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We propose a theory to explain random behavior for the digits

in the expansions of fundamental mathematical constants. At

the core of our approach is a general hypothesis concerning the

distribution of the iterates generated by dynamical maps. On

this main hypothesis, one obtains proofs of base-2 normality —

namely bit randomness in a specific technical sense — for a col-

lection of celebrated constants, including �, log 2, �(3), and oth-

ers. Also on the hypothesis, the number �(5) is either rational or

normal to base 2. We indicate a research connection between

our dynamical model and the theory of pseudorandom number

generators.

1. INTRODUCTIONIt is of course a long-standing open question whetherthe digits of � and various other fundamental con-stants are \random" in an appropriate statisticalsense. Informally speaking, we say that a number� is normal to base b if every sequence of k con-secutive digits in the base-b expansion of � appearswith limiting frequency b�k. In other words, if aconstant is normal to base 10, its decimal expansionwould exhibit a \7" one-tenth of the time, the string\37" one one-hundredth of the time, and so on. Itis widely believed that most, if not all, of the \fun-damental" or might we say \natural" irrationals arenot only normal to base 10, but are absolutely nor-mal, meaning they are normal to every integer baseb � 2. By \fundamental" or \natural" constantshere we include �, e, log 2, p2, the golden mean� = (1 + p5)=2, the Riemann zeta function evalu-ation �(3), and a host of others. In regard to alge-braic numbers, one could further conjecture that ev-ery irrational algebraic number is absolutely normal,since there are no known counter-examples. Evensuspected (but not yet proven) irrationals, such as
c
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the Euler constant 
, are generally expected to beabsolutely normal.It is well-known from measure theory that a \ran-dom" real number is absolutely normal with proba-bility one. In spite of this result, not a single fun-damental constant has been shown to be normal tobase b for any b, much less for all bases simultane-ously. Even the weaker assertion that every �nitedigit string appears in the expansion has not beenestablished, to our knowledge, for any fundamentalconstant. We shall mention later some arti�ciallyconstructed, provably normal numbers; yet the sit-uation with respect to fundamental constants hasremained bleak to the present day.We discuss here a linkage between the normalityof certain constants and a certain kind of dynamicalmechanism. In a companion paper, we establish arelationship between the dynamical picture and thetheory of pseudorandom number generators [Baileyand Crandall 2001]. Our present theory is based onthe following general hypothesis:
Hypothesis A. Denote byrn = p(n)=q(n)a rational-polynomial function, p; q 2 Z[X]. As-sume further that 0 � deg p < deg q, with rn non-singular for positive integers n. Choose an inte-ger b � 2 and set x0 = 0. Then the sequencex = (x0; x1; x2; : : : ) determined by the iterationxn = (bxn�1 + rn) mod 1 (1–1)either has a �nite attractor or is equidistributed in[0; 1).We shall precisely de�ne \equidistributed" and \�-nite attractor" shortly, intending for the momentjust to convey the spirit of this core hypothesis.The condition 0 � deg p is simply a convenience,to rule out the zero polynomial (on the mnemonic:deg 0 = �1). Now, there is a striking consequenceof Hypothesis A, namely that digits of the expan-sions of certain constants must be random in thefollowing sense:
Theorem 1.1. On Hypothesis A (that is, assuming itsvalidity), each of the constants �, log 2, and �(3)is normal to base 2, and log 2 is normal to base 3.Furthermore, on the same hypothesis , if �(5) is ir-rational it too is normal to base 2.

The particular set of constants appearing in Theo-rem 1.1 is merely representative, for as we shall see,numerous other constants could also be listed.If even one particular instance of Hypothesis Acould be established, the consequences would be re-markable. For example, if it could be establishedthat the simple iteration given by x0 = 0 andxn = �2xn�1 + 1n� mod 1 (1–2)is equidistributed in [0; 1), then it would follow thatlog 2 is normal to base 2. In a similar vein, if it couldbe established that the iteration given by x0 = 0 and
xn = �16xn�1+ 120n2�89n+16512n4�1024n3+712n2�206n+21�mod 1

(1–3)is equidistributed in [0; 1), it would follow that � isnormal to base 16 (and, as we shall see, it wouldfollow easily that � is also normal to base 2).The algorithmic motivation for our current treat-ment is the recent discovery of a simple algorithmby which one can rapidly calculate individual digitsof certain polylogarithmic constants [Bailey et al.1997]. This BBP algorithm (named after Bailey, P.Borwein and S. Plou�e) has already given rise to asmall computational industry of sorts. For example,the quadrillionth binary digit of �, the billionth bi-nary digit of log 2 and the hundred-millionth binarydigit of �(3) have been found in this fashion [Baileyet al. 1997; Borwein et al. 2000; Broadhurst 1998;Percival 2000]. Our intent here is not to presentnew computational results, but instead to pursuethe theoretical implications of this algorithm.We describe the BBP algorithm by way of exam-ple. We start with the well-known formula
log 2 = 1Xk=1 1k 2k :Now for any n � 1 the fractional part(2n log 2) mod 1gives precisely that part of the expansion of log 2starting at location n + 1 inclusive in the binaryexpansion of log 2. (Location 1 is the �rst binarydigit to the right of the \decimal" point.) We have
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= � nXk=1�2n�k mod kk �mod 1 + 1Xk=n+1 2n�kk �mod 1:

(1–4)We have parsed this last expression explicitly toindicate the algorithm in question: (1) compute eachnumerator of the �rst sum (having k 2 [1; n]) us-ing the well-known binary-ladder algorithm for ex-ponentiation, reducing each intermediate productmodulo k; (2) divide each numerator by its respec-tive k using ordinary 
oating-point arithmetic; (3)sum the terms of the �rst series, discarding any in-teger parts; (4) compute the second sum (typicallyjust a few terms are needed), and (5) add the twosum results, again discarding the integer part. Theresulting fraction, when expressed in binary nota-tion, gives the �rst few binary digits of log 2 begin-ning at position n + 1. High-precision arithmeticsoftware is not required for these operations|ordi-nary 64-bit or 128-bit 
oating-point arithmetic willsu�ce|and very little memory is required. A fewhexadecimal digits of log 2 beginning at the ten bil-lionth position, which were computed using this for-mula, are given in [Bailey et al. 1997].In a similar manner, one can compute arbitraryhexadecimal (or binary) digits of � by means of theformula
� = 1Xn=0 116n � 48n+1 � 28n+4 � 18n+5 � 18n+6� :
This can be done by simply writing this expressionas a sum of four in�nite series and then applying thescheme described above for log 2 to each of these fourseries [Bailey et al. 1997].Our theoretical approach here is to analyze thisprocess of \digit extraction" to study the random-ness of the digits produced. As we shall see, this in-quiry leads into several disparate �elds of inquiry, in-cluding algebraic number theory, chaotic dynamics,ergodic theory, pseudorandom number generation,probability and statistics. Some of these connec-tions are explored in the companion paper [Baileyand Crandall 2001] and in [Lagarias 2001].

