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We find all the maximal admissible connected sets of Gaussian
primes: there are 52 of them. Our catalog corrects some errors
in the literature. We also describe a totally automated proce-
dure to determine the heuristic estimates for how often various
patterns, in either the integers or Gaussian integers, occur in the
primes. This heuristic requires a generalization of a classical for-
mula of Mertens to the Gaussian integers, which we derive from
a formula of Uchiyama regarding an Euler product that involves
only primes congruent to 1 (mod 4).

1. INTRODUCTION

The twin prime conjecture states that the pattern
(n, n+2) occurs infinitely often in the prime num-
bers. On the other hand, (n,n+2,n+4) cannot
occur infinitely often because one of the entries will
be divisible by 3. If we restrict patterns to the form
(n+ay, n+as,...,n+a), we can describe the pat-
tern by the set {ai, as, ..., a}; patterns in this
context are called constellations. The question of
which constellations occur infinitely often in the set
of prime numbers has been well studied. Of course,
this is unresolved even for {0, 2}, but it has been
conjectured (the prime k-tuples conjecture) that if
A has the property that for every prime p the num-
ber r,(A) of distinct entries in the mod-p reduction
of A is less than p, then A occurs infinitely often in
the primes. A set with this mod-p property for all
primes is called admissible. Thus {0, 2} is admissi-
ble, but {0, 2, 4} is not because its reduction mod
3 is {0, 2, 1}. This paper extends the investigation
of admissible sets to the Gaussian integers Z[i], a
project started in [Jordan and Rabung 1976] and
continued in [Vardi 1998].

For a Gaussian integer z, let N(z) denote the
norm of z: N(a+bi) = a’*+b% Recall that a+bi
is a Gaussian prime if a®>+b? is prime or one of a, b
is 0 and the other is a prime congruent to 3 mod 4.
Since Gaussian integers have unique factorization,
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the definition of admissibility can be easily adapted.
There are several ways to form a reduced residue
system modulo a Gaussian prime p. We will use
the following one [Ireland and Rosen 1982; Jordan
and Potratz 1965]: If p is not a rational prime, we
take the integers {0, 1, ..., N(p)—1} as the reduced
system; for the rational Gaussian primes, we use
{a+bi:0<a,b<p—1}. We will denote by r,(A)
the cardinality of the mod-p Gaussian reduction of
A, just as in the Z case; it will be clear from the
context which version is meant.

Definition. A set A of Gaussian integers is admissible
if r,(A) < N(p) for every Gaussian prime p. A prime
p is a blocking prime of A if r,(A) = N(p).

So that we can easily visualize the patterns, we iden-
tify a Gaussian integer with a disk centered at it.
Because we are primarily interested in the networks
arising from Gaussian primes at distance V2 or less,
we will use disks with radius v/2 / 2. For the network
arising from a larger distance, one uses a larger ra-
dius. We will use the term animal for a connected
set of disks, in analogy with a term often used for
connected sets in a lattice. Continuing the work of
[Jordan and Rabung 1976; Vardi 1998|, we will give
a complete catalog of the admissible animals. Be-
cause, as shown by Jordan and Rabung, the largest
has size 48, any admissible animal is contained in a
maximal admissible animal.

Definition. A maximal admissible connected set of
Gaussian integers is called a lion.

It follows that we need only consider the lions, be-
cause any admissible animal is contained in a max-
imal one. Up to symmetry, there are 52 lions.

It is natural to wonder how often one can expect
various admissible patterns to occur in the Gaussian
primes. There are well-known techniques to come
up with heuristic estimates for such patterns in the
rational primes, and we were able to extend these
ideas to the Gaussian context. Perhaps more in-
teresting, we have automated, in Mathematica, the
production of such functions in both the rational
and Gaussian cases. The formulas, which will be
discussed in detail in Section 4, involve

S| Tt
/ — dt or / — dt,
o log™t o log"t

which can be expressed in terms of li z, the loga-
rithmic integral function. Then one can either ex-
press the formulas in a simple asymptotic form or,
for more exact work, compute values of li  via the
series liz = y+loglog x4+ 7o log"z/(k! k), where
« is Euler’s constant [Riesel 1985, p. 55].

