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We study the Artin L-function L(s, x) associated to the unique
character x of degree 2 in quaternion fields of degree 8. We first
explain how to find examples of quaternion octic fields with not
too large a discriminant. We then develop a method yielding
a quick computation of the order n, of the zero of L(s, x) at
the point s = 15 In all our calculations, we find that n, only
depends on the sign of the root number W(x); indeed n, = 0
when W(x) = +1 and n,, = 1 when W(x) = —1. Finally we give
some estimates on n, and low zeros of L(s, x) on the critical line

in terms of the Artin conductor f,, of the character x.

1. INTRODUCTION

The well known conjecture that the zeros of the Rie-
mann zeta function are simple can be also stated for
a more general class of Dirichlet L-series and Artin
L-functions associated to one-dimensional charac-
ters of number fields. Conjecturally when the base
field is Q, these functions never vanish at the central
critical point [Murty and Murty 1997]. More partic-
ularly, a question of J.-P. Serre is to know whether
the order n, of a zero of L(s, x) at the point s =  is
the smallest possible with respect to the constraints
imposed by the properties of the character y, in par-
ticular those imposed by the sign of the root number
W (x) when x is real-valued.

A precise form of this conjecture is stated in [Goss
1996, p. 324]. In this paper, we study the case of
two-dimensional characters y arising from quater-
nion fields N/Q of degree 8. Recall that the ex-
plicit computation of values of Artin L-functions
done in [Tollis 1997] based on a formula due to
A. F. Lavrik and E. Friedman (see [Cohen 2000,
Section 10.3]) becomes very lengthy from degree 7
onwards. The expected running time is roughly
O(+/%x)- However, for the method we develop here,
the required time is O(Inf,), which allows us to
deal with degree-eight fields. We also give faster

(© A K Peters, Ltd.

1058-6458/2001 $0.50 per page
Experimental Mathematics 10:2, page 237



238  Experimental Mathematics, Vol. 10 (2001), No. 2

algorithms that depend on the Generalized Riemann
Hypothesis.

2. DEFINITIONS AND NOTATION

Let N/K be a Galois extension of a number field
with Galois group G = Gal(N/K), let (p, V) be a
representation of G and yx its character. Then the
Artin L-function attached to y is defined:

1
ik = 1l o —smmmvener

where the product is over all finite primes p of K.
Here g is the Frobenius automorphism of one ‘B
above an unramified p. For ramified p, see [Martinet
1977]. The Artin L-series converges uniformly in
half-planes Res > 14§ (with § > 0) and defines an
analytic function on the half-plane Re s > 1. Using
basic properties of representations, one can prove
that

CN(S) = CK(S) H L(N/Ka X S)X(l)v

x7#1

where x varies over the nontrivial irreducible char-
acters of G. The positive integer x(1) arises from
the decomposition of the the regular representation
reg of G into regg = > x(1) x; see [Serre 1978].
In order to obtain an L-function with a functional
equation, it is necessary to introduce Euler factors
for the infinite primes of K. For every infinite place

p of K, define

Le(s)¥M),
Le(s)" La(s+1)"",

p complex,
LN/ x5) = { e

where

Le(s) =2(2m)~°T'(s), Lg(s) =7 2T(s/2)

and
o X Fxleg) o x(1) = x(e)
2 ’ 2 ’
Define the enlarged Artin function A(N/K, x, s) by

A(N/K, X, s)
= c(N/K,x)"?Loo(N/K, X, s)L(N/K, X, 5),

where

c(N/K, x) = ldx """ Niso (J(N/ K, x))

and
LOO = H LP(N/K7X7 3);
ploo
this function has a meromorphic continuation to
the whole complex plane and satisfies the functional
equation

A(N/K7X7 1- 5) = W(X)A(N/Ka X, 5)7

where the root number W(x) is a constant of abso-
lute value 1 [Martinet 1977].

Artin’s conjecture says that for every irreducible
character x # 1, the Artin L-function L(N/K, Yy, $)
is everywhere holomorphic. In particular, the quo-
tient (v /Cx should be entire, as a consequence of the
Aramata-Brauer Theorem [Murty and Murty 1997].
Now if we restrict our attention to the order of the
zero n, (o) at some so € C of the Artin L-functions,
a few results were proved in this direction; see [Stark
1974] for example. By analogy with the conjecture
on the simplicity of the zeros of the Riemann zeta
function, the main question is to know whether for
Resy > 0 we have n,(sg) < 1 if x is absolutely
irreducible and K = Q.