2. NOMENCLATURE AND FUNDAMENTALSWe denote by b�c and f�g respectively the usual
oor and fractional-part extractions of a real �. Ingeneral we have � = b�c + f�g, noting that thefractional part is always in [0; 1). We can also sayf�g = � mod 1, which is convenient given our open-ing remarks. We de�ne the norm k�k for � 2 [0; 1)as k�k = min(�; 1��). With this de�nition, k���kmeasures the shortest distance between � and � onthe unit circumference circle in the natural way. Asimple but useful rule that we will use in some of theensuing analysis is what we call the dilated-normrule: if 0 � � � 1=(2 kzk) then, because k�zk is nowbounded above by 1=2, we have k�zk = � kzk.A base-b expansion, say� = 0:�1�2�3 : : :where each �j is an integer in [0; b � 1], is takento be unique for �. When competing expansionsexist, as in decimal 0:1000 : : : = 0:0999 : : :, we takethe variant with trailing zeros. Now consider thefrequency (when it exists) with which a given �nitedigit string (d1d2 : : : dk) appears in �. This is takento be the limit as N !1 of the number of instanceswhere �j = d1, �j+1 = d2, . . . , �j+k�1 = dk (for jranging from 1 to N+1�k), divided by N . We nowintroduce a standard de�nition from the literature[Kuipers and Niederreiter 1974, pp. 69, 71].
Definition 2.1. A real number � is said to be normalto base b if every �nite string of k digits appears inthe base-b expansion of � with well-de�ned limitingfrequency b�k. A number that is normal to everyinteger base b � 2 is said to be absolutely normal.We remarked earlier that almost all numbers are ab-solutely normal. This is intuitively evident, since abase-b expansion of � 2 [0; 1) corresponds to an in�-nite game of 
ipping a fair, b-sided die, and thus weexpect every k-long string of symbols to appear withthe expected frequency b�k, for almost all � (i.e.,with probability one). For our present purposes,it will be useful to also adopt a second, somewhatweaker criterion of digit randomness, namely:
Definition 2.2. We say a number � is digit-dense tobase b if every �nite string of k consecutive base-bdigits appears in the base-b expansion of �.
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This de�nition implies that if � be digit-dense tobase b every �nite string appears not just once butin�nitely often. This follows immediately upon thesimple observation that every �nite string is con-tained in an in�nite number of longer �nite strings.Analogous to the notion of a digit-dense expan-sion is the notion of a dense sequence in [0; 1). Adense sequence visits every nonempty subinterval[c; d) at least once (and hence in�nitely often). Astronger notion is equidistribution, to which we nowturn. For a sequence x = (x0; x1; : : : ) of real num-bers in [0; 1), consider the counting functionC(x; c; d;N) = #�xj 2 [c; d) : j < N	:This C function gives the count of the �rst N el-ements of the sequence x that lie in the interval[c; d). Then the property of equidistribution is thatelements of x lie in subregions of [0; 1) with a fairfrequency, in the following exact sense:
Definition 2.3. A sequence x in [0; 1) is said to beequidistributed if for any 0 � c < d < 1 we havelimN!1 C(x; c; d;N)N = d� c:This de�nition is identical to that of \uniform distri-bution modulo 1", as given in [Kuipers and Nieder-reiter 1974, p. 1].In our development we shall need one (out of sev-eral) existing theorems on equidistribution, namelythe following [Kuipers and Niederreiter 1974, p. 3],where we have added the simple extension that cov-ers the weaker condition of density along with equi-distribution:
Theorem 2.4. Let (xn) be equidistributed (alterna-tively , dense). If a sequence (yn) has the propertythat fyng ! C (constant C) as n ! 1, then thesequence (fxn + yng) is likewise equidistributed (al-ternatively , dense). In particular , if yn ! 0, then(fxn+ yng) is equidistributed (alternatively , dense).There is a simple but beautiful connection betweennormality of a number and equidistribution of rele-vant fractional parts [Kuipers and Niederreiter 1974,p. 70]:
Theorem 2.5. A number � is normal to base b if andonly if the sequence (fbn�g : n = 1; 2; 3; : : : ) is equi-distributed .