For example, we can ask our Mathematica pro-
gram for the approximation to the number of twin
primes less than x, by typing the command

ConstellationEstimate[{0,2}] [x].

).
or, in asymptotic form,

(I23) () o (i)

Immediate numerical evaluation of the product is
possible, giving a coefficient of 1.32032 (with more
digits if one wants). As another example, one can
query the program for the function that approxi-
mates the number of prime patterns of the form
{k,k+2,k+6, k+8} with k < z; the result is

4.15118(11(:6)— 7 7 ):
6 6logx 6log'z 3log’z

The result is

2<H %) <hx_lozm

p=>3

415118 —— +0< > >
log™ x log” x

The main benefits of using Mathematica for this
project are the ease of use of Gaussian integer arith-
metic, and the adaptive-precision capability, which
eases the problem of getting reliable approximations
to the infinite series that arise.

2. CAPTURING THE LIONS

The starting point of our lion hunt is [Vardi 1998],
where it was shown, by working in the graph whose
vertices are Gaussian integers relatively prime to 390
(=2-3-5-13), how to compute 506 animals such that
every admissible animal is contained in one of these.
Let’s be precise about the connection between such
graphs and admissibility. Consider the graph made
up of Gaussian integers relatively prime to some n,
with edges connecting vertices at distance /2 or
less. We claim that an admissible animal A must
be congruent to a subset of a connected component



of this graph. For if p is a Gaussian prime factor
of n, then we know that when A is reduced modulo
p, one of the residues is missing. This means that
there is a Gaussian integer, m,,, such that 0 does not
occur in the mod-p residues of A+m,. Find such
integers for each prime p and then use the Chinese
Remainder Theorem to find a single integer m such
that A+m has no element divisible by any of the
primes dividing n. It follows that each member of
A-+m is coprime to n, as claimed.

One can reduce the set of 506 animals to 115 by
using the eightfold symmetry in the Gaussian primes
to eliminate duplicates. A further reduction is then
possible by eliminating patterns that are congruent
to subsets of other ones; this step leaves only 16 pat-
terns. And 11 of these 16 turn out to be admissible
(and hence are themselves lions). This leaves only
five patterns whose subsets must be searched for li-
ons. We call these five sets protolions; their sizes are
25, 37, 50, 51, 71 (Figure 1).

&%’%’iw

FIGURE 1. The five protolions.

Our approach to these protolions is as follows:

Step 1. Create two lists. The first list is called Lions;
it starts with the 11 lions mentioned earlier, and
eventually will contain all the lions. The second
list is called ToDo, and initially it contains the 5
protolions mentioned earlier. At all times this list
will contain animals, i.e., connected components.

Step 2. Repeat step 3 until the ToDo list is empty.

Step 3. Remove from the ToDo list any one of the
connected components of maximal length (size). If
it is admissible, then determine whether it is con-
gruent to a subset of a lion in Lions. If it is, then
discard it; otherwise add it to Lions. If, on the
other hand, the set is not admissible then perform
step 4.

Step 4. Determine a blocking prime p for the set.
Repeat step 5 for each residue class modulo p and
when finished, return to step 3.
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Step 5. For a mod-p residue class, remove every el-
ement of the set with that residue. Find the con-
nected components of the resulting set and place
them on the ToDo list.

It is important to carry out step 3 efficiently. Given
two animals, A and B, how does one determine
whether A is congruent to a subset of B? Our rou-
tine is based on a technique used in digital image
processing to find and describe the boundary of a
connected region by its “chain code”; see [Gonzalez
and Woods 1992|, for example. A reason for us-
ing the chain code is that it is a sequence of digits
that allows one to easily trace the boundary of a
connected region or a boundary that is equivalent
under symmetry. The digit k in the chain code is to
be interpreted as the boundary turning by an angle
of 45k degrees. For example, let A = {0, 1, 2, 3,
3+i, 2424, 1+14, i} (Figure 2). The dots are the
points of the set A, and the piecewise linear curve
is the path taken to produce the chain code. The
chain code for this region is 0,0,2,1,2,7, 2, 2.

