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We find all the maximal admissible connected sets of Gaussian

primes: there are 52 of them. Our catalog corrects some errors

in the literature. We also describe a totally automated proce-

dure to determine the heuristic estimates for how often various

patterns, in either the integers or Gaussian integers, occur in the

primes. This heuristic requires a generalization of a classical for-

mula of Mertens to the Gaussian integers, which we derive from

a formula of Uchiyama regarding an Euler product that involves

only primes congruent to 1 (mod 4).

1. INTRODUCTIONThe twin prime conjecture states that the pattern(n; n+2) occurs in�nitely often in the prime num-bers. On the other hand, (n; n+2; n+4) cannotoccur in�nitely often because one of the entries willbe divisible by 3. If we restrict patterns to the form(n+a1; n+a2; : : : ; n+ak), we can describe the pat-tern by the set fa1; a2; : : : ; akg; patterns in thiscontext are called constellations. The question ofwhich constellations occur in�nitely often in the setof prime numbers has been well studied. Of course,this is unresolved even for f0; 2g, but it has beenconjectured (the prime k-tuples conjecture) that ifA has the property that for every prime p the num-ber rp(A) of distinct entries in the mod-p reductionof A is less than p, then A occurs in�nitely often inthe primes. A set with this mod-p property for allprimes is called admissible. Thus f0; 2g is admissi-ble, but f0; 2; 4g is not because its reduction mod3 is f0; 2; 1g. This paper extends the investigationof admissible sets to the Gaussian integers Z [i], aproject started in [Jordan and Rabung 1976] andcontinued in [Vardi 1998].For a Gaussian integer z, let N(z) denote thenorm of z: N(a+ b i) = a2+ b2. Recall that a+ b iis a Gaussian prime if a2+b2 is prime or one of a, bis 0 and the other is a prime congruent to 3 mod 4.Since Gaussian integers have unique factorization,
c
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the de�nition of admissibility can be easily adapted.There are several ways to form a reduced residuesystem modulo a Gaussian prime p. We will usethe following one [Ireland and Rosen 1982; Jordanand Potratz 1965]: If p is not a rational prime, wetake the integers f0; 1; : : : ; N(p)�1g as the reducedsystem; for the rational Gaussian primes, we usefa+bi : 0 � a; b � p�1g. We will denote by rp(A)the cardinality of the mod-p Gaussian reduction ofA, just as in the Z case; it will be clear from thecontext which version is meant.
Definition. A set A of Gaussian integers is admissibleif rp(A) < N(p) for every Gaussian prime p. A primep is a blocking prime of A if rp(A) = N(p).So that we can easily visualize the patterns, we iden-tify a Gaussian integer with a disk centered at it.Because we are primarily interested in the networksarising from Gaussian primes at distance p2 or less,we will use disks with radius p2�2. For the networkarising from a larger distance, one uses a larger ra-dius. We will use the term animal for a connectedset of disks, in analogy with a term often used forconnected sets in a lattice. Continuing the work of[Jordan and Rabung 1976; Vardi 1998], we will givea complete catalog of the admissible animals. Be-cause, as shown by Jordan and Rabung, the largesthas size 48, any admissible animal is contained in amaximal admissible animal.
Definition. A maximal admissible connected set ofGaussian integers is called a lion.It follows that we need only consider the lions, be-cause any admissible animal is contained in a max-imal one. Up to symmetry, there are 52 lions.It is natural to wonder how often one can expectvarious admissible patterns to occur in the Gaussianprimes. There are well-known techniques to comeup with heuristic estimates for such patterns in therational primes, and we were able to extend theseideas to the Gaussian context. Perhaps more in-teresting, we have automated, in Mathematica, theproduction of such functions in both the rationaland Gaussian cases. The formulas, which will bediscussed in detail in Section 4, involveZ x0 1logkt dt or Z x0 tlogkt dt;