Corollaries of these last two theorems can be useful,even amusing. A typically curious side result is this:log 2 is normal to base 2 if and only if the sequence(flogFng) is equidistributed, where Fn = 22n + 1are the celebrated Fermat numbers. This result fol-lows immediately by observing that limn(logFn �2n log 2) = 0.It is straightforward to prove the following result,which will enjoy application to certain speci�c realnumbers:
Theorem 2.6. A number � is digit-dense to base b ifand only if the sequence (fbn�g : n = 1; 2; 3; : : : ) isdense in [0; 1).
Proof. Any interval (r; s) in [0; 1) contains a base-bsubinterval I of the form[0:d0d1 : : : dk�1; d0d1 : : : (dk�1+1));where the dj represent base-b digits and dk�1 < b�1.If one assumes that � is digit-dense, then fbn�g vis-its the interval I at least once, and thus visits (r; s)at least once. Conversely, if one assumes that thesequence (fbn�g) is dense in [0; 1), then any base-bstring appears at least once, so that � is digit-denseto base b. �The theory of normal numbers is deep, and has along history; we mention here just one of the deeperresults relevant to our present treatment [Kuipersand Niederreiter 1974, p. 72]:
Theorem 2.7. Assume � is normal to base b, anddenote by r a nonzero rational number . Then r� isnormal to base b; moreover � is also normal to any(integer) base c = br.The �rst part of this theorem tells us that if we es-tablish the normality of say (r=s)�(5) for integersr; s, then �(5) is automatically normal. The sec-ond part tells us, for example, that if a number benormal to base 16 (i.e., every hexadecimal stringappears with proper frequency), then the numberis also normal to base 2, or for that matter to anypower-of-two base. The wording of this latter partis critical: there exist numbers normal to some baseb but not to some other base a that is not a ratio-nal power of b [Cassels 1959; Kuipers and Nieder-reiter 1974]. For example, the standard Cantor sethas members that are normal to base 2, yet none ofits members is normal to base 3. Moreover, there
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are results on the class of \absolutely abnormal"numbers, meaning numbers not normal to any base.Any rational number is of this class, of course, yetthe class is uncountable, and there exist proven,constructive examples of absolutely abnormal irra-tionals [Martin 2000].It is a celebrated theorem of Weyl that � is ir-rational if and only if the sequence (fn�g : n =1; 2; 3; : : : ) is equidistributed [Kuipers and Niederre-iter 1974, p. 8]. Note, however, that in the presenttreatment we are not concentrating on multipliersn; rather we need the much sparser multiplier setof powers bn in order to analyze base-b digits perse. For reader convenience we summarize thus: thesequence (fbn�g) is dense (alternatively, equidistrib-uted) as � is respectively digit-dense to base b (al-ternatively, normal to base b).We have mentioned the abject paucity of normal-ity proofs for fundamental constants. The interest-ing but arti�cial Champernowne constant, which isthe numberC10 = 0:123456789101112131415 : : :obtained by concatenation of the positive integers, isknown to be normal to base 10, but existing proofs ofeven this are nontrivial [Champernowne 1933; Niven1956]. One can, of course, construct a binary orternary equivalent of this constant, by concatenat-ing digits in such bases. In a separate treatise wetouch upon the theory of continued fractions, not-ing for the moment that the Champernowne con-stant has some gargantuan elements in its simplecontinued fraction, as can be seen by simple numer-ical experiments. Another example of a concoctionknown to be normal to base 10 is the Copeland{Erd}os number 0:23571113171923 : : : [Copeland andErd}os 1946], in which the primes are concatenated;this concatenation game can be generalized yet fur-ther to more general integer sequences for the digitconstruction.
Theorem 2.8. If � be normal to base b then � is digit-dense to base b. If � be digit-dense to some base bthen � is irrational .
Proof. Normality clearly implies the digit-denseness,by 2.1. If one assumes that � is digit-dense to somebase b, then � cannot be rational, since it is well-known that the base-b expansion of any rational

number repeats with a �nite period after some initialdigit string. This peridocity rules out the existenceof arbitrary strings. �Now we turn to some preliminary dynamical notionsfor the iterates involved in Hypothesis A. First o� weowe the reader a de�nition of \�nite attractor," anda related notion which we call \periodic attractor":
Definition 2.9. A sequence x = (xn) in [0; 1) is saidto have a �nite attractor W = (w0; w1; : : : ; wP�1) iffor any " > 0 there is some K = K(") such thatfor all k � 0, we have kxK+k � wt(k)k < ", for somefunction t(k), with 0 � t(k) < P .
Definition 2.10. A sequence x = (xn) in [0; 1) is saidto have a periodic attractorW = (w0; w1; : : : ; wP�1)if for any " > 0 there is some K = K(") such thatfor any k � 0, we have kxK+k � wkmodPk < ".Two useful results along these lines are:
Theorem 2.11. Assume a sequence (yn) has the prop-erty that yn ! C (with C constant) as n ! 1.Then a sequence (xn) in [0; 1) has a �nite attrac-tor (alternatively , a periodic attractor) if and onlyif (fxn + yng) does .
Theorem 2.12. The sequence (xn), as de�ned for Hy-pothesis A, has in�nitely many distinct elements ;thus this set of distinct elements has at least onelimit point .
Proof. Theorem 2.11 follows immediately from the"-restriction in De�nitions 2.9 and 2.10.For Theorem 2.12, Consider the set D of all pos-sible di�erences kxn � bxn�1k. If there are �nitelymany distinct elements in the full sequence (xn),then D is a �nite set so must have a least element.But the perturbation term rn is arbitrarily close (butnot equal) to zero for su�ciently large n, which is acontradiction. Thus (xn) has in�nitely many dis-tinct elements, and it follows by elementary realanalysis that these distinct elements have at leastone limit point. �We now show that in certain cases of interest here,the two notions of attractor set introduced abovecoincide:
Theorem 2.13. Let � be real and assume an integerbase b � 2. If the sequence x = (fbn�g) has a �nite
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attractor W , then W is a periodic attactor , and thestructure of the attractor W is necessarilyW = (w0; fbw0g; fb2w0g; : : : ; fbP�1w0g);for some period P . Moreover each wi 2 W is ratio-nal .
Proof. Let W = fw0; w1; : : : ; wP�1g be the �nite at-tractor for x. Let d = min0�i;j<P (kwi � wjk), andchoose " < d4b:Let W" be the set of all z in [0; 1) such that kz �wik < " for some 0 � i < P . Then we know thatthere is some K 0(") such that for all k > K 0 we havexk 2 W". Let K be the �rst k > K 0, such thatkxk � w0k < ". ThenkxK+1 � bw0k = kbxK � bw0k = bkxK � w0k< b" < d=4;where the second equality follows from the dilated-norm rule enunciated at the start of this section.It follows that xK+1 is within b" of fbw0g, and sim-ilarly xK+k+1 is within b" of fbw0g whenever xK+kis within " of w0, which must occur in�nitely often.Since there can be at most one element of the at-tractor set W in the region of size d=4 about fbw0g,and since the choice of " above was arbitrary, weconclude that bw0 must be the element ofW in thatregion. We can for notational convenience assumethat w1 = fbw0g. Then kxK+1 � w1k < ", and theargument can be repeated to show that xK+2 is closeto w2 = fb2w0g, etc., and �nally that xK+P�1 is closeto wP�1 = fbP�1w0g. It then follows that the mem-ber of W which xK+P is close to must be w0, sinceotherwise the " region around w0 would never bevisited again by the x sequence and thus w0 couldnot be a member of the attractor set. ThereforeW = (w0; fbw0g; : : : ; fbP�1w0g), and W is a peri-odic attractor for the x sequence. Rationality of theattractor points is demonstrated by noting the peri-odicity condition w0 = fbPw0g, which implies thatfor some integer m we have w0 = m=(bP � 1), andsimilarly for the other wi 2W . �
Theorem 2.14. If the sequence (xn) as de�ned for Hy-pothesis A has a �nite attractor W , then W is aperiodic attractor , and each element of W is ratio-nal .