FIGURE 2. Animal with chain code 0, 0, 2, 1, 2, 7, 2, 2.

To reconstruct the animal from the chain code, an
initial point and direction must be given. Suppose
that the initial point is 0 and direction is parallel
to the z-axis. Thus the second point will be 1. The
chain code 0, 0, 2, 1, 2, 7, 2, 2 is to be interpreted as
moving to the next Gaussian integer after turning 0,
0, 90, 45, 90, 315, 90, and 90 degrees, resp. Doing so,
the algorithm will produce the set A. For a second
example, if the initial point is 0 and direction is
parallel to the y-axis, the chain code will generate
the set {0, i, 24, 37, 3i—1, 2i—2,i—1, —1}. To obtain
the chain code for the set that has been reflected
about the z-axis, one replaces the digit k¥ with 8 —k
unless £ = 0 in which case the value of k£ doesn’t
change. Thus the chain code for the reflected set in
our example is 0, 0, 6, 7, 6, 1, 6, 6. If the initial
point is 0 and the initial direction is parallel to the
z-axis, then the turns will be 0, 0, 270, 315, 270, 45,
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270, and 270 degrees and the set produced will be
{0,1,2,3,3—4,2—2i,1—14, —i}.

There was a point about which we had to be care-
ful when coding the search routine. We had to verify
that the chain code described the entire set, i.e., ev-
ery point of the set is a boundary point. This is
the case for all the animals found in step 3. Using
chain codes, the algorithm to determine whether or
not an animal A can be found in the animal B is
easily implemented. The size of A must be less than
or equal to the size of B. If so, then one checks for
every member of the set B and for every initial di-
agonal direction, whether or not the chain code for
A can step through elements of B.

Figure 4 shows the results of our search. There
are 52 lions, the largest has size 48, there are seven
of size 48, and the only ones that are not simply
connected are those of size 4, 12, 47, and two of
the 48s. The two lions of largest diameter are the
ones of size 45 and 42. The seventh 48-lion (in the
order of Figure 4) was missed in the computations
of [Jordan and Rabung 1976] and [Vardi 1998].

We will use the term diamond to refer to the 4-
lion and castle for the 12-lion. The order of the lions
in Figure 4 is according to their rarity, as explained
in Section 5.

To understand how the seven 48-lions arise, con-
sider the 50-protolion and its two blocking primes,
2+5i. Look at Figure 3, which shows the congruence
classes modulo 245i (using the complete residue sys-
tem {0, 1,...,28}). The gray disks correspond to

entries that appear once only; the removal of any
of these will fix the admissibility situation modulo
the corresponding prime. Thus one can remove, say,
the entry corresponding to 25 on the left and 21 on
the right to get an admissible 48-set. There are, up
to symmetry, six ways of doing this so as to leave
a connected set. But the seventh 48-lion arises in
an unusual way. Removal of the 13 from the left
deletes an 11 on the right. There is only one other
11, so its removal will eliminate 11 entirely from the
right-hand set, the result being that the two dele-
tions lead to an admissible 48-set. Up to symmetry
this type of double deletion leads to only one con-
nected 48-set, and that is where the seventh 48-lion
comes from.

Sections 3, 4, and 5 will address the question of
how many diamonds or castles one can expect to find
in a given region. Figures 5 and 6 give an idea of how
numerous the diamonds are in the Gaussian primes.
Note that diamonds that straddle the y = x line
are, in a sense, fake: the chances of their existence
are greater than for the others because of the forced
symmetry around the diagonal line. More precisely,
if a4+ (a—1)i and a+1+ai are prime, then their
reflections in the y = «x line are automatically prime,
giving us a diamond for which the four primality
events are not independent. We will discuss this in
more detail in Section 5.