which can be expressed in terms of li x, the loga-rithmic integral function. Then one can either ex-press the formulas in a simple asymptotic form or,for more exact work, compute values of li x via theseries li x = 
+log log x+P1k=1 logkx=(k! k), where
 is Euler's constant [Riesel 1985, p. 55].For example, we can ask our Mathematica pro-gram for the approximation to the number of twinprimes less than x, by typing the commandConstellationEstimate[{0,2}][x].The result is2�Yp�3 (p�2) p(p�1)2 ��li x� xlog x�;or, in asymptotic form,2�Yp�3 (p�2) p(p�1)2 �� xlog2x�+O� xlog3x�:Immediate numerical evaluation of the product ispossible, giving a coe�cient of 1.32032 (with moredigits if one wants). As another example, one canquery the program for the function that approxi-mates the number of prime patterns of the formfk; k+2; k+6; k+8g with k < x; the result is4:15118� li(x)6 � x6 log x� x6 log2x� x3 log3x� =
4:15118 xlog4x+O� xlog5x�:The main bene�ts of using Mathematica for thisproject are the ease of use of Gaussian integer arith-metic, and the adaptive-precision capability, whicheases the problem of getting reliable approximationsto the in�nite series that arise.

2. CAPTURING THE LIONSThe starting point of our lion hunt is [Vardi 1998],where it was shown, by working in the graph whosevertices are Gaussian integers relatively prime to 390(= 2�3�5�13), how to compute 506 animals such thatevery admissible animal is contained in one of these.Let's be precise about the connection between suchgraphs and admissibility. Consider the graph madeup of Gaussian integers relatively prime to some n,with edges connecting vertices at distance p2 orless. We claim that an admissible animal A mustbe congruent to a subset of a connected component
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of this graph. For if p is a Gaussian prime factorof n, then we know that when A is reduced modulop, one of the residues is missing. This means thatthere is a Gaussian integer, mp, such that 0 does notoccur in the mod-p residues of A+mp. Find suchintegers for each prime p and then use the ChineseRemainder Theorem to �nd a single integer m suchthat A+m has no element divisible by any of theprimes dividing n. It follows that each member ofA+m is coprime to n, as claimed.One can reduce the set of 506 animals to 115 byusing the eightfold symmetry in the Gaussian primesto eliminate duplicates. A further reduction is thenpossible by eliminating patterns that are congruentto subsets of other ones; this step leaves only 16 pat-terns. And 11 of these 16 turn out to be admissible(and hence are themselves lions). This leaves only�ve patterns whose subsets must be searched for li-ons. We call these �ve sets protolions; their sizes are25, 37, 50, 51, 71 (Figure 1).

25 37 50 51 71

FIGURE 1. The �ve protolions.Our approach to these protolions is as follows:
Step 1. Create two lists. The �rst list is called Lions;it starts with the 11 lions mentioned earlier, andeventually will contain all the lions. The secondlist is called ToDo, and initially it contains the 5protolions mentioned earlier. At all times this listwill contain animals, i.e., connected components.
Step 2. Repeat step 3 until the ToDo list is empty.
Step 3. Remove from the ToDo list any one of theconnected components of maximal length (size). Ifit is admissible, then determine whether it is con-gruent to a subset of a lion in Lions. If it is, thendiscard it; otherwise add it to Lions. If, on theother hand, the set is not admissible then performstep 4.
Step 4. Determine a blocking prime p for the set.Repeat step 5 for each residue class modulo p andwhen �nished, return to step 3.

Step 5. For a mod-p residue class, remove every el-ement of the set with that residue. Find the con-nected components of the resulting set and placethem on the ToDo list.It is important to carry out step 3 e�ciently. Giventwo animals, A and B, how does one determinewhether A is congruent to a subset of B? Our rou-tine is based on a technique used in digital imageprocessing to �nd and describe the boundary of aconnected region by its \chain code"; see [Gonzalezand Woods 1992], for example. A reason for us-ing the chain code is that it is a sequence of digitsthat allows one to easily trace the boundary of aconnected region or a boundary that is equivalentunder symmetry. The digit k in the chain code is tobe interpreted as the boundary turning by an angleof 45k degrees. For example, let A = f0, 1, 2, 3,3+ i, 2+2i, 1+ i, ig (Figure 2). The dots are thepoints of the set A, and the piecewise linear curveis the path taken to produce the chain code. Thechain code for this region is 0; 0; 2; 1; 2; 7; 2; 2.
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2

