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Abstract
This is a survey of the author‘s results about chain functors, tensor
products of chain functors, (co-)localizations of chain functors and their
relationship with the associated concepts for spectra in the Boardman
category. Some introductory remarks about quotient categories, stable
homotopy theory and application of the theory to strong homology
theories are included.

0. Introduction

This is an expository article about the author’s recent work on a specific aspect of the
theory of chain functors [8], their relations with Boardman spectra, tensor products and the
theory of (co-)localizations, expressed by means of chain functors [3], [4].

The Boardman category B appeared as the first appropriate category in which one can sat-
isfactorily develop stable homotopy theory. All other stable homotopy categories should be
equivalent to this category.

A spectrum E determines a homology theory E.( ) which originates from a chain functor
C. = C.(E) (cf. §3) in the sense that the associated homology theory H.(C.)( ) of C. is
isomorphic to E,( ).

However every chain functor K,, defined on a category of CW pairs with compact support
can be geometrically realized as a spectrum F = |K | such that F.() ~ H.(K.)().

So we have a cycle of relationships:

E€®B— E.()— |C.(E)| ~E. (1)

In the category of chain functors €h, cf. §3, there are tensor products mimicked after the
concept of a tensor product between chain complexes. The cycle (1) provides us with the op-
portunity to define tensor products between spectra (cf. §4) by setting

E®F ~ |C.(E)®C.(F)|. (2)

This tensor product cannot be defined directly for spectra, avoiding chain functors.

H. Hasse always pointed out, that all number theory (including analytic number theory) is
ultimately designed to furnish results about integers. In the same sense I think that all results
about chain functors should be assessed by the amount of information they yield for topo-
logical spaces, eventually for spectra and their related homology theories in the Boardman
category.

One has a satisfactory theory of localizations of chain functors and a dual theory of colocal-
izations, leading to existence (and by definition, uniqueness ) theorems for localizations and
colocalizations (§5, §6).

This distinguishes chain functors from spectra: Although according to A. K. Bousfield [12]
there exists always an E-localization, not every spectrum admits an E-colocalization. The

Received 22 April 1999, revised 11 May 1999; published on 17 May 1999.

1991 Mathematics Subject Classification: Primary 55P60, 55P42, 55N20; Secondary 55U15, 55N07

Key words and phrases: chain functors; Boardman spectra; Tensor products; localizations; colocalizations
© 1999, Friedrich W. Bauer. Permission to copy for private use granted.



Homology, Homotopy and Applications, vol. 1, No. 8, 1999 96

reason is that the E-colocalization of a chain functor A, (with compact carriers) does not nec-
essarily has compact carriers itself, hence it cannot be realized as a spectrum |AZ|. However
if one starts with a homology theory without compact carriers like

he() ={E; }s,

detect the chain functor associated with k., apply the colocalization process to C, = C.(F),
the chain functor associated with another spectrum F', then the resulting chain functor C [*E )]
has compact carriers, admitting a geometric realization FI¥] (cf. §6). This is in accordance
with a result of A. K. Bousfield [13].

There is a surprising relationship between tensor products of chain functors and localizations
(55):

In §3 we introduce a highly irregular chain functor Z,, (which cannot be realized as a spectrum
and whose derived homology is not a homology theory) serving as a unit for tensor products
of chain functors. One has for any chain functor K, an equivalence of irregular chain functors

K.®Z,~K.. (3)
It turns out that for any E-localization Ag, of a chain functor A, one has
A, R LE ZAE*. (4)

In our previous exposition we have tacitly assumed that all spaces involved are CW spaces or
ANRs. However chain functors were originally introduced for a description of strong homology
theories (§7), thus they can be defined and used for much more general spaces (or spectra).
Exploiting this yields a characterization of strong homology theories as associated homology
theories of localizations of chain functors with respect to the category of ”good spaces” (like
CW spaces) (theorem 7.1.).

In §1 we recollect some elementary facts about quotient categories and define (co-)localizations
in a very general framework.

While §2 contains some well-known facts about stable homotopy and spectra, §3 serves as an
introduction for chain functors.

With the exception of theorem 3.3. (which is proved in §8, because this proof serves simul-
taneously as an explicit example of a chain functor) this paper does not contain proofs; the
reader is referred to the original sources in the literature.
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1. Quotient categories, (co-)localizations

Let & be a category, M C K a class of morphisms, then the quotient category (R/9M,n)
consists of a category /9% and a functor n : & — &/ which is universal with respect to
the condition that n(m) is an isomorphism for any m € 9. More precisely:

Let p : & — £ be any functor, satisfying p(m)= isomorphism for any m € 91, then there
exists a unique functor p: &/91 — £ such that pn = p.

An existence proof is given in [11]. In [18] the authors call this a category of fractions.

There are many different classes 9 leading to the same category £/ If My = {identities},
M, = {isomorphisms}, M3 = @, then K/M; is always isomorphic to K and n =1g: K — K.
Moreover there exists always a maximal 9t C 90t such that &/9t ~ £/9M. In the previous
example 91, is maximal.

Applications of this construction abound:

1) Let & be a suitable category of topological spaces with or without base-points and let 90t
be the class of all inclusions i, : X C X x I, ig(z) = (x,k), k = 0,1, then &/ is the
homotopy category of . The maximal 9t is therefore the class of all homotopy equivalences.
More generally the authors of [17] establish their ”derived category” D by inverting all weak
equivalences in the category Mg of S-module spectra. Incidentally ©g reveals itself to be
equivalent to the Boardman category (cf. example 3 below).