Since a brute force search for a castle might take
an extremely long time, a filter was found and used
to speed things up. After some experimentation,

FIGURE 3. The reduction of the 50-protolion modulo the primes 2+ 5¢ (left) and 2 — 5 (right).
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FIGURE 4. The complete catalog of 52 lions. All admissible animals are congruent to a subset of one of these.
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FIGURE 5. Two true diamonds and six fake dia-
monds, along with one castle that is fake because
of the symmetry over the real axis. Some additional
diamonds, both real and fake, can be found near the
origin and are not specifically marked.

4000

FIGURE 6. The centers of all the diamonds in the first
octant of radius 4000; there are 380 true diamonds
and 61 fake ones (centers on the 45° line).

we found that a square of size 6630 x 6630 had only
50 protocastles, where a protocastle is a connected
set of 12 Gaussian integers relatively prime to 6630
that looks like a castle. Realizing that if a castle
that is farther than distance 17 from the origin is
reduced modulo 6630, then this reduction will be
one of these protocastles, we were able to use this
square to tile the plane and to reduce the search
to checking only 50 protocastles in each tile. This
search found a non-fake example of a castle centered
at 7743840+ 4598295 ¢; see Figure 7. There is an-
other castle centered at 5, but its existence relies on

e ° .
°% ® o0
o ® . . °.0 d .
H ° ° & e
4598295/ -+ ®
° ° °
o0 ® 0 o’ °
. . . S
.: ° e ¢ e
b ° ®l. ° °
7743840

FIGURE 7. The first real castle in the Gaussian primes.

symmetry about the z-axis. (Note: The tile contain-
ing this fake castle had to be independently searched
because one of its primes is a factor of 6630.)

To generalize our work, one should consider ad-
missible sets that are connected when edges are de-
termined by distance 2 or less. Gethner and Stark
[1997] showed that there are only finitely many ad-
missible sets in this case. We verified their results by
considering, as they did, the distance-2 graph whose
vertices are the Gaussian integers that are coprime
to n, where n is 7113990 (= 2-3-5-13-17-29-37).
We took a slightly different approach, but confirmed
their main computational result: Every connected
set in the graph that crosses the real axis is finite
and has imaginary parts bounded by +357. Period-
icity and symmetry then imply that any connected
set in the graph is finite.

We then tried to find lions in the distance-2 case.
The top-down approach we used for distance v/2
worked because of the modest size of the protolions
(Figure 1). The corresponding animals are too large
in the distance 2 case, so we adopted a slower, but
conceptually simpler, bottom-up approach. Start
with a single point. Add potential neighbors un-
til an animal is found that is admissible but has
no admissibe extension to an animal with one more
element. That will be a lion. This also provided
a check on our distance-v/2 work, since it yielded
the identical set of lions that the top-down method
found. Computation then showed that there are no
lions for distance 2 of size 15 or smaller. However,
the patterns that arose led us to a conjecture about
a 16-lion (Figure 8), and it was then easy to check
that it is in fact a lion, perhaps the unique smallest
one in the distance-2 case.



FIGURE 8. A size-16 lion in the distance-2 case: the
castle with four points added.

3. ESTIMATING THE NUMBER OF PRIME
CONSTELLATIONS

Once a constellation is known to be admissible, a
natural question to ask is how often it occurs. Ques-
tions of this type are notoriously difficult, but we can
use ideas from the rational case to develop a heuris-
tic estimate for the frequency of a given Gaussian
constellation. In Section 5, we will provide numeri-
cal evidence for our estimates.

We first review the classical approach, carried out
by, among others, Hardy and Littlewood [1923] (see
also [Hardy and Wright 1960, §22.20]), to estimate
the number of times a prime constellation occurs in
a given interval. Let A = {a4,...,a,} be an ad-
missible constellation and let P denote the rational
primes. We seek a heuristic formula for the proba-
bility that an integer = starts a prime A-pattern—
i.e., that x4+ A C P—which we can then integrate
to get the expected number of prime occurrences
of A in an interval. For connections between such
asymptotic estimates and the broader theory of per-
colation in lattices, see [Vardi 1999].

