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We examine which p-groups of order ≤ p6 are Beauville. We
completely classify them for groups of order ≤ p4. We also show
that the proportion of 2-generated groups of order p5 that are
Beauville tends to 1 as p tends to infinity; this is not true, how-
ever, for groups of order p6. For each prime p we determine the
smallest nonabelian Beauville p-group.

1. INTRODUCTION

Let G be a finite group. We call G a Beauville group
if there exists a “Beauville structure” for G, which we
define as follows.

Definition 1.1. Let G be a finite group. Let x, y ∈ G and

Σ(x, y) :=
|G |⋃
i=1

⋃
g∈G

{(xi)g , (yi)g , ((xy)i)g}.

A Beauville structure for G is a pair of generating sets
〈x1 , y1〉 = 〈x2 , y2〉 = G such that

Σ(x1 , y1) ∩ Σ(x2 , y2) = {e}.

Traditionally, authors have stated the above structure
in terms of spherical systems of generators of length 3,
meaning {x, y, z} with xyz = e, but we omit z = (xy)−1

from our notation in this note. The structure above
is often called an unmixed Beauville structure; we do
not, however, consider the mixed structures here. Fur-
thermore, many earlier papers on Beauville structures
add the condition that for i = 1, 2 we have o(xi)−1 +
o(yi)−1 + o(xiyi)−1 < 1, but this condition was subse-
quently found to be unnecessary [Bauer et al. 05].

Beauville groups were originally introduced in connec-
tion with a class of complex surfaces of general type,
known as Beauville surfaces. These surfaces possess many
useful geometric properties; their automorphism groups
[Jones 11] and fundamental groups [Catanese 00] are rel-
atively easy to compute and are rigid surfaces in the sense
of admitting no nontrivial deformations [Bauer et al. 06]
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and thus correspond to isolated points in the moduli
space of surfaces of general type.

In [Bauer et al. 06, Question 7.7] the authors asked
which groups are Beauville groups. In [Catanese 00], the
abelian Beauville groups were classified by a proof of the
following theorem. We write Cn for the cyclic group of
order n.

Theorem 1.2. Catanese 2000 Let G be an abelian Beau-
ville group. Then G = Cn × Cn , where gcd(n, 6) = 1.

After abelian groups, the next most natural class to
consider is that of the nilpotent groups. The following
(and its converse) is an easy exercise for the reader.

Lemma 1.3. Let G and G′ be Beauville groups and let
{{x1 , y1}, {x2 , y2}} and {{x′

1 , y
′
1}, {x′

2 , y
′
2}} be their re-

spective Beauville structures. Suppose that for i = 1, 2,

gcd(o(xi), o(x′
i)) = gcd(o(yi), o(y′

i)) = 1.

Then {{(x1 , x
′
1), (y1 , y

′
1)}, {(x2 , x

′
2), (y2 , y

′
2)}} is a Beau-

ville structure for the group G × G′.

Recalling that a finite group is nilpotent if and only if
it is a direct product of its Sylow subgroups, the above
lemma reduces the study of nilpotent Beauville groups
to the study of Beauville p-groups, which is the case we
focus on here. Notice that Theorem 1.2 gives us an infi-
nite supply of Beauville p-groups for every p ≥ 5: sim-
ply let n be a power of p. Various examples of non-
abelian Beauville p-groups for specific values of p have
appeared elsewhere in the literature [Barker et al. 11a,
Barker et al. 11b, Bauer et al. 08, Fuertes et al. 11], but
little has been said about the general case.

In several places we shall refer to computer calcula-
tions that can easily be performed in Magma or GAP.
In particular, we will find it convenient to use the
SmallGroup(m,n) notation that denotes the nth group
of order m that can be found in the small groups library
of Magma or GAP.1

In addition, for each group presentation 〈X | R〉, if
a, b ∈ X commute, the relation [a, b] = e will be omitted
for economy of space.

We now summarize the main results of this paper. In
Section 2 we show that there exists a nonabelian Beau-
ville group for each order pn , p ≥ 5, n ≥ 4. Sections 3 and

1 Available at http://www.icm.tu-bs.de/ag algebra/software/
small/.

4 classify the nonabelian Beauville p-groups of orders p3

and p4 .
In the penultimate section, we examine the groups of

order p5 and prove the following theorem.

Theorem 1.4. If p > 3, then there exist at least p + 8
Beauville groups of order p5 .

From the analysis of the number of 2-generated groups
of order p5 , we obtain the following consequence of the
above theorem.

Corollary 1.5. The proportion of 2-generated groups of
order p5 that are Beauville tends to 1 as p tends to infin-
ity.