2) Let 8 2 e Gbea pair of adjoint functors, appearing together with specific natural
transformations @ : ® ¥ — 1lg, f: 1g — ¥ &. It turns out that &/{F} =~ £/{a}. Many
equivalences of categories are of this kind:

a) The homotopy category of CW spaces is equivalent to the homotopy category of Kan-
complexes.

b) The Boardman-homotopy-category of spectra is equivalent to the homotopy category of
simplicial Kan-spectra [9], [23].

3) The Boardman category of spectra itself is a quotient category of the category of spectra and
functions of spectra as morphisms with 9t being the class of all so-called cofinal embeddings
of spectra:

A (CW) spectrum E = {E,, n € Z} is a sequence of based (CW) spaces coming together
with mappings 0 : ¥ E,, — E,11. A function of spectra f : E — F is simply a sequence
fn: E, — F,,, n € Z, of continuous mappings, compatible with the bonding maps o.

A function m : E C F between CW spectra (i.e. m, : E, C F,) is called cofinal whenever
for any finite CW complex K C F,, there is an index k such that K' C F, 4 lies in the image
of M, 1, where K' denotes the image of ¥ K under

k-t -
e, — LSl E L — o — Foygg

This can also be formulated for spectra where E,, is only a based space (not a CW space) and
K a compact subspace of F,.

4) Let £ be the category of based compacta (i.e. of based compact metric spaces), 9 the class
of all SSDR-maps [16], then K/ is the strong shape category (of compact metric spaces).
Incidentally ordinary shape does not admit a representation as a quotient category of K.

5) Let M be a set of non-zero-divisors in some unital ring R, then one can localize R at
M. There are many different ways to express this algebraically. This fits into our scheme by
converting R into a category with one object and morphisms in 1-1 correspondence with the
elements of R. If R =7, M = Z\ {0}, we obtain the rationals Q.

6) Let ® : & — Ab (or Ab?%) be any functor into the category of abelian groups or of Z-
graded abelian groups. Setting Mg = {m € K|®(m) = isomorphism} establishes the category
R/® = R/Ms.

We call an object A € R ®-acyclic whenever ®(A) = 0.

The class Mg is in this case maximal.
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1.1. Definition: An object A € & is M-local (M-colocal) whenever for any m € M, m :
X —=Y

m* . R(Y,A) D &(X, A)
(resp.

my: R(A,X) S RA,Y))
s an isomorphism.

The following conditions require that there are sufficiently many 9-(co-)local objects:

L) To any A € R there exist an M- local object Agy and a (n: A — Agy) € M in a natural
way.

L*) To any A € R there exist an M-colocal object A™ and a (n: A — A) € M in a
natural way.

At this stage of affairs we do not discuss the question how realistic such an assumption is.
Returning to example 6) suppose £ is a suitable homotopy category of pairs of topological
spaces and ® = h, a generalized homology theory (cf. §2), then a simple exactness argument
implies:

An object A € R is ®-(co-)local, if and only if

An(X,4) =0 (8(4,X) =0)

for ®-acyclic X.
We have the following result:

1.2. Theorem: Suppose L) (L*)) is satisfied, then &/9M and the full subcategory Rop (A7)
C R of all M-local (M-colocal) objects are equivalent.

Proof: It suffices to prove the colocal case, the other one is dual.

1.3. Lemma: Let a € R7(X,Y), then

a = isomorphism <= a € M.

Proof: =: is trivial. <=: Since Y is 9t-colocal,
ae s R, X) S &(Y,Y)

is an isomorphism. Hence we detect @ : ¥ — X such that a @ = 1y. On the other hand we
deduce

a(aa) = (aa)a=alx
implying a a = 1x .-

The assignment A — A™ establishes a functor ( )™ : & — &™ on the objects. Let
f € A(A, B) be a morphism, then B™ 9-colocal and (n : B™ — B) € M imply the exis-
tence of a unique f™ fitting into the diagram
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A fm} BM

The functoriality of ( )™ is now standard.

There is an inclusion i’ : 87 C & and a functor i = 34’ : AT — &/M. Lemma 1.3. ensures
that m™ is an isomorphism for m € 9. So there exists a unique p: K/ — K™ such that

pB=p=()"
The isomorphisms

pi > 1am
Lajon =i p
are easily deduced from the existence of n: A — A™.

Remarks: 1) Generally there is not much hope to have L), L*) satisfied. In the previous
example 4) there is a 9M-local A — |A| (terminology of [16]) but not in the category of
compacta (|A| is only metrizable, but, even for compact A, not compact).

In example 1) we cannot expect to find for any space X a homotopy equivalent X such that

f: XY= f: X~Y.

3) Dealing with example 6) we will henceforth talk about ®-(co-)local instead of Mg -(co-)local
objects.
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2. Stable Homotopy Categories

The world of homotopy theory is the homotopy category £, (cf. example 1) in §1). It turns
out that for based spaces X = (X,z9), Y = (Y,yo) [ X, Y]o = R (Z (X, 20), (Y,90)) (T
= reduced suspension) carries a natural group structure, while [£? X, Y], carries an abelian
group structure.

Thus homotopy theory is a bridge from point-set to algebraic topology.