A precise treatment calls upon the important the-
orem of Mertens [Hardy and Wright 1960, §22.8;
Tenenbaum and Mendes France 2000], which states
that the Euler product [] ., (171/p) is asymptotic
to ¢/log x, where ¢ = e™7 & 0.56. Some explanation
of the constant c is in order.

A naive approach to prime counting uses a sim-
ple random model to simulate the sieve of Eratos-
thenes, arguing that half of the numbers under x
are divisible by 2, one third of the remainder are
divisible by 3, and so on. This leads to the estimate
Hpgﬁ (1 — 1/p) for the prime density near x. But
this formula is wrong: by Mertens’s theorem, this
product is asymptotic to 2¢/log z, or 1.12 ... /log z,
contradicting the Prime Number Theorem. In short,
the sieve of Eratosthenes is about 11% more efficient
than randomness would predict. The point is that
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divisibility by different primes is not as independent
as one might expect. An observation in [Furry 1942]
gives some insight: “the last and largest of the trial
divisors finds roughly twice as large a proportion of
victims among the survivors of previous trials as it
would in a virgin population.” His statement can
be justified if we assume that the number of primes
under z is well approximated by kx/log z, for some
constant k. Then, if x is not a square and p is the
largest prime below +/z, the potential victims be-
tween p? and z are either primes or numbers of the
form p-q, with ¢ prime and ¢ > p. The latter are
the final victims of the sieve. Therefore the deletion
ratio for p-divisibility is

m(z/p) —(p)
m(z) =7 (p?) +7(z/p) —7(p)

If we approximate this by using k/logz to esti-
mate for the prime density near both = and p? and
k/logy/x for the prime density near both p and z/p,
we get

logk\/i <% —p)

(z—p?) + i (E —p>
log vz \p

This simplifies to 2/(p+2), essentially twice the
1/p predicted by the random model. For a more
modern treatment of the fine points of the sieve
of Eratosthenes, see the discussion of the Buchstab
function in [Friedlander et al. 1991].

Now let’s see how the modified random model
helps us get an estimate of the number of prime con-
stellations. We use p to denote a prime and Prob to
denote probability; the use of “~” means “is heuris-
tically asymptotic to”, under the random model of
divisibility:

Prob[z+A C P]
= Prob[z +a; is prime for 1 <i < n)

log =

~ Prob[z +a; is not divisible by a prime under z¢
for 1<i<n)]

= Prob[z # —a; (mod p) for 1 <i<n and p < z°].

There are p possible mod-p residues of  and 7,(A)
of them are disallowed. Therefore the preceding
probability can be estimated as follows, where the ~
step uses Mertens’s theorem to multiply by 1/log z
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and also by the reciprocal of the product it is asymp-
totic to, both to the n-th power. The probability
that x # —a; (modp) for1<i:<nandp<azis

~ I

p<zc

- loglnx 1:[ (p€1>n H Z%I)(A)

H P p rp A))
log T
R pH(p—rp(A» _a
log" © e (p—1)" log" =

In the next-to-last step the product to z¢ is ex-
tended to infinity, because the infinite product con-
verges (this follows from work in Section 4) and so
the tail is asymptotic to 1. This yields the con-
stant Cy4, called the Hardy-Littlewood constant for
A. Now, switching to ¢ as the variable of inte-
gration, we can use the integral Cy fow 1/log"t dt
as an estimate of the number of prime occurrences
of A in [1, z]. Because fom 1/log"t dt asymptotic
to z/log"z (integration by parts), this leads to the
Hardy-Littlewood conjecture.