FIGURE 2. Animal with chain code 0, 0, 2, 1, 2, 7, 2, 2.To reconstruct the animal from the chain code, aninitial point and direction must be given. Supposethat the initial point is 0 and direction is parallelto the x-axis. Thus the second point will be 1. Thechain code 0, 0, 2, 1, 2, 7, 2, 2 is to be interpreted asmoving to the next Gaussian integer after turning 0,0, 90, 45, 90, 315, 90, and 90 degrees, resp. Doing so,the algorithm will produce the set A. For a secondexample, if the initial point is 0 and direction isparallel to the y-axis, the chain code will generatethe set f0; i; 2i; 3i; 3i�1; 2i�2; i�1;�1g. To obtainthe chain code for the set that has been re
ectedabout the x-axis, one replaces the digit k with 8�kunless k = 0 in which case the value of k doesn'tchange. Thus the chain code for the re
ected set inour example is 0, 0, 6, 7, 6, 1, 6, 6. If the initialpoint is 0 and the initial direction is parallel to thex-axis, then the turns will be 0, 0, 270, 315, 270, 45,
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270, and 270 degrees and the set produced will bef0; 1; 2; 3; 3� i; 2�2i; 1� i; �ig.There was a point about which we had to be care-ful when coding the search routine. We had to verifythat the chain code described the entire set, i.e., ev-ery point of the set is a boundary point. This isthe case for all the animals found in step 3. Usingchain codes, the algorithm to determine whether ornot an animal A can be found in the animal B iseasily implemented. The size of A must be less thanor equal to the size of B. If so, then one checks forevery member of the set B and for every initial di-agonal direction, whether or not the chain code forA can step through elements of B.Figure 4 shows the results of our search. Thereare 52 lions, the largest has size 48, there are sevenof size 48, and the only ones that are not simplyconnected are those of size 4, 12, 47, and two ofthe 48s. The two lions of largest diameter are theones of size 45 and 42. The seventh 48-lion (in theorder of Figure 4) was missed in the computationsof [Jordan and Rabung 1976] and [Vardi 1998].We will use the term diamond to refer to the 4-lion and castle for the 12-lion. The order of the lionsin Figure 4 is according to their rarity, as explainedin Section 5.To understand how the seven 48-lions arise, con-sider the 50-protolion and its two blocking primes,2�5i. Look at Figure 3, which shows the congruenceclasses modulo 2�5i (using the complete residue sys-tem f0; 1; : : : ; 28g). The gray disks correspond to

entries that appear once only; the removal of anyof these will �x the admissibility situation modulothe corresponding prime. Thus one can remove, say,the entry corresponding to 25 on the left and 21 onthe right to get an admissible 48-set. There are, upto symmetry, six ways of doing this so as to leavea connected set. But the seventh 48-lion arises inan unusual way. Removal of the 13 from the leftdeletes an 11 on the right. There is only one other11, so its removal will eliminate 11 entirely from theright-hand set, the result being that the two dele-tions lead to an admissible 48-set. Up to symmetrythis type of double deletion leads to only one con-nected 48-set, and that is where the seventh 48-lioncomes from.Sections 3, 4, and 5 will address the question ofhow many diamonds or castles one can expect to �ndin a given region. Figures 5 and 6 give an idea of hownumerous the diamonds are in the Gaussian primes.Note that diamonds that straddle the y = x lineare, in a sense, fake: the chances of their existenceare greater than for the others because of the forcedsymmetry around the diagonal line. More precisely,if a+(a�1)i and a+1+a i are prime, then theirre
ections in the y = x line are automatically prime,giving us a diamond for which the four primalityevents are not independent. We will discuss this inmore detail in Section 5.Since a brute force search for a castle might takean extremely long time, a �lter was found and usedto speed things up. After some experimentation,
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FIGURE 3. The reduction of the 50-protolion modulo the primes 2+5i (left) and 2�5i (right).
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FIGURE 4. The complete catalog of 52 lions. All admissible animals are congruent to a subset of one of these.
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20 50 80

FIGURE 5. Two true diamonds and six fake dia-monds, along with one castle that is fake becauseof the symmetry over the real axis. Some additionaldiamonds, both real and fake, can be found near theorigin and are not speci�cally marked.