Generally suspensions cannot be inverted. However there are homotopy invariants which com-
mute with suspensions (e.g. for a homology theory h, on K one has h,(X) = h,+1(E X)).
These invariants are stable homotopy invariants. Stable homotopy theory lives in a stable ho-
motopy category. An appropriate model for such a category is still the Boardman category of
CW spectra (example 3) in §1). Since there is no way to desuspend every given space X, the
objects of a stable homotopy category can never be topological spaces but something more
fancy (like spectra).

Every spectrum E (i.e. every object in the Boardman category) determines a homology theory
on K:

E,(X,20) ={S", X AE} = lig [S"T*, X A Ey]o. (1)
k

It turns out that any (generalized) homology theory h. (i.e. any homology theory satisfying
the Eilenberg-Steenrod axioms without the dimension axiom) is of this kind, whenever h. is
defined for CW spaces and has compact carriers. The latter means that everything happens
already on a compact subspace of X

hn (X) = limg A (K), K C X compact.
K

If one investigates homology theories without that property then

ha() =A{E, }n, (2)

'E’ a spectrum, is a good candidate because (2) does not have compact carriers unless E is a
compact spectrum. The homology theories (1) and (2) can be extended for variables X resp.
() which are not spaces, but spectra themselves. For this purpose one needs a A-product in
the Boardman category, which is associative up to homotopy.

More recent work of A. D. Elmendorf, I. Kriz, M. A. Mandell and J. P. May [17] established a
A-product in a stable homotopy category which is strictly associative and commutative (not
only up to homotopy) and therefore very suitable for translating algebraic machineries into
stable homotopy theory. Moreover this category turns out to be on the homotopy level equiv-
alent to the Boardman category.

There is some work in progress about symmetric spectra [22], serving the same purpose.

An axiomatic treatment of stable homotopy theory is the subject of [21].

Let E, A be spectra, then A. K. Bousfield [12] discovered an E- localization (in our terminol-
ogy an FE,-localization) consisting of a natural short exact sequence (this makes sense in the
Boardman category with its rich algebraic structure)

A — A Ap (3)

where gA is E-acyclic, Ap E-local and 1 an E-isomorphism (=FE,-isomorphism).

There is no corresponding E-colocalization sequence for a reason which will become appearent
in §6.

Using the terminology of §1, we can observe that in this case L) holds but not L*).
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3. Chain Functors

Let R be a category of pairs of topological spaces and h.( ) = {h,; n € Z} a generalized
homology theory on K.
We are looking for a functor C, : & — ¢h (= category of free chain complexes with natural
bases), such that
1) Ha(Cu(X, 4)) ~ ha(X, A)
2) to each pair (X, A) € £ there exists a short exact sequence

0 — Cu(A) 25 O (X) 25 0.(X, 4) — 0 (1)
(i: ACX, j: X C(X,A)) which determines the boundary
0: hp(X,A) — hy—1(A).

A homology theory associated with such a functor C. is called flat. Ordinary singular ho-
mology is clearly flat: C,(X) is the singular chain complex of a space X, while C,(X,A4) =
Ci(X)/[im ig.

It turns out (R. O. Burdick, P. E. Conner and E. E. Floyd, [15]) that for 8= category of
CW pairs such a natural chain complex does not exists unless h, is a direct sum of ordinary
homology theories (i.e. of those which satisfy a dimension axiom).

On the other hand chain complexes are very suitable and convenient for all algebraic appli-
cations. It is much easier to work with individual cycles, boundaries etc, than with homology
classes. A classical Kiinneth formula for example is firstly verified for tensor products of chain
complexes. It does not hold for arbitrary generalized homology theories.

Therefore it is reasonable to look for an appropriate substitute for such a functor C, which
works for arbitrary generalized homology theories.

At this point chain functors appear [2], [8]:

Let C. : & — ¢h, C.: 8 — ch be functors such that [ : C. C C. is a subfunctor,
assume furthermore that i’ : C.(A) C CL(X,A) is a natural inclusion and that there exist
non-natural chain mappings x : C,(X) — CL(X,A), ¢:CL(X,A) — C.(X) and display
the diagram:

0— C.(A) -1 C1(X,4) 2 CU(X, A))imi' =C"(X,A) — 0
(2)

We require:
1) There exist (of course non-natural) chain homotopies resp. identities:

pr~1, jerex~l, Kkixg=i.

2) C.(X, X) is acyclic; C.(0,0) = 0.
3) To any z € Zp(Cy(X, A)) there exists a z' € CL(X,A), a € Cn(A, A) such that

z~12 +sy(a), s:(AA) C(X,A) (3)
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dz' = —i'(a), for a € C(4), qx (a) =da, ¢: A C(4,4).

This implies that 2z’ is not a cycle but a chain with boundary in im i'. If d 2’ € im ', there
must be according to 2) a @ € Cy,(A, A) such that g (i')~' d 2’ = d a.

Property 3) implies that the homomorphism

1/1 : H*(CLI(X) A)) — H*(C*(X> A))

] — [[(z') + s (a)]

is an epimorphism.

Since the top row of (2) is exact, there exists a 9 : H,(CY(X,A)) — H, 1(C.(A)) and we
require 4) ker & D ker ¢

5) ker j. C ker p. k.

with k. : Hy(Cu(X)) — H.(CL(X, A)), the mapping induced by k.