3-1)

The Prime k-Tuples Conjecture. Any admissible set A
of n integers occurs infinitely often in the primes.
If C'4 denotes the Hardy-Littlewood constant for A,
the number of occurrences below z is asymptotically

equal to
x

n

A logz”

To use the random model to estimate the number
of constellations in the Gaussian primes, we must
first generalize Mertens’s theorem. Letting p; de-
note a prime congruent to i (mod4), we define the
Gaussian Fuler product for r as

(- x7)
T (- xh)
N(p)<r? N(p)
which equals
1Y’ 1
a0 02
? pE‘z y4i p!;[T j2

To study Mertens’s formula in Z[i], one asks if
the Gaussian Euler product for r¢ is asymptotic to

the Gaussian prime density, which is 2/(wlogr), as
proved in [Vardi 1998]. Here is the generalization.

Theorem (Mertens’s Theorem for Gaussian Integers). The
product of 1—1/N(p) over Gaussian primes in the
disk of radius r° is asymptotic to the Gaussian prime
density at radius r. That is,

(- x5)
ez s N P)
is asymptotic to 2/(mwlogr).

Proof. The key is a formula from [Uchiyama 1971]
(see also the proof of [Vardi 1998, Proposition 2.1]):

1\ Jemd; 1
pgz<1p_1> N \I log x +O(10g3/2($)>’

oo

where d; := [] (1-1/p?) and dj := ]0_0[ (1-1/p3).

pP1=>5 p3=3
Note that
] T In_ 1 _ 6
(1-1)dyds _IH2<1—E> @

so dids = 8/m?. To quickly compute the numerical
value of dj (it is 0.8561. . .), see [Vardi 1998].
Using Uchiyama’s formula, we get

I (-5) =5 IL(5) (%)

N(p)<r? ps<r°
1 C7I'd1 . 7Td1d3
2 2clogr ° 4logr
2
= ) 0
mlogr

With this tool in hand, the development of a heuris-
tic probability that an admissible Gaussian constel-
lation A of size n occurs in the Gaussian primes
starting at a Gaussian integer z is identical to the
rational case, keeping in mind that there are N(p)
residues for any Gaussian prime p. Using r for |z|
and arguing exactly as in (3-1), the probability that
A+ 7z is contained in the Gaussian primes is

i) JL () (o)

N(p)<r2e
(3-2)




And so the number of prime occurrences of A in the
first octant and at radius R or smaller is estimated

by
R
CA<E>H E/ Tn dT‘,
w/ 4 [, log"r

where Cj4 is the product in (3-2) (extended to an
infinite product) and the standard polar-form factor
r occurs in the integrand because the it arises from
a double integral over the sector 0 < 6 < 7/4 and
0 < r < R. This allows us to state the analog
of the prime k-tuples conjecture for the Gaussian
integers. Note that the definite integral just given
is asymptotic to R?/(2log"R).

The Prime k-Tuples Conjecture in Z[i]. Any admissi-
ble n-element set A of Gaussian integers occurs in-
finitely often in the Gaussian primes; the number
of occurrences in a disk of radius R and within the
first octant is asymptotic to

CA 2n73 R2
7 1log"R’

where C4 is the Gaussian Hardy-Littlewood con-
stant for A.

4. COMPUTING THE HARDY-LITTLEWOOD
CONSTANTS

The computation of numerical approximations to
the Hardy—Littlewood constants is similar in the
rational and Gaussian cases. We first review the
rational case. Given A, let p, be the first prime
greater than any difference of two members of A =
{ai, ..., a,}; therefore r,(A) = n whenever p > py.
Then C4 from (3-1) is

I P p rp(A)) I P t(p—n)
p<po ) .

The finite product is easy to get by a direct com-
putation of the critical prime p, and each r,(A).
And there are standard methods for getting numeri-
cal approximations to the infinite product. One uses
logarithms as follows, where (prime(s) is the prime
zeta function, > p~*; it is not hard to see that

i uik) log ¢(k s),
k=1

gprime

k
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where p is the Mobius function and ( is the Rie-
mann zeta function (see [Riesel 1985] for an out-
line and [Vardi 1991] for a detailed description that
shows how variations of this technique can be used
in diverse Euler product computations). Then

P>Po
B ( n n® nd
= s —
P>Po p 2p 3p
TR
p 2p* 3p?
-yl
p>po j=2 7V
> nj—n< 1
= _Z 3 Cprime(j)_z _)
Jj=2 J p<po v’