For groups of order p6 we obtain the following.

Theorem 1.6. If p > 3, then there exist at least p − 1 2-
generated non-Beauville groups of order p6 .

From the analysis of the number of 2-generated groups
of order p6 , we obtain the following consequence of the
above theorem.

Corollary 1.7. The proportion of 2-generated groups of
order p6 that are Beauville does not tend to 1 as p tends
to infinity.

From [Fuertes et al. 11] we have the following state-
ment: “it is very plausible that most 2-generated finite p-
groups of sufficiently large order [are Beauville groups].”
If we interpret the word “most” from the statement to
mean that the proportion of Beauville groups tends to
1 as p tends to infinity, then this statement is true for
groups of order p5 but not for groups of order p6 .

Question 1.8. If n > 6, what is the behavior, as p tends
to infinity, of the proportion of 2-generated groups that
are Beauville?

Finally, through computational experimentation, we
have the following corollary summarizing the results of
this note.

Corollary 1.9. The smallest nonabelian Beauville p-groups
are as follows:

1. for p = 2, SmallGroup(27 , 36);

2. for p = 3, the group given by Example 5.1, of order 35;
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Name Presentation Beauville?
G1 〈x, y | xp 3

, yp , xy = x1+ p 2 〉 No
G2 〈x, y | xp 2

, yp 2
, xy = xp+1 〉 Yes (p > 3)

G3 〈x, y, z | xp 2
, yp , zp , [x, z] = y〉 No

G4 〈x, y, z | xp 2
, yp , zp , xy = xp+1 , [x, z] = y〉 No

G5 〈x, y, z | xp 2
, yp , zp = xp , xy = xp+1 , [x, z] = y〉 No

G6 〈x, y, z | xp 2
, yp , zp = xpα , xy = xp+1 , [x, z] = y〉 No

G7 (p > 3) 〈w, x, y, z | wp , xp , yp , zp , [y, z] = x, [x, z] = w〉 Yes (p > 3)
G8 (p = 3) 〈x, y, z | x9 , y3 , z3 , [x, z] = y, [y, z] = x3 〉 No

TABLE 1. The nonabelian 2-generated groups of order p4 , p odd. In the groups G3 , . . . , G6 and G8 , the presence of the relation
[x, z] = y shows that the group is 2-generated. In G7 , the presence of the relations [y, z] = x and [x, z] = w show that the group
is 2-generated. In G6 , α is any quadratic nonresidue modulo p.

3. for p = 5, SmallGroup(53 , 3);

4. for p ≥ 7, the groups given by Lemma 3.1, of order p3 .

2. SOME GENERAL RESULTS

We first explicitly show that there is a nonabelian 2-
generated non-Beauville group of order pn for every n ≥ 3
and for every prime p.

Lemma 2.1. The group

G :=
〈
x, y | xpn

, yp , xy = xpn −1 +1
〉

is a nonabelian 2-generated non-Beauville group of order
pn+1 for every prime p and every n > 1.

Proof. Clearly G is nonabelian and 2-generated, and a
straightforward coset enumeration shows that the sub-
group 〈x〉 has index p, and so |G| = pn+1. Now, Z(G) =
〈xp〉, and every element outside the subgroup 〈xp, y〉 has
order pn . Consequently, every generating set must con-
tain at least one element of order pn , but all such elements
power up to xpn −1

(i.e., there exists a ∈ N such that for
w ∈ G, wa = xpn −1

), so G cannot have a Beauville struc-
ture.

We remark that this lemma is a generalization of
[Fuertes and Jones 11, Example 4A], which is the case
n = 2. We now show that there exists a nonabelian Beau-
ville group G of order pn for every p ≥ 5 and n ≥ 4.

Lemma 2.2. The group

G :=
〈
x, y | xpn

, ypn

, xy = xp+1〉
is a nonabelian Beauville group of order p2n for every
prime p ≥ 5 and every n ≥ 2.

Proof. Clearly G is nonabelian and 2-generated, and a
straightforward coset enumeration shows that the sub-
group 〈x〉 has index pn , and so |G| = p2n . Let p > 5 be
prime. We claim that {{x, y}, {xy2 , xy3}} is a Beauville
structure in this case.

Now, every element of G can be written as
xiyj for some 0 ≤ i, j ≤ pn − 1. Furthermore, Z(G) =
〈xpn −1

, ypn −1 〉, and so a necessary condition for two el-
ements of G to be conjugate is that they power up to the
same elements of Z(G). A straightforward induction tells
us that

(xy)r = x1+(p+1)+(p+1)2 + ···+(p+1)r −1
yr .