4000

FIGURE 6. The centers of all the diamonds in the �rstoctant of radius 4000; there are 380 true diamondsand 61 fake ones (centers on the 45� line).
we found that a square of size 6630�6630 had only50 protocastles, where a protocastle is a connectedset of 12 Gaussian integers relatively prime to 6630that looks like a castle. Realizing that if a castlethat is farther than distance 17 from the origin isreduced modulo 6630, then this reduction will beone of these protocastles, we were able to use thissquare to tile the plane and to reduce the searchto checking only 50 protocastles in each tile. Thissearch found a non-fake example of a castle centeredat 7743840+4598295 i; see Figure 7. There is an-other castle centered at 5, but its existence relies on

7743840

4598295i

FIGURE 7. The �rst real castle in the Gaussian primes.
symmetry about the x-axis. (Note: The tile contain-ing this fake castle had to be independently searchedbecause one of its primes is a factor of 6630.)To generalize our work, one should consider ad-missible sets that are connected when edges are de-termined by distance 2 or less. Gethner and Stark[1997] showed that there are only �nitely many ad-missible sets in this case. We veri�ed their results byconsidering, as they did, the distance-2 graph whosevertices are the Gaussian integers that are coprimeto n, where n is 7113990 (= 2 �3 �5 �13 �17 �29 �37).We took a slightly di�erent approach, but con�rmedtheir main computational result: Every connectedset in the graph that crosses the real axis is �niteand has imaginary parts bounded by �357. Period-icity and symmetry then imply that any connectedset in the graph is �nite.We then tried to �nd lions in the distance-2 case.The top-down approach we used for distance p2worked because of the modest size of the protolions(Figure 1). The corresponding animals are too largein the distance 2 case, so we adopted a slower, butconceptually simpler, bottom-up approach. Startwith a single point. Add potential neighbors un-til an animal is found that is admissible but hasno admissibe extension to an animal with one moreelement. That will be a lion. This also provideda check on our distance-p2 work, since it yieldedthe identical set of lions that the top-down methodfound. Computation then showed that there are nolions for distance 2 of size 15 or smaller. However,the patterns that arose led us to a conjecture abouta 16-lion (Figure 8), and it was then easy to checkthat it is in fact a lion, perhaps the unique smallestone in the distance-2 case.



Renze, Wagon, and Wick: The Gaussian Zoo 167

FIGURE 8. A size-16 lion in the distance-2 case: thecastle with four points added.
3. ESTIMATING THE NUMBER OF PRIME

CONSTELLATIONSOnce a constellation is known to be admissible, anatural question to ask is how often it occurs. Ques-tions of this type are notoriously di�cult, but we canuse ideas from the rational case to develop a heuris-tic estimate for the frequency of a given Gaussianconstellation. In Section 5, we will provide numeri-cal evidence for our estimates.We �rst review the classical approach, carried outby, among others, Hardy and Littlewood [1923] (seealso [Hardy and Wright 1960, x22.20]), to estimatethe number of times a prime constellation occurs ina given interval. Let A = fa1; : : : ; ang be an ad-missible constellation and let P denote the rationalprimes. We seek a heuristic formula for the proba-bility that an integer x starts a prime A-pattern|i.e., that x+A � P|which we can then integrateto get the expected number of prime occurrencesof A in an interval. For connections between suchasymptotic estimates and the broader theory of per-colation in lattices, see [Vardi 1999].A precise treatment calls upon the important the-orem of Mertens [Hardy and Wright 1960, x22.8;Tenenbaum and Mend�es France 2000], which statesthat the Euler productQp�x �1�1=p� is asymptoticto c=log x, where c = e�
 � 0:56. Some explanationof the constant c is in order.A naive approach to prime counting uses a sim-ple random model to simulate the sieve of Eratos-thenes, arguing that half of the numbers under xare divisible by 2, one third of the remainder aredivisible by 3, and so on. This leads to the estimateQp�px �1�1=p� for the prime density near x. Butthis formula is wrong: by Mertens's theorem, thisproduct is asymptotic to 2c=log x, or 1:12 : : : =log x,contradicting the Prime Number Theorem. In short,the sieve of Eratosthenes is about 11% more e�cientthan randomness would predict. The point is that