This final series is convergent, and the tail is easy to
bound, because po > n and > _ p~7 is bounded
by (use an integral) 1/(n?='(j — 1)); this justifies
our earlier statement about the convergence of the
infinite products. So we may now conclude that

<Hp (p— rpA)))

p<po

£ 22 o

P<Po

For the Gaussian case we first define ny be the
least integer such that if N(p) > n, the Gaussian
prime p does not divide the difference between any
two members of A. Then

o L) ()

N(p)<no
I () () e

< 11

To approximate the infinite product, we will need
Gaussian versions of the zeta and prime zeta func-
tions. For the first, set (gauss(s) := ZHEZM N(n)™".
Computation is easy because

Gonuss(5) = 3:C(5) (€5 3) =< (s, 3)),
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where ((s, a) is the Hurwitz zeta function (or gen-
eralized zeta function) > .-, (k+a) °. This can be
easily proved using the infinite product form of (,
as follows, where the last step comes from the usual
geometric series interpretation of the infinite prod-
ucts:

CGauss(8)
1 1
- nezz:[i] N(n)’ B 1;[ 1-1/N(p)™~

1 1 1Y
RExD 1-py* (H 1—p15>

ps p1

1 1 1 1 Y
T 12 H 1—p3° H 1+p3° (H 1—P1_S)

p3 p3 p1

1 1 1
= 1l l—q 11 14p5° 11 1—p1°

rational P3 P1
primes ¢

= 477(()(C (s, 5) = (s, 3))-
We also need the prime version, defined by

Canls) = 3 N(p) ™"

PEL[3]

By Mobius inversion as in the rational case, this
equals

5 ) g e hs).

=)
k=1

And just as in the rational case, the infinite product
in (4-2) reduces to the sum

. ni—n 1
exp(; J 2 pj)

N(p)>no
. ni—n , 1
~exp <§_j = (i) >y W)) |

The methods of evaluating the infinite sums in
(4-1) and (4-2) are similar. The infinite sum in
(4-1) can be computed to any precision by using the
Mobius function to compute (prime. Mathematica’s
adaptive precision —its algorithm that increases the
working precision beyond d as necessary to get d sig-
nificant digits —is helpful to handle the subtractive
cancellation that occurs in the computation of (prime-
The adaptive precision algorithm uses some heuris-
tics to estimate precision, and so is not foolproof.

But the functions that arise here are simple (loga-
rithms, multiplication, division, power) and one can
check the results by using a high fixed precision;
such checking gives us confidence that the method
is accurate in the present problem. Of course, one
must also do some error analysis to see where to cut
off the infinite sums that occur, both in the sum as
j goes from 2 to infinity and the sum involving the
Mobius function. But this is quite routine, using
only very elementary techniques to bound the size
of the tail in each case.

Because the Riemann ( function is easy to eval-
uate [Edwards 1974, Chapter 6], the Gaussian ver-
sions of ¢ can be evaluated without difficulty. As
in the rational case, the work needed to determine,
simplify, and numerically evaluate the estimate of
Gaussian prime constellations can be automated.

5. COMPUTATIONAL RESULTS

Here are sample outputs from our program. First,
the symbolic form of the estimated number of twin
primes below z:

(114220 52

p>3

A numerical approximation:
1.32032 <li v i)
log x

The asymptotic form:

1.32032 x < T )

log® z log®

The program’s 14-digit approximation to the twin
prime estimate for 10' is 135780264892.06. (The
actual number of twin primes is 135780321665.)

The program can be asked to return the answer
in terms of unevaluated integrals, as in

(I G=7) /)

p2>3

A famous admissible constellation [Riesel 1985,
p. 78] is the collection of 15 primes starting at 11,
namely {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67}. No example of this full pattern has yet



been found in the primes. Here is the estimate for
the number of occurrences of the pattern below z:

187824 x T
+0( 7))

log"z log'®

An examination of the more explicit form shows that
the estimate equals 1 at 1.7-10".