3. QUATERNION EXTENSIONS

In this section we describe how to compute quater-
nion fields and give some properties of their associ-
ated Artin L-functions.

Definition 3.1. A quaternion extension of QQ is a nor-
mal extension N of Q with Galois group G isomor-
phic to the quaternion group Hg of order 8.

The quaternion group Hg can be written Hg = (o, 7)
with relations o =1, 72 =02 and 707 ' =0 1. It
possesses a unique irreducible character x of degree
2; one has x(1) = 2, x(¢?) = —2 and x(s) = 0 for
s#1, 0%

The field N contains three quadratic subfields k1,
ks, ks with discriminants d;, ds, d3 and a biquadratic
subfield K with discriminant d;dsds. The theorem
below allows us to know under what condition a
quadratic field £ = Q(y/m) can be embedded in a
quaternion field N. For a general formulation, see
[Witt 1936].

Theorem 3.2. Let m be a squarefree integer. In or-
der that k = Q(\/m) should be a quadratic sub-

field of some quaternion field N, it is necessary and



sufficient that m be positive and not congruent to
—1 mod 8.

By a theorem of Gauss (see [Serre 1970] for a proof),
the preceding condition on m holds if and only if
m = p? + r? + s? where p,r,s are integers. Let
K’ = Q(y/m, i) with i* = —1 and let N’ be a quar-
tic cyclic extension of K’ such that N'/Q is Galois.
Put < s >= Gal(K'/k), < 7 >= Gal(K'/Q(7)),
and lift them to elements 5, 7 in Gal(N'/Q). By
cohomological considerations, we have the following
proposition related to the construction of quaternion
fields N [Damey and Payan 1970]:

Proposition 3.3
citedam. N C N’ if and only if N'/Q(i) is a quater-
nion extension and 3T = T8.

Now one can write N’ = K'({/a) where a € K'\ k?,
thus one can compute explicitly N’ by the following
theorem:

Theorem 3.4. The extension N'/Q(i) satisfies the
conditions of Proposition 3.3 if and only if o can
be written
A
a=m(r+ is)Qiii_ \/\/gj’
with
A€ Q(vV=m), (r*+s)AN & K™

From this, we deduce easily N by computing the
fixed subfields of N’ by any lifting of s, s € G’ =
Gal(N'/Q) of order 2. Since G’ = Z/2Z x Hg, there
are 3 automorphisms in G’ of order 2, but only two
of them can be a lifting of s and the third one has
a square root in G’'. Therefore one can compute
easily the two quaternion subfields of N’. In the
last section we shall give a table of many totally
real and imaginary quaternion extensions with their
quadratic subfields.

Now we restrict our attention to the Artin L-
function L(s,x) associated to the unique character
x of degree 2 of Hg. If we write L(s, x) in terms of
Dedekind zeta functions, we have:

Proposition 3.5. Let K be the quartic subfield of N,
we have:
CN(S) = CK(S)L(Sa X)2 = CK(S)L(N/Kv Xl7 3)7

where X' is the nontrivial character associated to the
quadratic extension N/K.
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From the preceding identity, we deduce that L(s, x)?
is an entire function. Since L(s, x) is meromorphic
then L(s, x) is entire too.

In Theorems 3.6 and 3.7, we give an explicit com-
putation of W(x) for tamely ramified extensions
(those such that 2 is not ramified in N/Q). We
start by defining an invariant Uy of the quaternion
extension N, by setting it to +1 if the ring of in-
tegers Oy of N is a free Z|G]-module, and to —1
otherwise. The Frohlich theorem gives the general
equality:

Theorem 3.6 [Frohlich 1972]. W (y) = Un.

g =
—1

In [Martinet 1971], one can find an explicit criterion
to know whether Oy is a free Z[G]-module or not:

Set
if N is real,

if N is imaginary.