Proof. Here the sequence x is given by x0 = 0, andxn = bxn�1 + rn, with rn ! 0 (since deg p < deg q).Let W = fw0; w1; : : : ; wP�1g be the �nite attractorfor x. Let d = min0�i;j<P (kwi � wjk), and choose" < d=(4b + 4). Let W" be the set of all z in [0; 1)such that kz � wik < " for some 0 � i < P . Thenwe know that there is some K 0(") such that for allk > K 0 we have xk 2 W" and jrkj < ". Let K bethe �rst k > K 0, such that kxk � w0k < ". We thenhave (again we use the dilated-norm rule from thestart of the present section)kxK+1 � bw0k = kbxK + rK+1 � bw0k� bkxK � w0k+ " < (b+ 1)" < d=4:The remainder of the proof of this result follows thesecond paragraph of the proof of Theorem 2.13. �Now we are prepared to establish one �nal, impor-tant result for this stage of the analysis:
Theorem 2.15. The sequence (fbn�g) has a �nite at-tractor if and only if � is rational .
Proof. Assume that the sequence (fbn�g) has a �niteattractor. By Theorem 2.13 it then has a periodicattractor. In De�nition 2.10 let K be the index cor-responding to " = 1=(4b), and set h = jxK � w0j.Suppose h > 0. Then let m = blogb("=h)c, and notethat bmh < " < bm+1h < b" < 1=4. Thus we canwrite (once again using the dilated-norm rule)kxK+m+1 � wm+1modP k = kbm+1xK � bm+1w0k= bm+1kxK � w0k= bm+1h > ":But this contradicts De�nition 2.10. Thus we con-clude that h = 0, so that xK+k = wkmodP for all k �0. In other words, after at most K initial digits, thebase-b expansion of � repeats with period P , so that� is rational. As for the converse, � = p=q rationalimplies the sequence (bnp=q) = (((pbn) mod q)=q) isperiodic, having in fact the period 1 for � = 0 and,for p=q in lowest terms, the period of the powers ofb modulo q. �
3. THE DYNAMICAL PICTUREBefore giving a proof for Theorem 1.1, we prove:
Theorem 3.1. Given p; q 2 Z[X], with q having nopositive integer zeros and 0 � deg p < deg q, and
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given the integer b � 2, de�ne a real number � viaa generalized polylogarithm series� = 1Xk=1 1bk p(k)q(k) :Then � is rational if and only if the sequence (xn),where xn = �bxn�1 + p(n)q(n)� mod 1has a �nite (alternatively , periodic) attractor .
Proof. Theorem 2.15 we know that the sequence(fbn�g) has a periodic attractor if and only if � isrational. Following the BBP strategy, we can writefbn�g = � nXk=1 bn�kp(k)q(k) + 1Xk=n+1 bn�kp(k)q(k) � mod 1= (xn + tn) mod 1;where x is de�ned by x0 = 0 and the recursionxn = bxn�1 + p(n)q(n) ;with the \tail" sequence t given bytn = 1Xk=1 1bk p(k + n)q(k + n) :Provided that deg p < deg q as in Hypothesis A,given any " there is some n such that����p(k + n)q(k + n) ���� < "for all k � 1. For such n, we havejtnj < "Xk�1 b�k = "=(b� 1) � ":
Thus tn converges to zero as n ! 1. Hence itfollows from Theorem 2.11 that (xn) has a periodicattractor if and only if � is rational. �Theorem 3.1 does not depend on Hypothesis A; wemerely use the stated conditions of Hypothesis A inthe exposition.
Proof of Theorem 1.1. The constants �, log 2 and�(3) are known to be irrational. An in�nite seriesformula of the form required in Theorem 3.1 existsfor each of them (see equations (5{1){(5{4)). Theconclusions of Theorem 1.1 (assuming HypothesisA) follow immediately. �

Further, as we will see in the next section, the con-clusions of Theorem 1.1 apply to quite a few othergeneralized polylogarithmic constants.We now lay out some preliminary observations onthe kinds of chaotic dynamical maps under discus-sion. Equation (1{2) (see also (5{1)) gives the se-quence x = (xn) for log 2: x0 = 0 andxn = 2xn�1 + 1n:The �rst few iterates are�0; 0; 12 ; 13 ; 1112 ; 130 ; 730 ; 64105 ; 289840 ; : : :�:We remark that these numbers are precisely the (ra-tional) coe�cients in the Taylor expansion ofg(t) = � log(1� t)1� 2t ;reduced modulo 1. However, this observation evi-dently brings nothing new. Similarly, the dynam-ical log 2 iteration can be modeled in terms of a\matrix-factorial" system. In fact, if we decomposexn = fn=gn then the iteration takes the formn! �fngn � = � 2n 10 n �! � 01 �where the matrix-factorial is simply the left-rightproduct of matrices with internal parameter n run-ning down to 1, as with integer factorials. Though atheory of matrix-factorials might bring some insight,such algebra may merely be a symbolic reformula-tion.Suppose one computes the binary sequence yn =b2xnc, where (xn) is the sequence associated withlog 2 (see above). Assuming Hypothesis A, Theo-rem 1.1 tells us, in e�ect, that (yn) eventually agreesquite well with the true sequence of binary digits oflog 2|so much so that properties such as densityand equidistribution, if possessed by one sequence,are possessed by the other. In computations thatwe have done, we have found that the sequence (yn)disagrees with 15 of the �rst 200 binary digits oflog 2, but in only one position over the range 5000to 8000.For the constant �, the associated sequence isgiven by x0 = 0 and xn as in (1{3); see also equa-tion (5{2). As with log 2, one can compute the hex-adecimal digit sequence yn = b16xnc. When thisis done, a remarkable phenomenon is observed: the
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sequence (yn) appears to perfectly (not just approx-imately) produce the hexadecimal digits of �. Wehave computed over 100,000 hexadecimal digits us-ing this recursion, and have found no discrepancieswith the true hexadecimal digits of �.
Conjecture 3.1. The sequence (b16xnc), where (xn) isthe sequence of iterates in the above dynamical mapfor �, yields the correct hexadecimal expansion. Inother words , the ignored tail terms never change adigit .Evidently this phenomenon arises from the fact thatin the sequence here associated with �, the perturba-tion term rn is summable, whereas the correspond-ing expression for log 2, namely rn = 1=n, is notsummable. In particular, the term tn of the tail se-quence for � is given by1Xk=n+1 120k2 � 89k + 1616k�n(512k4 � 1024k3 + 712k2 � 206k + 21) ;which is approximately equal to the �rst summand(for k = n+ 1); we have1Xn=1 tn � 0:01579 : : : :
This �gure (multiplied by 16) can be thought of asan \expected value" of the total number of base-16digit errors likely to be observed in the recursive se-quence for �. The small value indicates it is unlikelythat any carries or other errors will be observed.The comparable �gure for log 2 is in�nite, indicat-ing that discrepancies can be expected to appearinde�nitely.
4. REMARKS ON HYPOTHESIS ANow we turn to the question: \what motivates Hy-pothesis A in its particular form?" One may wonderto what extent the conditions of the hypothesis, andperforce Theorem 1.1, can be relaxed. For exam-ple, Hypothesis A allows only rational iterates (xn).Consider again the dynamical sequence associatedwith log 2, namely the sequence given by x0 = 0,perturbation rn = 1=n, and recursionxn = 2xn�1 + 1n