6) a) Inclusions i : (X,A) C (Y,B) induce monomorphisms onto a direct summand of
C.(Y,B); imi', im 1 are direct summands of C(X,A) resp. of Ci(X, A).

b) Ifi: (X \U,A\U) C (X, A) is an excision map (i.e. U C Intx A), then

iv: H (C.(X\U,A\U)) S H,(C.(X,A))
is am isomorphism.
¢) Let D : (X,A) x I — (Y, B) be a homotopy, then there exists a natural, with i' and 1
compatible chain homotopy Dy : C.y1(X,A) — C.(Y, B).
3.1. Definition: If all this structure is given, we call C. = {C\,C.,1,i', ¢, k} a chain functor.

The derived homology theory of C, is defined by
h(X,A) = H.(Ci(X, A4))

on the homology groups, correspondingly for the induced mappings.
Let [z] € h«(X,A) = Hp(C.(X,A)) be given, then we detect according to axiom 3) a
z' € C)(X,A) with d 2" € im i and ¥[p(z')] = [2] and set

2] = [(i")~" d #'].

Axiom 4) ensures that d[z] depends only on the class [z] and not upon the choice of 2.
We get:

3.2. Theorem: 1) h, = {hy; 0} is a generalized homology theory. Compact carriers for C,
imply compact carrier for h..
2) Any homology theory h. is isomorphic to the derived homology theory of a chain functor.

The first part follows from [8] proposition A2; the second part follows from [8] theorem 8.1.-
The concept of a chain functor is the appropriate substitute of the natural chain complexes
C. at the beginning of this section which do not exist in general.

The elements 2z’ € CL(X,A) C Ci«(X,A) with d 2’ € im i’ are, what was historically called
relative cycles (i.e. chains in C,(X) such that d 2’ € C.—_1(A)), cf. §8 for an example.

A flat homology theory h., is one which is associated with a functor C, : & — ch satisfying
(1). A chain functor C. = {C.,C.,1,i,p,k} is called flat whenever ¢, k, and the associated
homotopies pk ~ 1, jpe ~ [ are natural.

We have:

3.3. Theorem: A homology theory is flat, if and only if there exists an associated flat chain
functor.

One direction of this assertion is new. Therefore and because it furnishes a good example of a
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chain functor, we decided to include a proof of this theorem in §8.

3.4. Corollary: For a homology theory h. which is defined on the category of CW-spaces the
following conditions are equivalent:

a) h. is the direct sum of ordinary homology theories;

b) hs is flat;

¢) there exists a flat chain functor associated with h..
Follows immediately from 3.3. and a result, mentioned at the beginning of this section.

Remarks: 1) There are examples of homology theories h, which are ”very close” to an ordinary
homology theory because there exists an associated chain functor, which ”almost” satisfies
(1). Any kind of bordism theory . ( ) is of that form: The free abelian groups generated by
singular manifolds, which ultimately determine the bordism-homology, behave like singular
chain groups.

However the chain groups C.(X, A) of an associated chain functor have apart from singular
manifolds (which form the the so-called models) more generators. Here it is possible to find
specific chain functors with additional pleasant properties (chain functors with models, cf. [6]).
2) There have been many different attempts in the past, to ”geometrize” generalized homology
theories h.( ). (cf. [14], [25], [26]). Most of them deal with bordism theories or try to endow h,
with the structure of some kind of generalized bordism theory [14]. Some others try to replace
differential graded abelian chain groups by differential abelian monoids [25], differential abelian
loops [26] or differential graded groups [1]. The first attempt into this direction goes back to
[19].

There are many relations between these different approaches and the present theory of chain
functors; however, they cannot be viewed as predecessors of our theory. One, but not the only
reason is, that this theory is not restricted to ”good” spaces (CW- spaces) cf. §7.

3) There are no simple examples for chain functors for non-ordinary homology theories, which
can be displayed in a few lines. Even the case of h.( ) = m.(EA ), E a spectrum, requires
some extensive technical preparation. One of the main problems is embodied in the fact that
a group structure up to homotopy ”0o”, establishing the correct homology groups, has to be
replaced by a strict abelian group structure ” + ”. Incidentally, this is a problem which also
appears in other parts of stable homotopy theory (cf. [17]).

Let C, be a chain functor with compact carriers on the category of CW pairs.

3.5. Theorem: [7] There exists a CW spectrum (or, equivalently: a Kan spectrum cf.[23])
|C .| such that

C.l.() = Hi(Cu()): (4)

That means that algebraic objects like chain functors can be realized as something so geomet-
rical like a CW spectrum and vice-versa: A spectrum E determines a homology theory E.,( )
which stems from a chain functor C(E).( ) whose realization yields a spectrum such that the
associated homology theory |C(E).|. is isomorphic to E.( ).

Hence E and |C(E).| are isomorphic as spectra in the Boardman-homotopy category.
Therefore the homotopy category of chain functors appears as a good candidate for a stable
homotopy category (in fact modulo so-called phantom maps cf. [24] ch.5.3).

To this end we must define mappings (transformations) between chain functors:

Let A : K, — L. a natural transformation, then A is called a transformation of chain
functors whenever it commutes with [ , i, and the natural chain homotopies in 6¢), (but not
necessarily with ¢ and k).
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This establishes the category of chain functors €h.

We can introduce homotopies between such transformations, accomplishing homotopy classes
of transformations, [K, , L,].

As a result we have the homotopy category of chain functors Chy,.