Theorem 3.7. Oy is a free Z[G]-module if and only if

1+di+dy+d
&:sz + l—z 2 % mod 4.

pldn

A look at the functional equation of L(s, x) shows:

Theorem 3.8. If W(x) = +1 then n, is even,
If W(x) = —1 then n, is odd.

and the conjecture on n, can be expressed in the
following way:

Conjecture 3.9. If W(x) = +1 then n, =0,
If W(x) = —1 then n, = 1.

4. COMPUTATION OF n,,

In this section we give an explicit method to com-
pute n, and verify numerically Conjecture 3.9 in
many cases (see Section 6). For that purpose, we
use Weil’s explicit formula [1972], as reformulated by
K. Barner [1981] for ease of computation. One can
adapt this formula to L(N/K,x’',s) and then eval-
uate the sum on the zeros of the Artin L-function
L(s,x) in the explicit formula.

Theorem 4.1. Let F' satisfy F'(0) = 1 and the follow-
ing conditions:

(A) F' is even, continuous and continuously differ-
entiable everywhere except at a finite number of
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points a;, where F(z) and F'(x) have only a dis-
continuity of the first kind, such that F(a;) =
2 (F(a;+0) + F(a;—0)).

(B) There exists a number b > 0 such that F(z) and
F'(z) are O(e=G 10 g5 |z |— oco.

Then the Mellin transform of F,

+oo
P(s) = / F(z)et2)7dg,

[ee]

is holomorphic in every vertical strip —a < o <
1+ a where 0 < a <b, a <1, and the sum > ®(p)
running over the non trivial zeros p = [ + iy of
L(s,x) with | v |< T tends to a limit as T tends to
infinity. This limit is given by

lim P(p)

T—+o00
lyI<T

IHNK/Q
=Inf, — ZNK/Q m/2

—2(In 27 + v + 2In2) — 2eJ(F) + 2I(F),

X' (p)"™F(mIn Ni/q(p))

where
T F(x)
JF) = /0 2 cosh(z/2) az,

[T 1 F(a)
I )_/0 2 sinh(z/2) &

v = 0.57721566 ... is the Euler constant and € s
defined by Theorem 3.6.

4A. The Conditional Case

Now we assume the Generalized Riemann Hypoth-
esis (GRH) for L(s,x) which asserts that all the
nontrivial zeros of L(s,x) lie on the critical line
Res = ;. Now we write Theorem 4.1 for Serre’s
choice F,(z) = e™¥*" (y > 0). The Mellin transform
®(s) of F, is

D) = [ el BT,

and the Fourier transform E, of F, is

Byf) = [T e,

If we assume the GRH for L(s,x), we can write
®,(p) = F,(t) where p = ; + it. For every k > 1,
we denote by t, the positive imaginary part of the

k-th zero of the Artin L-function L(s, x), and ny, its
multiplicity. We have the identity

“+oo 2
k
=n, +2 E nre

k>2

7\/72 IHNK/Qm/2

~ Nk /o(p

+ \/;(lnfx—2(1n27r+’7+21n2)
2 (F,) + 21(F,)).

'(p)™e¥mIn Nic/o(0))?

To compute n,, one needs:
Proposition 4.2. Assuming the GRH, we have

ny < S(y) and ili% S(y) = ny

for all y > 0.

The advantage of Serre’s choice in Weil’s explicit
formula is that the series S(y) converges rapidly to
n, when y — 0. In practice we prove for many
quaternion fields that when W(yx) = 41, we have
n, < S(y) < 2 for some y > 0 and so n, = 0. Sim-
ilarly for W(x) = —1, we can prove the inequality
ny < S(y) < 3 for some y > 0 and so n, = 1.
Actually, using Theorem 3.8, Conjecture 3.9 can be
stated thus:

Proposition 4.3. Under GRH, Conjecture 3.9 holds if
and only if there exists y > 0 such that S(y) < 2

4B. The Unconditional Case

The unconditional bounds of n, are less good than
the GRH ones in Proposition 4.2 because of the re-
quirement that Re®(s) > 0 on the whole critical
strip. By using an argument of Odlyzko [Poitou
1977], this last condition holds when we take in
Theorem 4.1 the function G, (z) = F,(x)/cosh(z/2)
with F,(z) = e %" (y > 0). Thus we obtain the
following bound of n,.