(see equations (1{1) and (5{1)). Now other rationalchoices of x0 may well result in an equidistributed se-quence (xn). However, if one starts with x0 set equalto the irrational number 1� log 2 = 0:3068 : : :, thenthe sequence (xn) converges to the single limit pointzero, so that the full sequence (xn) is in this case noteven dense, much less equidistributed. This fact un-derscores the essentially chaotic nature of recursionsof this form|an extreme sensitivity to initial con-ditions is de�nitely present.Along such lines, suppose that the class of per-turbation terms rn in Hypothesis A were enlargedto include expressions such as rn = n=2n2�n, whichis not, of course, a rational-polynomial function. Itturns out that in this case the associated constant,namely � = 1Xn=1 n2n2 ;is digit-dense to base 2 and hence irrational, yet notnormal to base 2. This and some more general con-stants of the form PP (n)=2Q(n) with P;Q polyno-mial and 0 < degP < degQ, are discussed in ourseparate paper [Bailey and Crandall 2001].One might guess that it is the very fact of rapiddecay in rn = n=2n2�n that causes a nonequidistrib-uted sequence of dynamical iterates. But this line ofthought is imperfect. Rapid decay can be expected(it is di�cult to be rigorous here) to allow, in manycases, equidistribution of the iterates. One attrac-tive example isxn = 4xn�1 + 1(2n)! �4n+ 14n+ 2� ;whose equidistribution mod 1 would imply the base-4 normality of the transcendental 1=pe; while analgebraic constant arises from the iteratesxn = 4xn�1 + (2n� 3)!!n! ;whose equidistribution mod 1 would establish base-4 normality of the constant 1 � 1=p2 and hencethat of p2 itself (by Theorem 2.5, � normal impliesthat each of �� � 1 is normal). Given such exam-ples of rapidly decaying perturbations, it is perhapsamusing that, evidently, one still cannot attempt toassociate very rapidly decaying perturbation func-tions with normal numbers. Some of the (perhaps
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likely to be) abnormal numbers described in [Martin2000], such as the Pomerance number
P = 1Xn=1 1n!n!can of course be generated on the basis of extremelyrapidly decaying perturbation functions.Again on the subject of the decay rate of pertur-bation, consider that the binary ChampernowneC2 = 0:11011100101110111 : : : 2;which is known to enjoy base-2 normality, can bewritten in the intriguing form

C2 = 1Xn=1 12n rn = 1Xn=1 12n n2f(n)where the indicated exponent is
f(n) = nXk=1blog2 kc:Thus the decay rate of the perturbation rn is slightlyfaster than exponential, showing that at least this(admittedly arti�cial) constant C2 has the normal-ity property together with a decay more rapid thanpolynomial.Thus the decay rate of the dynamical perturba-tion function rn seems to be somewhat irrelevant.Still, if we could establish some results in regard tothe character of dynamical sequences for certain per-turbation functions outside the class of HypothesisA, a beautiful vista could emerge. As just one ex-ample of an interesting departure from HypothesisA, said departure involving a slowly decaying per-turbation function, consider the following expansionfor the Euler constant [Beeler et al. 1972, item 120,p. 55]:


 � 12 = 1Xk=1 12k+1��1 + k�1Xj=0 � 2k�j + jj ��1�:
Here the relevant perturbation function is rk =(1=2)(�1+P)k and exhibits a slow decay (evidently:rn � 1=pn). Needless to say, any results on the dis-tribution of the corresponding dynamical iterateswould have application to the study of the still-mysterious 
.

5. GENERALIZED POLYLOGARITHM FORMSWe now discuss some speci�c examples of interestingconstants belonging to the class of numbers relevantto Hypothesis A.The BBP algorithm for resolving isolated digits ofa constant works for constants de�ned by what couldbe called generalized polylogarithm forms. It turnsout that the forms of interest can all be describedas superpositions of the classical Lerch{Hurwitz zetafunction, itself de�ned as
L(s; z; �) = 1Xn=0 zn(n+ �)s ;A special instance is the standard polylogarithm Lisde�ned by

Lis(z) = 1Xn=1 znns = zL(s; z; 1);
for which a considerable literature has sprung overthe years, notably in regard to integer indices s. Tounify our approach to generalized polylogarithms,we next cite three expansion forms, each of whichhas appeared in the literature. The \rational-poly-nomial" or R-form is the generalized polylogarithmvalue R(b; p=q) = 1Xm=0 p(m)q(m) 1bmfor polynomials p; q. The notation R0(b; p=q) will beused to denote this expression with the summationstarting at m = 1. (Note that R0 is the entity that�gures naturally into Theorem 3.1 and accordinglyinto the proof of Theorem 1.1.) Then there is whatwe shall call a \periodic" or P -form,

P (s; b; d; A) = 1Xn=0 1bn dXc=1 Ac(dn+ c)s ;where A = (Ac) is a �nite sequence of d elements.A third form is what we shall call the \Broadhurst"or B-form [Broadhurst 1998]:
B(s; b; �; �a) = 1Xn=1 1bb(n+1)�c anns ;where �a = (an) is an in�nite periodic sequence and� is positive real.
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It is evident that these functions have at leastsome interrelations; for example when s is an integerwe haveLis�1b� = R0(b; 1=ns) = 1bR(b; 1=(n+ 1)s)= 1bP (s; b; 1; (1)) = bB(s; b; 1; (1));where here and elsewhere (a1; a2; : : : ; aP ) denotes aperiodic sequence with indicated pattern. However,it is an important observation with respect to ourdynamical model that the R;P;B forms are well-connected even for very general parameters, in thefollowing manner:� We have in general
R�b; p(n)q(n)� = bR0�b; p(n� 1)q(n� 1)�:� A P -form can often be converted to an R-form.In particular, when s is a positive integer andthe A sequence is nonvanishing, one can combinefractions in the P de�nition to produce a suitablerational-polynomial multiplier p=q in the R de�-nition and this procedure gives rise to an admis-sible perturbation rn = p(n)=q(n) for HypothesisA.� Conversely, for p; q 2 Z[X] one can often spliteasily into partial fractions, to arrive at a P -form.Thus in many circumstances of interest P and Rare interchangeable forms.� When � = e=f is rational the B-form can be castas a P -form, via the basic relation