divisibility by di�erent primes is not as independentas one might expect. An observation in [Furry 1942]gives some insight: \the last and largest of the trialdivisors �nds roughly twice as large a proportion ofvictims among the survivors of previous trials as itwould in a virgin population." His statement canbe justi�ed if we assume that the number of primesunder x is well approximated by kx=log x, for someconstant k. Then, if x is not a square and p is thelargest prime below px, the potential victims be-tween p2 and x are either primes or numbers of theform p �q, with q prime and q � p. The latter arethe �nal victims of the sieve. Therefore the deletionratio for p-divisibility is�(x=p)��(p)�(x)��(p2)+�(x=p)��(p) :If we approximate this by using k=log x to esti-mate for the prime density near both x and p2 andk=logpx for the prime density near both p and x=p,we get klogpx�xp �p�klog x(x�p2) + klogpx�xp �p� :This simpli�es to 2=(p+2), essentially twice the1=p predicted by the random model. For a moremodern treatment of the �ne points of the sieveof Eratosthenes, see the discussion of the Buchstabfunction in [Friedlander et al. 1991].Now let's see how the modi�ed random modelhelps us get an estimate of the number of prime con-stellations. We use p to denote a prime and Prob todenote probability; the use of \�" means \is heuris-tically asymptotic to", under the random model ofdivisibility:Prob[x+A � P]= Prob[x+ai is prime for 1� i� n]� Prob[x+ai is not divisible by a prime under xcfor 1� i� n]= Prob[x 6� �ai (mod p) for 1� i� n and p < xc]:There are p possible mod-p residues of x and rp(A)of them are disallowed. Therefore the precedingprobability can be estimated as follows, where the �step uses Mertens's theorem to multiply by 1=log x
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and also by the reciprocal of the product it is asymp-totic to, both to the n-th power. The probabilitythat x 6� �ai (mod p) for 1 � i � n and p � xc is� Yp�xc p�rp(A)p� 1logn x Yp�xc� pp�1�n Yp�xc p�rp(A)p= 1logn x Yp�xc pn�1(p�rp(A))(p�1)n
= 1logn x 1Yp=2 pn�1(p�rp(A))(p�1)n = CAlogn x: (3–1)

In the next-to-last step the product to xc is ex-tended to in�nity, because the in�nite product con-verges (this follows from work in Section 4) and sothe tail is asymptotic to 1. This yields the con-stant CA, called the Hardy{Littlewood constant forA. Now, switching to t as the variable of inte-gration, we can use the integral CA R x0 1=lognt dtas an estimate of the number of prime occurrencesof A in [1; x]. Because R x0 1=lognt dt asymptoticto x=lognx (integration by parts), this leads to theHardy{Littlewood conjecture.
The Prime k-Tuples Conjecture. Any admissible set Aof n integers occurs in�nitely often in the primes.If CA denotes the Hardy{Littlewood constant for A,the number of occurrences below x is asymptoticallyequal to CA xlognx:To use the random model to estimate the numberof constellations in the Gaussian primes, we must�rst generalize Mertens's theorem. Letting pi de-note a prime congruent to i (mod 4), we de�ne theGaussian Euler product for r asYN(p)�r2