Theorem 4.4. For all y > 0, we have n, < T(y),
where

e v

+oo —yz? -1
T = (2] —4— 4
) (/ cosh(x/2> ””) *
lIINK/Q
1 2
<nfx Zl—I-NK/@

2(In 27 + v + 2In2) — 2eJ(G,) + QI(Gy)>.

'(p)™e¥mIn Nicso(0))?



In practice we check Conjecture 3.9 using this crite-
rion:

Proposition 4.5. Conjecture 3.9 holds if there exists
y > 0 such that T(y) < 2.

To compute S(y) and T'(y), we begin by computing
the integrals I(F,), J(F,), I(G,) and J(G,) to a
high enough precision, we then compute the series
over the prime ideals in the Weil explicit formula by
computing x’(p) and Ng/q(p) for each prime num-
ber p less than some large enough py. Actually the
number field N is defined by a polynomial P(z);
for every prime number p prime to the index of NV,
the decomposition of the ideal (p) into a product of
prime ideals of IV is given by the decomposition of
P(z) modulo p; see [Cohen 1993]. Since N/Q is a
Galois extension, then one needs to compute only
the degree f of the first irreducible polynomial ap-
pearing in the decomposition of P(z) modulo p. The
computations of x'(p) and Nk /q(p) are given in the
proposition below:

Proposition 4.6. Let k; = Q(\/d1), ks = Q(V/d2),
ks = Q(\/d3) be the quadratic subfields of N.

o If f=1 then Ng,g(p) =p and x'(p) = +1.
o If f =4 then Nk)g(p) =p* and X'(p) = —1.
o If f =2 we have two cases:

- If (%) = —1 for exactly one i € {1,2,3}, then
Nijo(p) =p® and X'(p) = +1.

- If (%) = +1 for ezactly one i € {1,2,3}, then
Ni/o(p) =p and X'(p) = —1.

Example 4.7. Let N = Q(v M), where

5++/521 ++/21
2 2

The quaternion field N could be defined by the poly-
nomial P(z) in example 1 of section 6. One can
compute the different terms in 7'(y) for y = 0.04 and
show that the sum over the prime ideals is equal to
—0.33763, J(G,) = 0.89478 and I(G,) = 0.83304.
Thus T'(y) = 0.39377.

M =

When the conductor f, is large, the computation of
S(y) and T'(y) is slower and this is essentially due
to the possible existence of low zeros of the Artin
L-function L(s, x). Actually when the first zeros of
L(s, x) distinct from £ are close to the real axis, one
needs to compute S(y) and T'(y) for smaller positive
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values of y in order to be able to bound S(y) and
T(y) above by 2 (see Propositions 4.3 and 4.5). An
approach to the problem of low zeros of L(s, x) in
terms of the conductor f, is given in the next section.

5. AN UPPER BOUND FOR n, AND LOW ZEROS OF
L(s, x)

We now give estimates on the upper bounds of n,
and the first zero p, = 3 + i 8, of L(s,x) distinct
from % For this purpose, we apply Theorem 4.1
to suitable functions with compact supports. If we
assume the GRH, then one can prove more precise
estimates on n, and ,. Such improvements have
been considered in [Mestre 1986] for L-series of mod-
ular forms.

Theorem 5.1. Under GRH,

1
|By] € ==

d .
an Inlnf,

Proof. We first need an estimate for the sum over
the prime ideals of K in Theorem 4.1. Let F' be
a function with compact support satisfying the hy-
potheses of Theorem 4.1 and let Fr(z) = F'(F). By
using the prime number theorem, one can prove the
following estimate:

Lemma 5.2. The sum over the prime ideals in Theo-
rem 4.1 is bounded by the inequality

D In Nic/0(p)
e Nijo(p)™/?

with C() > 0.

X' (p)™ Fr(mIn Nijg(p))| < Coe™,

We also need an easy lemma:

Lemma 5.3. Define F' by

F(z) = {

Then F satisfies the hypotheses of Theorem 4.1 and

F(u) = <M>2

u

1 - Ja iffel <1,

0 otherwise.