B(s; b; �; �a) = 1Xn=0 1bne nXg=1 anf+g(nf + g)s bb(g+1)e=fc :� The connection back to the Lerch{Hurwitz func-tion is best seen via the P -form; in fact,
P (s; b; d; A) = d�s dXc=1 AcL�s; 1b ; cd�;and this relation embodies the superposition ef-fect to which we have alluded.We now establish a compendium of generalizedpolylogarithm values, with a view to application of

Hypothesis A. We have, as mentioned in Section 1,the classical expansion of log 2 = Li1(1=2):
log 2 = 1Xn=1 1n2n = R0(2; 1=n) (5–1)

With some simple algebraic manipulations, sim-ilar base 2 series, suitable for this analysis, can begiven for log 3, log 5, log 7, log 11, log 31 and otherlogarithms [Bailey et al. 1997]. Less trivial but wellknown higher-order polylogarithm evaluations in-clude �2 � 6 log2 2 = 12R0(2; 1=n2);�2�2 log 2 + 4 log3 2 + 21�(3) = 24R0(2; 1=n3):One of the historical driving relations for the orig-inal BBP algorithm development was the following[Bailey et al. 1997], for which we have intentionallywritten out some conversion steps to exemplify onceagain the interconnection of forms:� = 8B�1; 2; 12 ; (1; 0; 0;�1;�1;�1; 0; 0)�= 8 1Xn=1 1n 12b(n+1)=2c (1; 0; 0;�1;�1;�1; 0; 0)= 1Xn=0 116n � 48n+1 � 28n+4 � 18n+5 � 18n+6�= P �1; 16; 8; (4; 0; 0;�2;�1;�1; 0; 0)�= R(16; p=q); (5–2)with the rational polynomial here de�ned asp(n)q(n) = 47 + 151n+ 120n215 + 194n+ 712n2 + 1024n3 + 512n4 :The sequence for � given as (1{3) is obtained viathe above translation rule for converting R! R0.Moreover, this simple, base-16 prescription for �is not unique|one also has the following equality,�rst discovered by Ferguson and Hales [1997] andindependently by Adamchik and Wagon [1997]:� = 4B�1; 2; 12 ; (1; 1; 1; 0;�1;�1;�1; 0)�This formula may be written in the P -form notationas � = 14P �1; 16; 8; (8; 8; 4; 0;�2;�2;�1; 0)�:
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Actually, various expansions for � arise from thefollowing formal identity, valid for t 2 (0; �) [Cran-dall 1996]: �2 � t = 1Xn=1 cosn tsin(nt)n :
One may use rational multiples of � such as t = �=3to achieve expressions such as� = 2p27B(1; 2; 1; (1; 1; 0;�1;�1; 0))= p27R(64; p=q);where now the rational polynomial isp(n)q(n) = 193+1188n+2097n2+1134n3320+3744n+14112n2+20736n3+10368n4 :This t = �=3 value thus yields a BBP scheme forextraction of individual base-64 digits; and perforce,includes �p3 in the galaxy of normal numbers un-der Hypothesis A. The use of t = �=4 gives a pre-vious expansion of this section. The choice t = �=5gives a peculiar expansion. Using the exact relationcos(�=5) = �=2 with � = (1 + p5)=2 the goldenmean of antiquity, we �nd� = 55=43p� 1Xn=1 1n ��2�n(1; � ; � ; 1; 0;�1;�� ;�� ;�1; 0):Fascinating as this relation may be, it falls intothe category of an irrational-base expansion (i.e., theBBP base would be 2=� = 1:23606 : : :), and applica-tions if any are unclear. Similarly, choosing t = �=6results in a base-43 expansion, which likewise is ofdubious bene�t.The more peculiar base expansions point to theopen question of whether a BBP implementation for� can be performed in the culturally important base10. The best we can seem to do in this regard wasuncovered during the present work, and runs as fol-lows. Choosing parameter t = cos�1(1=p20) onecan derive�2 = sin�1 910 +p19 1Xn=1Dn�1 1n10n ;with initial coe�cients D0 = D1 = 1, and the restdetermined via the recurrence Dn+1 = Dn � 5Dn�1.It is intriguing that a variant of the original BBPalgorithm can be fashioned on the idea that the Dncomprise a Lucas sequence, and as is known, evalua-tions of sequence elements mod n can be e�ected via

exponential-ladder methods. Incidentally, there areother expansions that do involve the decimal basein a simpler fashion. One islog 910 = � 1Xn=1 1n10n ;which admits straightforward computation of iso-lated decimal digits [Bailey et al. 1997]. Thus, onHypothesis A, log 910 is normal to base 10, since itis known to be irrational. More exotic base-10 rela-tions includelog 1111111111387420489 =10�8Xn=0 11010n� 10810n+1+ 10710n+2+� � �+ 110n+9�;which we found during the course of the present re-search, as explained later.In regard to � expansions, it is also known that�2 = 32B(2; 2; 12 ; (1;�1;�1;�2;�1;�1; 1; 0));and �2 = 98P (2; 16; 6; (16;�24;�8;�6; 1; 0));and thus one may address �2 itself within the theory.We should add that a base 3 series is known for �2,due to Broadhurst [1999]:�2 = 227P �2; 729; 12;(243;�405;�81;�27;�72;�9;�9;�5; 1)�:Similar high-order generalizations can be given forlog2 2 and for the Catalan constant G, as inG� 18� log 2 = B�2; 2; 12 ; (1; 1; 1; 0;�1;�1;�1; 0)�:Broadhurst [1998] also developed forms for �(3) and�(5), for example�(3) = 487 B�3; 2; 12 ; (1;�7;�1; 10;�1;�7; 1; 0)�+ 327 B�3; 2; 32 ; (1; 1;�1;�2;�1; 1; 1; 0)�:However, recall the convenient result that any su-perposition of B functions (with appropriate, ratio-nal \�" parameters and integer power arguments s)can be cast as a single R function. With this in mindwe achieve, after suitable symbolic manipulation, abase-4096 expansion�(3) = R(4096; p=q); (5–3)where the speci�c rational function is de�ned by theformidable expression