One could of course in addition require that a transformation of chain functors commutes with
all structures of a chain functor, i.e. with &, and the chain homotopies p k ~ 1, ju ¢ ~ 1.
Is this a very strong requirement?

A g-transformation X : K, — L, is one which satisfies the condition that im X\ C L.( ) is
always a direct summand. By changing k, ¢, etc on im X seperately we obtain:

3.6. Proposition: ([2] 4.4.) Every g-transformation X allows a factorization as A = ¢ X, where
€ is an isomorphism in €h and \ preserves all structure of a chain functor.

How far is a given A € €h(K,, L,) from a g-transformation?
Here we have:

3.7. Proposition: ([2] 4.5.) To every A € ¢h(K., L,) there exists a g-transformation \ and
a chain homotopy equivalence v such that

A=\

Thus, every X satisfies the stronger compatibility requirements up to a homotopy equivalence.
At this stage it is worth asking what happens if certain properties of a chain functor are
waived.

Without 6b) and the requirement of compact carriers there is no geometric realization |C.|.
This observation will become crucial in §6.

If we relinquish the requirement that i’ is an inclusion, then we still have homology groups
but not the top exact sequence in (2) and therefore no boundary operator.

The stronger versions, requiring that im i’ etc are direct summands is satisfied for the chain
functor, which was explicitely constructed in [8] and needed in [3].

Condition 6b) guarantees that the associated homology is in fact a homology theory, not only
a pre-homology theory (cf. [8]).

Nevertheless there is good reason to consider also so-called irregular chain functors which do
not satisfy 6)a), b) and where ', | and mappings induced by inclusions are not necessarily
monic. In particular C’, is not necessarily a subfunctor of C,.

The concept of a transformation between (irregular) chain functors can be established.

As an example of such an irregular chain functor we introduced in [3] §3 the (irregular) chain
functor Z,:

d —0---n=0 X
20 (X, A) = Zn(X) = <zx>|dzx =0---n=0, X #0
0 ---elsewhere
( < --->= free abelian group, generated by ...),
Zp(X,A)=0---A #0.

The morphisms [, i’ ¢ k are immediately established, furnishing the structure of an (irregular)
chain functor.
The derived homology is not a homology theory, because
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Z--X#0, n=0

0---elsewhere

Hp(Z)(X) = {

Hpo(Z,)(X,A)=0---A#0, neZ,
which can never happen within a homology theory.

Irregular chain functors and chain functors without compact carriers (which cannot be realized
as spectra) are necessary in order to be able to perform certain operation between chain func-
tors, which lead outside of the category of spectra but which are still available for (eventually
irregular) chain functors.

We will encounter several examples in the next sections.



Homology, Homotopy and Applications, vol. 1, No. 8, 1999 106

4. Tensor Products of Spectra

Let K., L, be two regular chain functors, then one can define a tensor product K, ® L,

(K@ L)n(X,A) = @@ EK,(X,4) @ L,(X,A) (1)
ptg=n

(K®L),(X,4) = @ KX, H)L(X,A)e P K, (X,4) 0 L(4,4) s
p+g=n p+qg=n
& P Kp(4,4) @ Ly(X,A).

ptq=n

(2)

This can be endowed with the additional structure of a chain functor [3].
There is a tensor product for irregular chain functors, which has to be defined a little differently.

4.1. Theorem: The tensor product of two (regular) chain functors is a (regular) chain
functor.

It turns out that for any chain functor K, (regular or irregular) there exists an isomorphism
of irregular chain functors

(K @Z). ~K,. (3)

So Z. operates like an identity. Notice that (even for regular K, ) (K ® Z), is not regular.
The classical proof of a Kiinneth formula (for chain complexes) carries immediately over to
chain functors, yielding

4.2, Theorem: Let K., L, be reqular chain functors, then there ezists a, in K, L, as well
as in (X, A), natural short exact sequence

0 — (Ho(K.)(X,A) ® Ho(L,)(X,A4), — Hy,(K ®L)(X,4) —

— Tor(H,(K.)(X,A), H.(L.)(X,A))n_ 1 — 0. @

We have in the title of this section promised a tensor product between spectra rather than
between chain functors. In order to be able to accomplish that, we need one more result about
chain functors:

Let K., L, be regular chain functors with isomorphic homology, i.e. we assume the existence
of a natural isomorphism v : H,(K,)( ) =~ H.(L.)( ). What relationship exists between K,
and L,? Since every transformation between chain functors induces a transformation of the
associated homology theories, one could ask whether « is induced by a natural transformation

A: K, — L,. This is not true, however we have a result, which comes close to it ([2] theorem
1.1.):

4.3. Theorem: Letvy: H.(K.)( )~ H.(L.)( ) be a natural eqivalence of homology theories,
then there exists a third chain functor C. and transformations of chain functors

K L
K. '5C.< L,
inducing isomorphisms of homology theories such that

v= (vt 4k
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Let E, F be spectra, then we find chain functors C(E)., C(F),. such that H,(C(E).))( ) =
E.() resp. for F. According to 3.1. these chain functors functorially. No we define:

E®F = |(C(E) ®C(F)|. (5)

According to theorem 4.3. the right-hand side is (up to an isomorphism in the Boardman
homotopy category) well-defined. As a result, (5) establishes a tensor product of spectra up
to the same kind of isomorphism.

