M C X is b-closed if for every € X \ M there is a neighbourhood U with U N M N {z} # 0.
However, if F N RegMonoC is closed under intersection (multiple pullback), then D(F)
and d(F) are closed under (infinite) direct products, and d(F) is closed under infinite fibred
products (=mutiple pullback). To wit, consider g; : X; — Y; and g = [[;c; 9: : [L;er Xi —
[[ic;Yi, and for f; © X; — Y, let f = A,.; fi :+ X = Y be the fibred product. Then the
formulas

h*(f) = \; h*(fs) (for every h with codomain Y),
0y = (pi x pi)*(dy,) (with projections p; : X — X;),
9 = A\; 7 (g:) (with projections m; : [[;Y; = Y3),
oy = T1; bg:

show
(1) fi € d(F) for all i € I implies A, f; € d(F),
(2) g; € d(F) for all i € I implies [], g; € d(F),
(3) X; € D(F) for all i € I implies [[, X; € D(F).

Note that for 7 = Cl in Top, the assumption that F N RegMonoC be closed under in-
tersection is trivially satisfied. However, without restriction to regular monomorphisms things
become more complicated, even in our guiding example where closure of C'(F) under direct
products is precisely Tychonoff’s Theorem, and where closure of ¢(F) under direct products is
the assertion of the Frolik-Bourbaki Theorem. We recall here only two strategies which have
been used in [CT], [CGT1] to prove generalizations of these theorems in the context of 2.6.

First, consider an infinite product X; =[], X; as an inverse limit of finite products:

X;=limXp (F C1I finite).
—

Then also X; xY = 1lim (Xp xY) for all objects Y, and the projection gy : X; xY — Y is
—F

an inverse limit of the projections qr : Xp XY — Y. Hence, if qp € F for oll F C I finite
implies q; € F, then

(4) X; € C(F) for alli € T implies [], X; € C(F).

Furthermore, if the hypothesis of (4) is satisfied not only for C but for every slice C/B (and
for 2 in lieu of F), then (1), (2) hold true for ¢(F) instead of d(F).

Remark. Of course, in general, D(F) and C(F) are not closed under infinite coproducts
either, but sufficient conditions could be established as in 3.8, with an infinite version of the
extensity axiom.

3.10 Of the many examples in the context of 2.6, we mention here only the following: take
for ¢ the so-called Theta-closure in Top; hence, for M C X let 6x (M) be the set of those
x € X for which each closed neighbourhood meets M. A space X is f-compact precisely when
it is H-closed, i.e., when it is closed in every Hausdorff extension space. It was shown in [CGT1]
that the techniques of 3.9 give the Chevalley-Frink product theorem: C'(Cl(6)) is stable under
direct products in Top.

Since @ fails to be weakly hereditary, a f-closed subobject E C Y may not give a #-closed
map E — Y. Consequently, the notions of §-Hausdorflness as used in [CGT1] and earlier
papers and of #-separation as used in this paper may differ; more precisely, an object X
with f-closed diagonal Ax C X x X may fail to be f-separated. While the former property
precisely means that X is an Urysohn space (distinct points may be separated by disjoint closed
neighbourhoods), 8-separatedness of X entails the additional property that (in the language of
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[DT]) 0 is hereditary with respect to {X }-closed subsets; this means that for all f,g:Y — X,
the f-closure of every N C E={y € Y | f(y) = g(y)} in E can be computed in Y. Although
FE is a #-closed subspace of Y, this additional property does not come for free:

Example (M.M. Clementino; see also [DT]) Obtain the space Y by providing the unit interval
with the coarsest topology that is finer than the Euclidean topology and in which F' = {% |n €
N} is closed. Then Y is an Urysohn space, and E = F U {0} is #-closed in Y, hence it is

the equalizer of two maps ¥ — X, with X an Urysohn space (see [DT]). However, since
Op(F) = F but 0y (F) = E, the condition of 3.2 is violated. Consequently, X fails to be
f-separated.

4. Embeddable and Absolute Objects and Morphisms

4.1 We continue to work with a class F of morphism satisfying the condition (Al). In
addition, we fix a left-cancellable classs M with RegMonoC € M C MonoC which is closed
under composition and stable under pullback. We may then define:

Tu(F)={X| Im: X - Kin M: K € CD(F)},
Hu(F)=4{X|Vm: X > Kin M : (K € D(F)) = m € ¢(F)}.