Now if we put Fr(z) = F(%) then Fr(u) = TF(Tw).
Applying Weil’s explicit formula to Fr and using
Lemma 5.2, we obtain the estimate:

n,T < Inf, + Coe"’? + 2(I(Fr) + J(Fr)),
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since I(Fr) and J(Fr) are bounded as T tends to
~+00, replacing T' by 2Inlnf,, we see that

Inf,

Inlnf,’

proving the first inequality in the statement of The-

orem 5.1. To prove the theorem’s second inequality,
we use another even function G with compact sup-
port, defined as follows.

n, <

Lemma 5.4. Let
if0<xz<1,

G(z) =
(=) {0 otherwise.

Then G satisfies the hypotheses of Theorem 4.1 and
2

= (2 2) (2]

We now apply once more Weil’s explicit formula to
Gr(z) = G(x/T) and replace T by v27/|3,|. We
obtain the estimate

(1—x) cos(mzx) + %sin(ww)

%nxT >Inf, —2(In27+~v+21n2)
—2eJ(Gp)+21(Gr)

p,m

Using Lemma 5.2, the above estimate (1) on n, and
the fact that the integrals I(Gr) and J(Gr) are
bounded as T tends to +o0o, we deduce, for some
positive constants A and B:

Inf, T
AT + Be™/? > 1
Inlnf, e nh
so that
1 In(2B)
T> Inln
m1n<2A lnlnfx> B

Thus for sufficiently large f, we have T' > Inlnf,,

and so
1

Inlnf,’
concluding the proof of the theorem. O

16x| <

Corollary 5.5. If we assume the GRH,

lim
oo X T

1
5-
Without assuming the GRH, we have the following
estimate for n,, which is less good than the one in
Theorem 5.1; see [Mestre 1983] for a similar result

in the case of elliptic curves.

Theorem 5.6. n,, < Inf, unconditionally.

Proof. Define the function H; with compact support
by Hr(z) = Fr(z)/cosh(x/2), where Fr is defined
after Lemma 5.3. By using an argument of Odlyzko
[Poitou 1977], one can show that the Mellin trans-
form ®7 of Hr satisfies Re @7 (s) > 0 in the critical
strip. Thus, when we apply Theorem 4.1 to Hr, we
obtain

nx(I)T@)
<Inf, —2(In27 +~v+2In2)
—2eJ(Hy) +2I(Hy)

Since Hr is a decreasing function on [0, +00], one
can show:

Lemma 5.7.
In NK/Q

SR <p>mHT<m1nNK/@<p>>\

Inp
<4 Z m/zHT(mlnp).

pm<eT

Thus, by using the inequality before the lemma, we
obtain

ny®r(3) <Inf, — 2(Indn+y) + 2J(Hr) + 21(Hy)

+4 Z lnp

m<eT

Hr(mlnp).

Now if we put T' = In 3, we obtain

1.072n, <Inf, — 6.216 + 0.523 + 4.648 + 0.683
<Inf, —0.362.
And so we find that n, < Inf,. O

6. COMPUTATIONS OF n,, FOR QUATERNION FIELDS

Table 1 gives our computed data. Each box refers to
one quaternion field N/Q, giving on the top line a
reduced polynomial P(z) (“reduced” meaning that
we have written N = Q[6], choosing for § a minimal
primitive vector of the lattice of integers of IV for the
“twisted” trace form try/q(z%)), and on the bottom
line other related information. The computations
were done using PARI-GP version 2.0.19.
According to [Kwon 1996], the minimum discrim-
inant both in the real and in the imaginary case is
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P(z) and Dy R/T  quad. subfields W (x) yo S(yo) Y T(y)  ny
) 28— 17 —342° 42925+ 3612* — 30523 — 109022 4 13452 — 395

1340095640625 R Q5),Q(v21) +1 0.04 0.00806 0.04 0.393771 0
) 28431525 + 340202 +14883752% +22325625

1340095640625 I QW5),Qw?21) —1 007 1.04505 0.11 1.58039 1
3 28 —205254-139402* — 37822522 + 3404025

74220378765625 R Q5),Q(+v41) -1 0.05 1.00067 0.1 130413 1
A 28 =327 +1422% — 11525 4-66412* +30552° + 15793822 + 1529412 42031361

6011850680015625 I QH5),Q(4l) -1 0.05 1.26425 0.05 2.09134 1
. 28 — 27 — 17825 —5502° + 722524 +444072° + 5592822 — 453922+ 4096