The tensor product and the A-product of spectra differ in a fundamental way. This is already
exhibited by the existence of a Kiinneth formula in Theorem 4.2.. If one is looking for a func-
tor, converting tensor products into A-products or the other way round, then it appears to be
unlikely that such a functor exists simply on the level of spectra, because units (the irregular
and therefore not realizable chain functor Z, for tensor products and the sphere spectrum for
the A- product) would be expected to correspond under these functors.

There is an interesting application of tensor products for spectra:

As a corollary of theorem 4.2. we have a Kiinneth formula for tensor products for spectra
rather than for chain functors:

0 — (Fu(X,A) ® Fu(X,A), — (E ® F)(X,A) — 6
— Tor(E.(X,A), Fu(X,A)p 1 — 0 ()

Let G; € Ab, i = 1,2 be abelian groups and K (G;) the associated Eilenberg-MacLane spectra.

4.4. Theorem: Suppose that Tor(G1, Ga) = 0, then there exists an isomorphism of spectra
in the Boardman homotopy category

Proof: Application of (6) yields an exact sequence
0 — (K(G1)«() ® K(G2)«())n — (K(G1) ® K(G2))n() —
— Tor(K(G1)«( ), K(G2)«( ))n—1 —> 0.

By inserting a point, (K(G1) ® K(G2)). reveals itself as an ordinary homology theory with
coefficient group G1 ® G2. Hence (7) follows.-
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5. Localizations

We have already agreed to call E,-localizations (E a spectrum) simply E-localizations.
Chain functors, defined on a category of pairs of topological spaces (e.g. CW pairs) can be
extended over a category of spectra.

It turns out that E-localizations of chain functors always exist (cf. [3]). Moreover for further
applications it makes sense to generalize this process, which we are going to describe below,
by replacing a single object E by a whole subcategory £ C R.

The concept of an £-acyclic chain functor K, as well as that of an £- isomorphism n: K, —
L, is easily defined in complete analogy to the corresponding concepts in §1. A chain functor
A, is £-local, whenever

K., A]=0

for all £-acyclic chain functors K ., denoting by [--- ,---] the chain homotopy classes of chain
functor transformations.
We have ([3] 5.6. Corollary):

5.1. Theorem To each subcategory £ C & and any chain functor A., defined on K, there
exists a natural exact sequence

SA-* i) A* i> AS* (1)

with £-acyclic ¢A,, L-isomorphism 1 and £- local Ag.

Exactness is understood either by establishing in the category of chain functors a triangulation
(which can be accomplished by standard methods) or simply by defining suspensions (¥ A),
for chain functors analogously as this is done for chain complezes.

Suppose R = B is the Boardman category of pairs of spectra, £ reduces to a single object E
and A, is the chain functor C'(F), associated with a spectrum F', then we regain the Bousfield
exact localization sequence [11]

Theorem 5.1. asserts that in our present case condition L) of §1 is satisfied.

The proof of theorem 5.1. consists of several steps:
1) Establishing cA.:

11) There exists on the subcategory £ an acyclic chain functor U, and a g-transformation

U. > A,|€ which is universal with respect to that property: For any other V., EN AL,
V. being an acyclic chain functor on £, one has a factorization of A = a{. Moreover one can
assume that ( is a g- transformation.

This is not difficult.

12) Let C. be any chain functor, a : K. — C.|€ a g-transformation, then there exists
an extension K. of K, now defined as a chain functor on &, a @ : K. — C,, and a
7: K, C K.|€ which is a strong deformation retract, such that (&|£) 7 = «.

The construction () is universal: Let L, 5 « beag-transformationin &, v: L.|€ — K,
a transformation, such that (8 |£) = a v, then there exists an, up to chain homotopy unique,
r: L,— K,suchthatar =0, r|C=711.

13) Apply 12) to the situation 11) and set

U, = eA., (=a: U, — A, (3)
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It is easy to see, that U, is £- acyclic.

2) Establishing Ag,:
We define

Ag, = A, UgconeU, (4)

where the cone-construction for chain functors works in the same way as for chain complexes.
The existence of a transformation n: A, — Ag, is now immediate.

The fact that €hy(V,, Ae,) =0, for L-acyclic V, follows, because one can easily show that
every f: V. — Ag, factors up to homotopy over the (contractible) cone U..

The difficulties with this proof are concentrated in the verification of the structure of a chain
functor for K, in particular providing the different mappings ¢, &,--- and the necessary
chain homotopies in 12). On the level of chain complexes (without taking care of the addi-
tional structure of a chain functor) the construction of K, is standard.

There is another free option in this construction which is more than accidental: One can per-
form all this for chain functors with compact carriers to the effect that ¢A, and Ag, have
compact carriers and one can alternatively omit this assumption.

We are able to construct the exact sequence (1) also for irregular chain functors A, yielding
irregular chain functors ¢A, and Ag,. In particular we have £-localizations for A, = Z,.
This is important because we are able to describe any £-localization of a regular chain functor
A, by temsoring with the sequence (1) for Z,:

5.2. Theorem: There exist suitable ~-equivalences such that the sequence (1) is given by

£A* A* A£*

~

12

~

A* ® SZ* 1;8)(.) A* ®Z* ﬂ A* ® ZS*-

Remark: A very extensive study of (co-)localizations from a more general point of view is
the subject of [20].
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6. Colocalizations

As far as the definition is concerned colocalizations of chain functors [4] are entirely dual
to localizations.
Again we have:

6.1. Theorem: FEvery chain functor A. admits an exact colocalization sequence

A L A, — A, (1)

with £-acyclic A, £-colocal AL and £-isomorphism 1.