�1� 1N(p)�;which equals�1� 12� Yp1�r2
�1� 1p1�2 Yp3�r

�1� 1p23�:To study Mertens's formula in Z [i], one asks ifthe Gaussian Euler product for rc is asymptotic to

the Gaussian prime density, which is 2=(� log r), asproved in [Vardi 1998]. Here is the generalization.
Theorem (Mertens’s Theorem for Gaussian Integers). Theproduct of 1�1=N(p) over Gaussian primes in thedisk of radius rc is asymptotic to the Gaussian primedensity at radius r. That is ,YN(p)�r2c

�1� 1N(p)�is asymptotic to 2=(� log r).
Proof. The key is a formula from [Uchiyama 1971](see also the proof of [Vardi 1998, Proposition 2.1]):Yp1�x�1� 1p1� =

sc � d1log x +O� 1log3=2(x)�;
where d1 := 1Qp1=5�1�1=p21� and d3 := 1Qp3=3�1�1=p23�.Note that�1� 14�d1d3 = 1Yp=2�1� 1p2� = 1�(2) = 6�2 ;
so d1d3 = 8=�2. To quickly compute the numericalvalue of d3 (it is 0.8561: : :), see [Vardi 1998].Using Uchiyama's formula, we getYN(p)�r2c

�1� 1N(p)� = 12 Yp1�r2c
�1� 1p1�2 Yp3�rc

�1� 1p23�� 12 c � d12c log rd3 = �d1d34 log r= 2� log r : �With this tool in hand, the development of a heuris-tic probability that an admissible Gaussian constel-lation A of size n occurs in the Gaussian primesstarting at a Gaussian integer z is identical to therational case, keeping in mind that there are N(p)residues for any Gaussian prime p. Using r for jzjand arguing exactly as in (3{1), the probability thatA+z is contained in the Gaussian primes is� 2� log r�n YN(p)�r2c
�N(p)�rp(A)N(p) �� N(p)N(p)�1�n:

(3–2)
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And so the number of prime occurrences of A in the�rst octant and at radius R or smaller is estimatedby CA� 2��n �4 Z R0 rlognrdr;where CA is the product in (3{2) (extended to anin�nite product) and the standard polar-form factorr occurs in the integrand because the it arises froma double integral over the sector 0 � � � �=4 and0 � r � R. This allows us to state the analogof the prime k-tuples conjecture for the Gaussianintegers. Note that the de�nite integral just givenis asymptotic to R2=(2 lognR).
The Prime k-Tuples Conjecture in ZZ[i]. Any admissi-ble n-element set A of Gaussian integers occurs in-�nitely often in the Gaussian primes; the numberof occurrences in a disk of radius R and within the�rst octant is asymptotic toCA 2n�3R2�n�1 lognR;where CA is the Gaussian Hardy{Littlewood con-stant for A.
4. COMPUTING THE HARDY–LITTLEWOOD

CONSTANTSThe computation of numerical approximations tothe Hardy{Littlewood constants is similar in therational and Gaussian cases. We �rst review therational case. Given A, let p0 be the �rst primegreater than any di�erence of two members of A =fa1; : : : ; ang; therefore rp(A) = n whenever p � p0.Then CA from (3{1) isYp<p0 pn�1(p�rp(A))(p�1)n Yp�p0 pn�1(p�n)(p�1)n :
The �nite product is easy to get by a direct com-putation of the critical prime p0 and each rp(A).And there are standard methods for getting numeri-cal approximations to the in�nite product. One useslogarithms as follows, where �prime(s) is the primezeta function, P p�s; it is not hard to see that

�prime(s) = 1Xk=1 �(k)k log �(k s);

where � is the M�obius function and � is the Rie-mann zeta function (see [Riesel 1985] for an out-line and [Vardi 1991] for a detailed description thatshows how variations of this technique can be usedin diverse Euler product computations). Thenlog � 1Yp=p0 pn�1(p�n)(p�1)n �
= Xp�p0 log�1� np��n log�1� 1p�= Xp�p0

�� np � n22p2 � n33p3 �� � �+ np + n2p2 + n3p3 + � � � �= Xp�p0 1Xj=2 n�njj 1pj
= � 1Xj=2 nj�nj ��prime(j)�Xp<p0 1pj�:This �nal series is convergent, and the tail is easy tobound, because p0 � n and Pp<p0 p�j is boundedby (use an integral) 1=�nj�1(j� 1)�; this justi�esour earlier statement about the convergence of thein�nite products. So we may now conclude thatCA = � Yp�p0 pn�1(p�rp(A))(p�1)n �

�exp�� 1Xj=2 nj�nj ��prime(j)�Xp<p0 1pj��: (4–1)

For the Gaussian case we �rst de�ne n0 be theleast integer such that if N(p) � n0 the Gaussianprime p does not divide the di�erence between anytwo members of A. ThenCA = YN(p)<n0
�N(p)�rp(A)N(p) �� N(p)N(p)�1�n

� YN(p)�n0
�N(p)�nN(p) �� N(p)N(p)�1�n: (4–2)

To approximate the in�nite product, we will needGaussian versions of the zeta and prime zeta func-tions. For the �rst, set �Gauss(s) :=Pn2Z[i] N(n)�s.Computation is easy because�Gauss(s) = 14s �(s)���s; 14����s; 34��;
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where �(s; a) is the Hurwitz zeta function (or gen-eralized zeta function) P1k=1 (k+a)�s. This can beeasily proved using the in�nite product form of �,as follows, where the last step comes from the usualgeometric series interpretation of the in�nite prod-ucts:�Gauss(s)= Xn2Z[i] 1N(n)s =Yp 11�1=N(p)�s
= 11�2�s Yp3 11�p�2s3 �Yp1 11�p�s1 �2= 11�2�s Yp3 11�p�s3 Yp3 11+p�s3 �Yp1 11�p�s1 �2= Yrationalprimes q 11�q�s Yp3 11+p�s3 Yp1 11�p�s1= 4�s�(s)���s; 14����s; 34��:We also need the prime version, de�ned by�Gp(s) = Xp2Z[i]N(p)�s:

By M�obius inversion as in the rational case, thisequals 1Xk=1 �(k)k log �Gauss(ks):
And just as in the rational case, the in�nite productin (4{2) reduces to the sum
exp� 1Xj=2 nj�nj XN(p)�n0 1pj�

= exp 1Xj=2 nj�nj ��Gp(j)� XN(p)<n0 1N(p)j�!:The methods of evaluating the in�nite sums in(4{1) and (4{2) are similar. The in�nite sum in(4{1) can be computed to any precision by using theM�obius function to compute �prime. Mathematica'sadaptive precision| its algorithm that increases theworking precision beyond d as necessary to get d sig-ni�cant digits| is helpful to handle the subtractivecancellation that occurs in the computation of �prime.The adaptive precision algorithm uses some heuris-tics to estimate precision, and so is not foolproof.

But the functions that arise here are simple (loga-rithms, multiplication, division, power) and one cancheck the results by using a high �xed precision;such checking gives us con�dence that the methodis accurate in the present problem. Of course, onemust also do some error analysis to see where to cuto� the in�nite sums that occur, both in the sum asj goes from 2 to in�nity and the sum involving theM�obius function. But this is quite routine, usingonly very elementary techniques to bound the sizeof the tail in each case.Because the Riemann � function is easy to eval-uate [Edwards 1974, Chapter 6], the Gaussian ver-sions of � can be evaluated without di�culty. Asin the rational case, the work needed to determine,simplify, and numerically evaluate the estimate ofGaussian prime constellations can be automated.
5. COMPUTATIONAL RESULTSHere are sample outputs from our program. First,the symbolic form of the estimated number of twinprimes below x:

2�Yp�3 (p�2)p(p�1)2��li x� xlog x�:A numerical approximation:1:32032�li x� xlog x�:The asymptotic form:1:32032xlog2x +O� xlog3x�:The program's 14-digit approximation to the twinprime estimate for 1014 is 135780264892.06. (Theactual number of twin primes is 135780321665.)The program can be asked to return the answerin terms of unevaluated integrals, as in
2�Yp�3 (p�2)p(p�1)2� Z x0 1log2tdt:A famous admissible constellation [Riesel 1985,p. 78] is the collection of 15 primes starting at 11,namely f11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,59, 61, 67g. No example of this full pattern has yet
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been found in the primes. Here is the estimate forthe number of occurrences of the pattern below x:187824xlog15x +O� xlog16x�:An examination of the more explicit form shows thatthe estimate equals 1 at 1:7 �1019.We now turn to the Gaussian integers. Here arefour examples of the output of our program.The diamond estimate in terms of an integral:25�3� YN(p)�5 (N(p)�4)(N(p))3(N(p)�1)4 � Z R0 rlog4rdr:With the integral evaluated and the coe�cient ap-proximated numerically (the two steps can be car-ried out separately):0:177975� 43 liR3� 2R23 log R� R23 log2R� R23 log3R�:The asymptotic form:0:059325R2log4R +O� R2log5R�:An estimate of the number of diamonds withindistance 200000 of the origin: 193922.We have counted the number of diamonds in the�rst octant and within distance 200000 of the ori-gin and the comparison to the predicted value isgood. Before presenting the data we note a com-plication. The heuristic formulas are based on onlythe diamonds that are contained entirely in the �rstoctant. But there are (presumably) an in�nite num-ber of diamonds that straddle the y = x line (such

as 1+2i, 3+2i, 2+ i, 2+3i) and must be counted.We call them fake diamonds. The condition for theoccurrence of a fake diamond on the y = x lineis for the two values a+(a� 1)i and (a+1)+ a ito be prime. Then symmetry guarantees that theother two points in the diamond are prime. Nodiamonds straddle the real axis, because there areno Gaussian twins in the integers. The extra com-plexity that the fakes cause in the diamond case isnot great, and we can easily estimate the expectednumber of all diamonds, both true and fake. Butif one wanted similar estimates for larger admissi-ble sets, the symmetry issues would become morecomplicated because of the di�erent ways a patterncan straddle the line of symmetry. For the case athand, the number of fake diamonds in the �rst quad-rant and within distance R of the origin is estimatedby the following formula, which uses the techniquesdiscussed earlier to estimate the number of Gaussianprime occurrences of the pattern f0; 1+ig in the setf(a+1)+a i : 0 � a � Rg:2� Yp a Gaussianprime 6= 1+i(N(p)�2)N(p)(N(p)�1)2 ��Z R0 � 2� log r�2dr�:
This is O(R=log2R), which is asymptotically zerowhen divided by the expected number of true dia-monds.When R is 200000, the real and fake diamondestimates are 193922.35 and 1121.69, respectively,for a total of 195044. In fact, there are 193628real diamonds and 1145 fake diamonds, for a totalof 194773. Figure 9 shows the ratios of the actual
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FIGURE 9. The ratio of the total number of diamonds at radius R or less to the predicted number. The ratioappears to converge to 1, as expected.
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number of diamonds to the predicted number; theconvergence to 1 is evident.Our program gives the symbolic form of the pre-diction function for the next larger lion, the castle:524 1322 1724 2922�11 2255 32 724 � YN(p)�37 (N(p)�12) (N(p))11(N(p)�1)12 �
� � 8 liR2155925� 4R2155925 log R� 2R2155925 log2R� 2R2155925 log3R� R251975 log4R� 2R251975 log5R� R210395 log6R� R23465 log7R� R2990 log8R� 2R2495 log9R� R255 log10R� R211 log11R�:The asymptotic form is0:09528R2log12R +O� R2log13R�:Straightforward root �nding shows the radius Rat which the expected number of castles is 1 to be1:04�108. This is reasonably consistent with our dis-covery (Figure 7) of the �rst true castle at distance9 �106 from the origin.Finally, we can look at the seven 48-lions and seewhich one is the rarest. Note that each of the 48lions is, asymptotically, rarer than any smaller lion.The following list gives the Hardy{Littlewood con-stants for the order in which the 48-lions appearin Figure 3; the �rst one is the rarest: 6:32 �1021,6:84 �1021, 6:89 �1021, 6:89 �1021, 6:9 �1021, 6:9 �1021,6:91 �1021.
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