In our paradigmatic example, with M = RegMonoTop, Th((Cl) is the class of Tychonoff
spaces, and H(Cl) is the class of H-closed spaces (see 3.10). In general, we call the objects
in Ta(F) F-embeddable, and those in Haq(F) F-absolute. Through slicing, these notions
extend to morphisms; hence, one defines morphism classes tr(F) and has(F), as follows: for
f:X—=YinC,

fetmF)e (X, f)eTyu (F¥)eIme Mk€cd(F): f=k-m,
fEMMF) e (X, f) e Hyy (FY) o Vme M k€ d(F): (f =k-m = m € c(F)).

4.2 Proposition. In each (1) and (2), the three given conditions for an object X are equiv-
alent:

(1) (i) X is F-embeddable;
(ii) every morphism with domain X is F-embeddable;

(iii) there is an F-embeddable morphism with domain X and F-compact, F-separated

codomain.
(2) (i) X is F-absolute;
(ii) every morphism with domain X and F-separated codomain is F-absolute;
(iii) there is an F-absolute morphism with domain X and F-compact codomain.

Proof. For morphisms f: X — Y and m : X — Z, consider the diagram

X
m
! <|f,m >
Y Y x Z Z (4.1)
by bz

If Z € CD(F), then py = p}(1z) € cd(F), and m = pz- <f,m>€ M implies <f,m>€ M;
this proves (1)(i)=(ii). Similarly, for (2)(iii)=(i), the hypotheses m € M, Z € D(F) give
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<f,m>€ M, py € d(F), so that f € hp(F) gives <f,m>€ ¢(F); furthermore, Y € C(F)
implies pz € c(F), hence m = pz- <f,m>€ c(F).

Let us now assume f = k-m with m € M. If k € cd(F) and Y € CD(F) we obtain
Z € CD(F) with 3.3; this proves (1)(iii)=(i). For (2)(i)=(ii), assume k € d(F) and Y € D(F),
hence Z € D(F); if X € Hp(F), this gives m € ¢(F), as desired.

The implications (ii)=>(iii) are trivial in both cases. i

4.3 Corollary.

(1) tpm(F) is left-cancellable and stable under pullback; furthermore, if f € tpm(F) and g €
cd(F), then g- f € tpm(F).
(2) If g+ f € hpa(F) with g € d(F), then also f € ha(F); if f € ha(F) and g € ¢(F), then
9 f € hm(F).
Proof. These assertions follow from the sliced version of 4.2 and the definition 4.1. O

4.4 Proposition. Th(F) is closed under finite limits and M-subobjects.

Proof. Trivial, since M is closed under finite direct products and under composition, and
since RegMonoC C M. |

Remark. Similarly to 3.6 one has:
(1) if X xY € Ty (F) with C(1,Y) # 0, then X € Th(F);
(2)if X xY € Hy(F) with Y € D(F) and C(1,Y) # 0, then X € Hu(F).

For the proof one proceeds as in 3.6, observing that for every m : X — K and y : 1 = Y one
has m 2< 1g,y >* (m x ly).

4.5 Theorem. In the “lattice” of subclasses of ObC one has the following diagram:

Hm(F) D(F)

N S

HmD(F)
C(F) Trm(F)

N |

CD(F) = HuTum(F) (4.2)

In particular, the intersection Hp Ta(F) = Hyp(F) N T (F) does not depend on M.

Proof. C(F) C Hp(F) follows from 3.3(2), and T (F) C D(F) from 3.5. Trivially, CD(F) C
Tam(F), hence CD(F) € HyTp(F). Since for X € Hy(Trq(F) one has m : X - K in M
with K € CD(F) and then m € cd(F), X € CD(F) follows with 3.3. i

4.6 Corollary. hata(F) = cd(F). In particular, a morphism with F-embeddable domain
is F-compact and F-separated if and only if it is F-absolute.

Proof. The first statement follows from the sliced version of 4.5, which implies also the second
statement when combined with 4.2(1)(i)=>(ii). i
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4.7 The last Corollary gives in particular the first part of the Isbell-Henriksen Theorem (cf.
[HI]) which says that for a continuous map f : X — Y of Tychonoff spaces the following
conditions are equivalent: (i) f is perfect; (ii) f cannot be extended to a Hausdorff space of
which X is a proper dense subspace; (iii) the extension 8f : BX — 8Y of f to the Stone-Cech
compactifications maps SX \ X into 8Y \ Y. In categorical terms, (iii) means that

By
X BX

7 | o1
Y o BY (4.3)

is a pullback diagram;i.e., f is §-cartesian. In our general context we must assume the existence
of the reflexions Ox, and that these are “F-dense”. More precisely, we now assume:

(A2) Every X € Ty (F) has a reflexion Bx : X — X into CD(F), and if Bx =n-m-l € M

with n,m,l € M and m € ¢(F), then m is an isomophism.