Thus the existence theorem 6.1. is dual to the existence theorem 5.1. for localizations. However
the proofs are not dual.

We will again indicate the proof by omitting everything concerning the specific structure of
a chain functor (i.e. the construction of ¢, s, i', [ etc) which in fact constitutes the real
difficulty of the verification.

Unlike the situation in 5.1. we establish Af, the £-colocal chain functor, right-away:

Let X € R be any object, then we consider classes ((, f), ¢ € A«(L), f: L — X a
mapping in & (resp. everything for pairs (X, A), (L, L), for the sake of simplicity we will
confine ourselves to objects X, L etc) and define a suitable quotient of the free abelian group
generated by these pairs:

1)

(Clﬂ f)+(c27 f)N(C1+C27 f)

2)
(C: fg) ~ (g# C: f)) g € S(Ll; L2)

whenever all pairs involved are defined. The group A£(X) is this quotient group. We have
induced mappings

hy (¢, f)=(C hf), heR

and a boundary

(¢, f) = (d ¢, )

The transformation

nx ¢ AZX) — A(X) (2)

(C: f) — f#C

is well-defined and an isomorphism on £.
Let K. be any L-acyclic chain functor and « : A — K, a transformation. We need the
fact that every ¢ € Af(X) comes from a ¢ € Af(L), L e £, i.e. that ( = fg ((). Since a cycle

a(C) € K.(L) bounds d { = a((), a(C) = d(f4 &) so that a(() is bounding. This implies that
a ~ 0 and

[A7, K.,]=0.
The C-acyclic “A., is defined by killing (A.) by means of a cone construction.-

Now suppose that £ reduces to a single object E, then it is obvious that in general AE does
not have compact carriers:

If (e A,(E), f: E — X, there will be no compacti: K C X, f': E—K, ('€
AL(E) such that (¢, f) ~ (C', i ).
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Since Af is easily seen to be unique with respect to the properties of theorem 6.1., this does
not depend on the construction. Going over to compact carriers (i.e. defining

A(X) = lim A¥(K), K C X compact)
K

destroys immediately the £-isomorphism 7, since it cannot be expected that to any ( € A.(E)
there exists a (' € A.(E), i: K CE, f: E— K suchthatiyx fz (' = (. So Al
cannot be realized as a spectrum |Af| Consequently there is no E- colocalization on the level
of spectra, although the corresponding chain functor Af exists.

However there is some remedy:

Let E be a spectrum and consider the homology theory

he() ={E, }v

which satisfies all properties of a homology theory, eventually without the existence of compact
carriers. On the other hand there is a chain functor A, associated with h. (of course again
without compact carriers).
Now we profit from the flexibility of the constructions involved and invent new formal objects
DE, E € ‘B with mappings

E,— DE +— EANE —S°
DE, —DFE <+— FE-—E;

DE—E +—> S "—SEANE

where on the right-hand side one has mappings existing in 8 and on the left side new map-

pings.
The homology theory h. can now be defined by

h«() = DE.().

The construction of colocalization works also for this enlarged category B D B, yielding AP,
also denoted by AEFE’ I,

It turns out that APF = AP | has compact carriers on B:

Every f : DE — X in B is associated with a f : S° — EAX in B, allowing a factorization
over a compacti: KCX g: S® — EAK, (lg ANi)g = f.

Hence one has f =i g, g: DE — K being the new morphism, associated with g. So,
unlike in the previous case, every (¢, f) is of the form iy (¢, g).

It should be observed that if F is a finite spectrum, admitting an S-dual DE (already in B),
we can identify the new and the old DE.

As a result:

6.2. Theorem: To every spectrum E € B there exists an exact [E, ]-colocalization sequence
AP T4 B g,
with [E, | -acyclic E-1A,, [B, |-colocal AP and [E, ]-isomorphism n.

6.3. Corollary: Every spectrum A € B has an [E, ]-colocalization AP 1.

This is simply |[A® ]|, A, = C(A), the chain functor associated with A, i.e. H,(A)( ) =

A.() (cf. AK. Bousfield [13]).
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7. Strong Homology Theories

The promised example of a £-localization process with respect to a category £ C & which
does not consists just of a single object leads us to strong homology theories.
The history of strong homology theories goes back to the fourtieth of this century. On the
. A 2 .. . .
category of compact metric pairs Com” lives a homology theory which exhibits many very
pleasant properties:
1) It satisfies a strong excision axiom:

he(X,4) 55 (XA, ) 1)

is always an isomorphism.
2) It satisfies a cluster axiom:

o0
If (X,z9) = gll (X, wio) is the cluster of spaces (X;, i), i-e. the wedge with the strong

topology, then the inclusions (X;, xio) C (X, zo) induces an isomorphism
[ee]
X ZU() H h* Xz: 3710 (2)
i=1

This kind of homology is called Steenrod-Sitnikov-homology. It turns out that h, is completely
determined by its restriction to the category of compact CW pairs [10]. That means that for
any spectrum E € B one is entitled to talk about the Steenrod-Sitnikov-homology theory
E, () which coincides with E.( ) on CW pairs. For ordinary homology theories this implies
that h. is determined by its coefficient group G. This is a result of J. Milnor (cf. [10] for further
references).