186 Experimental Mathematics, Vol. 10 (2001), No. 27p(m)8q(m) = 3(1+24m)3� 21(2+24m)3+ 12(3+24m)3+ 15(4+24m)3� 34(5+24m)3+ 32(6+24m)3+ 38(7+24m)3� 32(9+24m)3� 2116(10+24m)3� 332(11+24m)3� 34(12+24m)3� 364(13+24m)3� 2164(14+24m)3� 316(15+24m)3+ 3256(17+24m)3+ 3128(18+24m)3� 3512(19+24m)3+ 15256(20+24m)3+ 3128(21+24m)3� 211024(22+24m)3+ 32048(23+24m)3 :For �(5) one ends up working with yet a larger base (b = 260):�(5) = 1843262651B(5; 2; 12 ; (31;�1614;�31;�6212;�31;�1614; 31; 74552))+ 1433662651B(5; 2; 32 ; (173; 284;�173;�457;�173; 284; 173;�111))� 151142462651 B(5; 2; 52 ; (1; 0;�1;�1;�1; 0; 1; 1))= R(260; p=q); (5–4)for a certain rational perturbation p; q with deg p = 590 and deg q = 595. Nevertheless these machinationsreveal that �(3) and �(5) can be written in terms of R-function values appropriate to Hypothesis A.No eventually periodic sequence can be uniformly distributed mod 1, so this case must be treated sep-arately in Hypothesis A. So one might ask under what conditions, if any, on p(n), q(n), and b � 2 isP p(n)=q(n)b�n rational? We now describe two di�erent classes of generalized series that turn out to berational.The �rst case can be called the \telescoping" phenomenon. For example, any sum of the form1Xn=1 1bn �bmn � 1n+m� ;
where m is a �xed positive integer, has a rational value due to elementary telescoping. For such sums,the corresponding dynamical iterations of Hypothesis A, with perturbation function p(n)=q(n) = (bm(n +m)�n)=(n(n+m)), result in a periodic attractor. One could fashion a theory in which telescoping amountedto the formal relation 0 = IC b�z p(z)q(z) dz;where C is a contour starting at +1 + i, circling the origin counterclockwise, and ending at +1 � i.Unfortunately, this kind of formalism is only e�ective for telescoping per se. There is a di�erent kindphenomenon that yields rational R-forms.This second, and more profound class of exceptions we call the \Ferguson anomalies," involving a fasci-nating and evidently rare phenomenon. These anomalies are also known as \Zagier zeros," which involvepolylogarithmic ladders [Broadhurst 2000]. We only know of a few genuinely di�erent examples (note thatmere translation of indices can turn one example, say a zero sum, into a rational sum giving nothing new).Here are three, where we write out the explicit partial fraction decomposition for the �rst example only:0 = P (1; 16; 8; (�8; 8; 4; 0; 8; 2;�1; 0))= 1Xn=0 116n � �88n+ 1 + 88n+ 2 + 48n+ 3 + 88n+ 5 + 28n+ 6 � 18n+ 7� ;0 = P (1; 64; 6; (16;�24;�8;�6; 1; 0));0 = P �1; 4096; 24; (0; 0; 0; 0;�256; 256; 128; 0; 128;�128;�64;�64; 0;�16; 0; 24; 4;�4;�2;�2;�2;�3; 1; 0)�:
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David Broadhurst [2000] has enumerated severalother anomalies of this type, some involving base 3.The iterates for the above anomalies, with theirrational polynomials as exhibited, are rapidly at-tracted to the single limit point zero. If one triv-ially translates such anomalous sums (for exampleby leaving o� the leading term of the �rst case above,which results in the sum 97=105) then the dynami-cal iterates will become pseudoperiodic in the longrun (in this example, the attractor set has 12 points,since 2 has order 12 modulo 105). In summary, un-der Hypothesis A, our generalized polylogarithmicconstants tend to be either normal or rational, thelatter instance covering the telescoping and Fergu-son anomalies.During the course of this work, and due mainly totheoretical attempts to resolve the Ferguson anoma-lies, we developed a procedure for analyzing cer-tain generalized polylogarithms. Some of our resultsecho formulae found in the original BBP-algorithmwork [Bailey et al. 1997] but tend to lead one intodi�erent research directions, for example into sym-bolic as opposed to numerical processing. To conveyan idea of the kind of new relation we have in mind,we give some examples:
tan�1 12 = 18 1Xn=0 16�n� 44n+ 1 � 14n+ 3�;which is not especially profound| it is the way thiswas derived that may be of interest. Then we have
log 2 = 227 1Xn=0 81�n� 94n+ 1 + 14n+ 3�;which conveniently enough will establish, on Hy-pothesis A, that log 2 is normal to base 3. Alter-natively, such a base-3 result can be gleaned fromthe simple formula

log 2 = 6 1Xn=1 19n(2n� 1) :These relatively simple new examples all arose inour work not from PSLQ numerical experiments,but from a certain form for a speci�c polylogarith-mic construction. First one obtains a closed form,involving base b and any positive integers d; c, for atypical component of the P -form:

1Xn=0 1bn 1dn+ c= �1d bc=d d�1Xa=0 e�2�iac=d log�1� 1b1=d e2�ia=d�;which we call closed because the a sum is �nite. Butit is not the derivation (as foreshadowed in [Cran-dall 1996]) of this result that presents di�culty. Itis what we do with this closed form that is the chal-lenging epistemological issue. One success achievedby symbolic processing is the formula1Xn=0 1b3n� b3n+ 1 + 13n+ 2� = 13 b2 log b2 + b+ 1b2 � 2b+ 1 ;which di�ers from most other formulae thus far, inthat arbitrary bases b are here involved. Under Hy-pothesis A, every style of logarithm on the right forbase b � 2 is normal to base b. Our procedure formoving from the �nite, logarithmic sum to such re-sults involved symbolic processing in the followingway. Since the a sum above is patently real, one maysplit everything into real, imaginary parts and dis-card the latter. Then one may exploit exact trigono-metric evaluations to arrive at new relations. Someselected examples of what this symbolic procedurecan uncover are the following. For the peculiar baseb = 55 we haveP �1; 55; 5; (0; 5; 1; 0; 0)� = 1Xn=0 155n� 55n+2 + 15n+3�= 252 log� 781256�57� 5p557 + 5p5�p5�:This dampens the hope that a purely experimen-tal mathematics approach (such as the use of PSLQ-based numerics: see [Ferguson et al. 1999]) will re-solve any polylogarithm form; indeed, to discoverthe above example one would need to have in one'sbasis of possible terms not only quadratic surds ascoe�cients but also logarithms of such surds. Bycertain manipulations on the c-index of the logarith-mic a-sum one can establish other relations such asthe following, valid for integer m � 2:P �1;mm;m; (mm�2;mm�3; : : : ;m; 1; 0)�= 1Xn=0 1mmn m�1Xc=1 mm�1�cnm+ c = mm�2 log� mm � 1(m� 1)m�:
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It is this formula that yields, for m = 10, ouraforementioned expansion for log((1010�1)=910). Byadjusting the weights of the partial fraction compo-nents, one may also arrive at some obscure tan�1evaluations. We have given one of the simpler cases(for tan�1(1=2)); yet one can also deriveP �1; 33; 3; (3;�1; 0)� = 1Xn=0 127n � 33n+1� 13n+2�= 6p3 tan�1 p37 ;as well as tan�1 forms such as a curious constructthat involves quartic irrationals:P �1; 55; 5; (53;�52; 5;�1; 0)�= 2 � 513=4� 1p� tan�1�51=4p� 233� 329p55938 �
+p� tan�1�51=4p� 939 + 281p55938 ��:Whatever be the implications of such machina-tions, this construct is, on Hypothesis A, either ra-tional (unlikely) or normal to base 5.