We now turn to the Gaussian integers. Here are
four examples of the output of our program.

The diamond estimate in terms of an integral:

2° (Np) - @)™ [*
m3 (N(lp_)[>5 (N(p)—1)* ) /0 log4rd '

With the integral evaluated and the coefficient ap-
proximated numerically (the two steps can be car-
ried out separately):

2 R R’ R’
0.177975 (g LR ) .

3log R 3log®R 3log’R
The asymptotic form:

0.059325 R? < R? >
log*R log’R)"

An estimate of the number of diamonds within
distance 200000 of the origin: 193922.

We have counted the number of diamonds in the
first octant and within distance 200000 of the ori-
gin and the comparison to the predicted value is
good. Before presenting the data we note a com-
plication. The heuristic formulas are based on only
the diamonds that are contained entirely in the first
octant. But there are (presumably) an infinite num-
ber of diamonds that straddle the y = z line (such
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as 1+2i, 34+2i, 2+14, 2+ 3i) and must be counted.
We call them fake diamonds. The condition for the
occurrence of a fake diamond on the y = z line
is for the two values a+ (a—1)i and (a+1)+ai
to be prime. Then symmetry guarantees that the
other two points in the diamond are prime. No
diamonds straddle the real axis, because there are
no Gaussian twins in the integers. The extra com-
plexity that the fakes cause in the diamond case is
not great, and we can easily estimate the expected
number of all diamonds, both true and fake. But
if one wanted similar estimates for larger admissi-
ble sets, the symmetry issues would become more
complicated because of the different ways a pattern
can straddle the line of symmetry. For the case at
hand, the number of fake diamonds in the first quad-
rant and within distance R of the origin is estimated
by the following formula, which uses the techniques
discussed earlier to estimate the number of Gaussian
prime occurrences of the pattern {0, 144} in the set
{(a+1)4ai: 0<a < R}:

(I ) (G )

p a Gaussian
prime # 1+13

This is O(R/log’R), which is asymptotically zero
when divided by the expected number of true dia-
monds.

When R is 200000, the real and fake diamond
estimates are 193922.35 and 1121.69, respectively,
for a total of 195044. In fact, there are 193628
real diamonds and 1145 fake diamonds, for a total
of 194773. Figure 9 shows the ratios of the actual

1.05

0.95

0.9

0.85

50000

100000

150000 200000

FIGURE 9. The ratio of the total number of diamonds at radius R or less to the predicted number. The ratio

appears to converge to 1, as expected.
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number of diamonds to the predicted number; the
convergence to 1 is evident.

Our program gives the symbolic form of the pre-
diction function for the next larger lion, the castle:

524 1322 1724 9922 < (N(p)—12) (N(p))“>
N(p)>37

11 9255 32 724 (N(p) o 1)12
(3 li R? 4R? 2 R?
155925 155925log R 155925 log’R
2 R? R? 2 R?
155925 log® R 519751log’ R 51975 log’ R
R? R? R?
1039510g®R 3465log’ R 990 log®R
2 R? R? R? )
4951log’ R 55log'R  11log"' R/

The asymptotic form is

0.09528 R* < R? )
log"’R log"®R )’

Straightforward root finding shows the radius R
at which the expected number of castles is 1 to be
1.04-10%. This is reasonably consistent with our dis-
covery (Figure 7) of the first true castle at distance
9-10° from the origin.

Finally, we can look at the seven 48-lions and see
which one is the rarest. Note that each of the 48
lions is, asymptotically, rarer than any smaller lion.
The following list gives the Hardy-Littlewood con-
stants for the order in which the 48-lions appear
in Figure 3; the first one is the rarest: 6.32-10%!,
6.84-10%', 6.89-10%*, 6.89 -10?!, 6.9-10%*, 6.9-10*,
6.91-10%".
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ELECTRONIC AVAILABILITY

The Mathematica code used for computing Hardy—
Littlewood estimates for admissible sets is available
at http://www.expmath.org/extra/10.2/rww.
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