31172897213027361 R  Q(V17),Q(v/33) +1 0.04 0.00222 0.04 031774 0
6 28— 327 4+1062° +3812° + 4142 —84752% +-444972% +1517402 4+ 253168

31172897213027361 I Q(V17),Q(+v/33) —1 0.04 1.19064 0.04 2.05980 1
. 28 =327 —4752° —23862° + 566692* +7322022° + 328044022 + 57881742 +2396941

12187467896636600569 R  Q(v37),Q(v41) -1 0.03 1.03133 0.03 1.75340 1
g 28 — 327 —8472% — 425025 41948052 +23210422° +421830022 — 288272522 — 48031623

388282220975269366201 R QW37),Q(73) -1 0.03 1.00010 0.03 1.35751 1
9 28 — 327 + 185425 41465725 +11347532* + 1538577925 4 3708574422 428617802472 +28470071727

31450859898996818662281 I QW37),QKW73) -1 0.03 1.84217 0.01 2.83822 1
10 28— 3274104220 + 82332 + 28421924 4 4899401 2% 44220969422 + 1799989372 +404059099

987184899627564646089 I QW37),Q(W41) -1 0.03 1.58551 0.03 2.81849 1
1 28 — 27 — 86625 — 268625 +1976172* +10722072% — 8786448122 — 32864208z + 159160192

420386522758923179809 R Q(/17), Q(v/161) +1 0.03 0.19296 0.03 1.13789 0
1 28 =327 — 159125 — 79782° 4+ 7180612* + 81745302 — 290069642 — 433628432z + 235862473

16964214194699233633081 R Q(V37),Q(+v137) -1 0.03 1.00204 0.03 1.64797 1
13 28 — 327 + 347825 4 275052° +44893972* + 5388170323 4297252028222 + 262203445072 + 651061429207

1374101349770637924279561 1  Q(+/37), Q(v/137) —1 0.05 2.24737 0.01 2.88613 1
14 28 —1220+362* —3622+9

12230590464 R  Q(W2),Q(K3) +1 005 0.00002 0.08 0.11665 0
15 28 +122° 4362+ 3622 +9

12230590464 I Q(v2), Q(v3) 0.05 1.000005 0.05 1.05777 <1
16 28— 442543082 — 48422+ 121

29721861554176 R  Q+2),Q(11) +1 0.05 0.01167 0.05 0.36928 0
17 28— 7620 +1748z* — 1299622 +29241

789298907447296 R Q\2),Q((19) +1 0.04 0.04449 0.04 0.66149 0

TABLE 1 (start). For each quaternion field N/Q, we show a reduced polynomial P(x) (see beginning of Section 6),
the discriminant dx, whether N is real or imaginary, two quadratic subfields Q(v/d1) and Q(y/d2) of N —the
third being Q(v/d1d2) —and the values of W(x), yo, S(yo) (Proposition 4.3), y, T'(y) (Proposition 4.5) and n,.
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P(z) and Dy R/T  quad. subfields W(x) o S(yo) Y T(y) Ty
18 28 —6025+8102* — 1800z +900

47775744000000 R  QW5), Q(v6) 0.07  1.00101  0.07 1.13852 <1
19 28 —602°+11702* — 900022 +22500

47775744000000 R Q\5),Q(H6) +1 007 0.09399 007 0.61520 0
50 28 +602% 481024+ 1800224900

47775744000000 I  QW5),Qe) 0.07  1.07405  0.07  1.55366 <1
01 28 4602°+11702*+900022 422500

47775744000000 I Q(V5), Q(V6) 0.08  1.09340 0.07 1.63606 <1
0 28 +1052°%+3780z* + 5512522 4275625

343064484000000 I Q\5),Qw21) +1 005 054966 0.05 1.53349 0
03 28 +2052%+ 13940z 437822522 + 3404025

19000416964000000 I Q(+/5), Q(+/41) 0.05  1.13981  0.03  1.80213 <1

TABLE 1 (continued)

22436 attained exactly in the fields 14 and 15; sim-
ilarly the smallest coincidences between two real or
imaginary fields occur for the discriminant 222563°,
attained exacltly on the four fields 18 to 21. Fields
1 to 13 are tame, the others are not.
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