6. CONNECTION WITH PSEUDORANDOM NUMBER
GENERATORSWe revisit once again what has been our canonicalconstant for present purposes, namely � = log 2. Asin equation (1{4), we can writef2n log 2g= � 1Xk=1 2n�kk �mod 1

= � nXk=1�2n�k mod kk �mod 1 + 1Xk=n+1 2n�kk � mod 1= (xn + tn) mod 1;where xn and tn denote the two sums as shown.Recall that our proof of Theorem 3.1 (and perforce,Theorem 1.1) depends on the fact that tail termssuch as tn vanish as n ! 1. In this light, thesequence x can be considered to be a pseudorandomnumber generator (PRNG), with values in [0; 1):xn = �2n�1 mod 11 + 2n�2 mod 22+ 2n�3 mod 33 + � � �+ 1n� mod 1:

(The �rst term vanishes; we include it only for no-tational completeness.) One can think of this as acascaded PRNG, in which an ever-increasing num-ber of distinct linear congruential PRNGs, namelythe terms (2n�m mod m)=m, are summed togethermod 1. We might then attempt to characterize thebehavior of the sequence (xn) in terms of the gen-erator's properties. For example, we can investigatethe period of this type of cascaded generator.There are di�culties with this approach, not theleast of which is the fact that a theory of cascadedPRNGs is not commonly discussed, and upon pre-liminary investigation it is evident that open prob-lems abound. For one thing, there are questionsabout �xed sums of PRNGs that are yet open, suchas the precise statistics of the sum of just two stan-dard PRNGs. Moreover, whereas for �xed, large nthe initial terms corresponding to (2n�m mod m)=mmay well be on their way into stable statistical cy-cles, the latter terms ending 4=(n�2) + 2=(n�1) +1=n are \just getting started," as it were. So thecascaded PRNG does, in some sense, continue to\seed itself" as n increments. These di�culties maybe insurmountable. Nevertheless, some partial re-sults pertaining to random generators are obtainedin [Bailey and Crandall 2001], where we investigatea statistical picture as a kind of complement to thepresent, dynamical one.
7. CONCLUSIONS AND OPEN PROBLEMSWe have outlined above what we believe to be somenew approaches to the age-old question of the sta-tistical randomness of the digits in the expansionsof several well-known mathematical constants. Weacknowledge that our analysis may have raised morequestions than it has answered, and we do not ex-pect that the open hypotheses and conjectures willbe quickly or easily resolved. We only hope thatthese results will stimulate further research in the�eld and lead to a greater understanding of the is-sues. Here is a sampling of the open problems inthis arena:
1. Is there a natural, or even believable, generaliza-tion of the perturbation function rn in HypothesisA? We saw at the end of Section 3 that the par-ticular decay rate of rn does not have an obviousconnection with the normality properties of the as-
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sociated constants. This subject is taken up furtherin [Bailey and Crandall 2001].
2. Is there a way to connect the dynamical picture,as embodied in Hypothesis A and our various obser-vations thereupon, with the celebrated Weyl theo-rem that (xn) is equidistributed if and only iflimN!1 1N N�1Xn=0 e2�ihxn = 0for every integer h 6= 0? That the xn contain powersbn for base b prevents any easy manipulation of theexponential sum.
3. How does one bring to bear all of the historicalachievements from ergodic theory and the theory ofchaotic-dynamical maps? We have barely touchedupon a few isolated connections. Everything fromLyapunov exponents to fractal dimension has, let ussay a priori, a possible role. Along this line, J. La-garias [2001] has recently demonstrated intriguingconnections between our theory, ergodic theory, thetheory of G-functions and a conjecture by Fursten-berg.
4. Can one develop a satisfactory theory of \Fergu-son anomalies," namely those instances in which ageneralized polylogarithm series has a rational sum,and yet elementary telescoping does not occur?
5. Can we obtain formal bounds on the lengths ofperiods produced by cascaded PRNGs, even for thespecial case of log 2? Can we obtain further resultson the statistics of PRNG sequences, such as limitson the deviations of frequencies of digit strings fromtheir expected values? Again this is touched uponin a companion paper [Bailey and Crandall 2001].
6. Is there cryptographic signi�cance to the presentnotion of digit randomness? It is well known in cryp-tographic circles that chaos generators are highly(and rightfully) suspect as random generators, andalso that linear-congruential generators have been\broken" (in fact, many polynomial-recursive gener-ators have been broken as well). Still, do we not be-lieve that the hexadecimal digits of � should be cryp-tographically secure (given an unknowable startingposition, say), and if yes, then does not Conjecture3.1 imply that a fairly simple dynamical map shouldproduce secure digits? We do admit that in this re-gard one must recognize precision issues; i.e., to go

very far out in a � expansion, nonlinear|albeit ef-�cient in the sense of the BBP algorithm|workmust be expended. Still, one might contemplatethe notion of taking the rational dynamical iteratesxk and reducing both numerator and denominatormodulo p for large prime p, in this way maintaininglinear control over precision for all iterates. Thenagain, one could \seed" such a cryptographic gen-erator with an adroitly obscure choice of rationalperturbation rk, and so on.
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