The cluster axiom (2) is a special case of a continuity property of a homology theory h,,
asserting that h, commutes up to isomorphisms with inverse limits. Since, according to a clas-
sical result of S. Eilenberg and N. Steenrod, no homology theory can satisfy such a continuity
property in full generality, (2) is a reasonable substitute.

By looking for a set of axioms describing a good homology theory for more general spaces, one
tries to detect some kind of continuity which is on one hand not equivalent to full continuity
and which on the other hand is sufficiently strong to determine, together with the remaining
Eilenberg- Steenrod-axioms for a generalized homology theory, including a suitable form of
excison, a homology theory, which is now called strong homology theory.

This kind of continuity is continuity on the chain level (c- continuity): One defines the notion
of a continuous chain functor and requires that every chain functor C', which is associated
with the strong homology theory h, under consideration can be transformed into a continuous
chain functor (without changing the derived homology). Concerning the details the reader is
referred to the literature mentioned in [5]. In particular one has again a uniqueness theorem
asserting that a strong homology theory is completely determined by its values on ”good” (i.e.
CW) spaces.

In the case of compact metric spaces this c-continuity turns out to be equivalent to the cluster
axiom, so that Steenrod-Sitnikov-homology is a special case of strong homology.

Surprisingly there is the following relationship between strong homology theories and local-
izations:

7.1. Theorem: [5] Let & be a category of pairs of topological spaces, £ C R the subcategory of
CW pairs, A, a chain functor on K, then the derived homology of Ag. is the strong homology
which coincides with H.(A.|£)( ) on the subcategory £.
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8. Proof of theorem 3.3.

Suppose h, admits a functor C, : K — ch satisfying §3 (1). By a standard argument
we can assume that all inclusions induce monomorphisms into direct summands. We have
C.(A,A) =0 and set

K.(X,A) =C.(X)U; cone C,(A)

i.e. we attach the cone over C,(A) to C.(X) by means of the inclusion i : A C X. Then we
define K| (X, A) = K.(X) and assume that

KL(X,4) = K.(X) = KL(X, 4) = K.(X)

are the identities.
Acycle z = 2' +ain K.(X, A), 2" € C«(X), a € cone C(A) is a chain, satisfying d2' = —da €
Cy—1(A). Such a z bounds whenever there exists a © = ' + b such that

dr =dr’' +db =2 +a, a.be coneC.(A). (1)

The homology class of z in particular is entirely determined by z' and independent of a.
Moreover z bounds according to (1) if and only if there exists an ' € C,(X) such that dz’ =
2" +a,a € Cy(A) (= (cone C.(A)) N C,(A)). This implies in particular that H,(C.(X, A)) ~
h«(X,A) =~ H.(K.(X,A)). The axioms of a chain functor for K. = {K,, K.,l,i',¢,x} can be
easily verified. The boundary operator 9 defined for K, agrees with that originating from §3
(1). Since in our case | = jup = jx, ok =1, K, is flat.

Suppose now that K, is a flat chain functor associated with h,. Let C,(X) be the mapping
cylinder of ¢ : K. (X,X) — K.(X). The only properties of C.(X) we must attend are the
existence of natural incluions K (X, X), K,.(X) C C.(X), where the second one is a homotopy
equivalence, which we are going for simplicity to omit from our notation. C, : & —> ch is
a functor because K, is assumed to be flat. There exists a (in (X, A)) natural mapping
r: Cu(X) — K.(X,A) such that for z € K.(X,A) C Cu«(X), dx € im iy one has
r(z) ~ ju(z) ~ I(xz) mod A (i.e. everything contained in A remains there).

This helps us calculating the ” homology of C.(X) rel. A”:

A cycle rel. A is a chain 2z’ in C,(X) satisfying dz' € im iy, i : A C X. Because of the
homotopy equivalence K.(X) C C.(X), we can assume that 2’ € K,(X).

We have 2z’ ~ 0 whenever there are chains y € Cy41(X), a € C.(A) such that dy = 2’ + a.
Again, we can assume that y € K,11, a € K.(A).

This furnishes the homology H.(C.(X)/C.(A)) = H.. There is a natural mapping

A H, — Ho (K. (X, A)) % ha(X, A) :

To each 2’ there exists a a € K.(A, A) such that da = —dz' (again inclusions omitted from
the notation), allowing us to define

A2 =2 +al.

This is well-defined and natural. Because of condition 3) in the definition of a chain functor
(§3], A is epic.

Suppose that 2z’ + @ ~ 0 in K,(X, A), then, according to condition 4) in the definition of a
chain functor in §3, there exists an a € K,(A) such that da = —dz’, so that z2/+a ~ z'+a ~ 0.
Condition 5) ensures that k(2 +a) —a; = dz, © € Ci11(X), a1 € Cu(4).

Application of ¢ yields a y € K.y1(X), as € K.(A) such that z' + ay = dy, hence [2'] =0 in
H,. Thus ) is monic.

Let z € Z,(K.«(X,A)) be a cycle, then we can assume that z = 2’ + a, a € K.(A4,A) and
=] = [i;#_ldz’] = 9[2'], where 0 is the boundary operator, associated with the short exact
sequence (1) in §3.
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As a result, the short exact sequence (1) in §3 for this new C\ determines the correct homology
as well as the correct boundary operator for the given homology theory A, .-
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