4.8 Theorem. The following conditions are equivalent for f : X =Y with X,Y € Ty (F):
(i) f € c(F);
i) if f=(X B Z—=Y) withm e M, Z € D(F), then m € c(F);
(iii) diagram (4.3) is a pullback diagram.

Proof. (i)=(ii) Since with Z € D(F) also (Z — Y) € d(F), we can just use ¢(F) C ha(F).
(ii)=(iii) Given diagram (4.3), form the pullback diagram

n
P BX
k Bf
}/ o ;}y (4.4

and consider the morphism m : X — P with k- m = f, n-m = fx. First of all, since
X,Y € Ty (F), the reflexion property and left-cancellability of M give Bx, 8y € M, hence
also m,n € M (with pullback stability). Since P € D(F), the hypothesis gives m € ¢(F),
hence m € Iso(C) with (A2). (ili)=(i) Since Bf € ¢(F) by 3.3 (2) (i)=(ii), also f € ¢(F). DO

Remark. The Theorem says in particular that, when restricted to the subcategory Tas(F),
the class ¢(F) = cd(F) is precisely the class Carf of S-cartesian morphisms. Next we shall see
that the class Ver3 of 3-vertical morphisms is precisely the class 37! (IsoC'D(F)), and that
(Verp, Carf) is an orthogonal factorization system.

4.9 Theorem (Antiperfect-Perfect Factorization). (1) Every morphism f: X — Y in Ta(F)
can be factored as f = k-m with k  F-perfect, m : X — P € M and fm : X — P an
isomorphism.

(2) For every commutative diagram
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-, . (4.5)
in Tp(F) with k- F-perfect and fm an isomorphism, there is exactly one morphism w with
w-m=uand k-w =w.

Proof. According to Theorem 2.7 of [JT], it suffices to show that m as constructed in the
proof of 4.8 is B-vertical, and for that it suffices to show that

n
P BX
1p Bm
1£ or glp (16)

commutes. Let e : E — P be the equalizer of 8p, By - n; since 3P € D(F),e € c¢(F). With
the morphism | : X — F with e-] = m we obtain 8x =n-e-1, so that e € IsoC follows with
(A2). This completes the proof. O

4.10 Although Theorem 4.8 (see [CGT]) and 4.9 (see [Ho]) are essentially known for F =
Cl(¢) and ¢ an idempotent, hereditary closure operator (see 2.6), little is known especially
about the morphisms considered in this section, even in the case of our paradigmatic example
C = Top, F = Cl. For example, one would expect that maps in ¢((F) (which are precisely
restrictions of perfect maps) can be characterized in terms of [0, 1]-valued maps. Dyckhoff
[Dy], Pasynkov [P] and Kiinzi [KP] have studied intensively so-called Tychonoff maps; these
are separated (see 2.5) maps f : X — Y with the property that for every closed set F C X
and every ¢ € X \ F there is an open neighbourhood U C Y of f(z) and a (continuous) map
g: f71(U) — [0,1] with g(z) = 0 and g(F N f~1(U)) C {1}. Since a space X is Tychonoff
if and only of X — 1 is Tychonoff, and since every Tychonoff map is Cl-embeddable, one
is tempted to believe that also the converse proposition is true. However, solving an open
problem of [P], recently Zouboff [Z] exhibited an example of a perfect (hence, in particular
Cl-embeddable) map which fails to be a Tychonoff map.

4.11. For a varietal theory 7 in the sense of Lawvere-Linton, Diers [Di] establishes an adjunc-
tion

A
L

X

Set(J) L Alg(J)

between the dual of (the) variety of J-algebras and the topological category Set(.J) of so-called
J-sets; as it induces an idempotent monad, it gives a duality between the fixed subcategories
on both sides, given by functional J-algebras and so-called algebraic J-sets, respectively:

AlgSet(J) = FcAlg(J)P

The functional J-algebras are precisely the subalgebras of powers of the initial J-algebra K.
By definition, AlgSet() consists of those J-sets X for which the unit morphism nx : X —
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X(A(X)) is an isomorphism; it is a subcategory of SepSet(.J), which consists of the J-sets
X for which nx is an embedding (=regular monomorphism).

It is shown in [Di] that the categories SepSet() and AlgSet(J) fit perfectly into the
setting of this paper: one defines the Zariski closure (x (M) of M C X € Set(J) as the set of
all x € X which satisfy

Vu,ve AX) : (ulp = vy = u(z) =v(z));

here A(X) is the subalgebra of KX which gives the structure of the J-set X. For this idem-
potent and weakly hereditary closure operator of Set(.7) one obtains

SepSet(J) = D(CI(C)),  AlgSet(7) = HuD(CI(Q)),
with M the class of embeddings.
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