An easy exercise in using geometric progressions and the
binomial theorem tells us that for every prime p,

1 + (1 + p) + · · · + (1 + p)pn −1 −1 ≡ pn−1 (mod pn ).

Combining these two identities gives (xy)pn −1
=

xpn −1
ypn −1

. Similar identities can be established for the
elements xy2 , xy3 , and

(xy2xy3)y−5y5 = x1+(p+1)2
y5 ,

verifying that no powers of these elements are conjugate.
Finally, we need show what these pairs generate.

Clearly, 〈x, y〉 = G by definition. Since (xy2)−1xy3 = y

and xy2y−2 = x, it follows that

G ≤ 〈x, y〉 ≤ 〈xy2 , xy3〉 ≤ G.

Similar calculations in the case p = 5 show that
{{x, y}, {xy2 , xy4}} is a Beauville structure.

The above lemma has covered the groups of order an
even power of a prime, p2n . The next lemma covers the
odd case, p2n+1.
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Lemma 2.3. The group

G :=
〈
x, y, z, α1 , . . . , αn−1 , β1 , . . . , βn−1 |
xpn

, ypn

, zp , [x, y] = z, αi = xpi

, βi = ypi

(for all 1 ≤ i ≤ n − 1)
〉

is a nonabelian Beauville group of order p2n+1 for p ≥ 5
and n ≥ 2.

Proof. For p ≥ 5 and n ≥ 2, it is clear that G is a 2-
generated group by {x, y} and {xy2 , xy4}. Furthermore,
we have distinct subgroups 〈x〉, 〈y〉, 〈z〉 of G of orders
pn , pn , p respectively. Since every element of G can be
put in the form xiyj zk , it follows that the order of G is
p2n+1.

We now claim that {{x, y}, {xy2 , xy4}} is a Beauville
structure for G. Since αi, βi ∈ Z(G) and [x, y] = z, we
can construct the following Σ-sets for this group:

Σ(x, y) = {e}
⋃(pn −1⋃

i=1

{xi, yi , xiyi}〈z〉
)

\
pn −1 −1⋃

i=1

p−1⋃
j=1

{
xipzj , yipzj , xipyipzj

}

and

Σ(xy2 , xy4) = {e}
⋃(pn −1⋃

i=1

{xiy2i , xiy4i , x2iy6i}〈z〉
)

\
pn −1 −1⋃

i=1

p−1⋃
j=1

{
xipy2ipzj , xipy4ipzj , x2ipy6ipzj

}
.

Here, we prefer to write the αi and βj in terms of
powers of xp and yp , respectively. Therefore, Σ(x, y) ∩
Σ(xy2 , xy4) = {e}.

3. GROUPS OF ORDER ≤ p3

All groups of order p or p2 are abelian for every prime p.
Thus, by Theorem 1.2, the only Beauville group of order
less than p3 is Cp × Cp for p > 3. There are no abelian
Beauville groups of order p3 .

The classification of groups of order p3 is well known;
this result is due to [Hölder 93]. There are two nonabelian
groups of order p3 . The first is of the form discussed in
Lemma 2.1 and is thus not a Beauville group. The second
is taken care of by the following, which is a special case
of Lemma 2.3.

Lemma 3.1. For every prime p ≥ 7, the group

G :=
〈
x, y, z | xp, yp , zp , [x, y] = z

〉

is a nonabelian Beauville group of order p3 with Beauville
structure {{x, y}, {xy2 , xy3}}.

Proof. The group G is the extra-special plus-type group
p1+2

+ . Since xyx−1y−1 = [x, y] = z, we have that xyx−1 =
yz, and since CG (yi) = 〈y, z〉 for 1 ≤ i < p, we see that
the conjugates of yi are precisely the elements yizj for
1 ≤ j ≤ p. Similarly, CG (g) = 〈g, z〉 for all g ∈ G \ Z(G).

Therefore, the condition, Σ(x, y) ∩ Σ(xy2 , xy3) = {e}
is equivalent to(

CG (x) ∪ CG (y) ∪ CG (xy)
)

∩
(
CG

(
xy2) ∪ CG

(
xy3) ∪ CG

(
xy2xy3)) = Z(G).

Again, this can be shown to be equivalent to checking the
equations khk−1 �= h for all k ∈ {x, y, (xy)−1} and h ∈
{xy2 , xy3 , (xy2xy3)−1}. When proving this, we make use
of the equations (xy)−1z = xp−1yp−1 and (xy2xy3)−1 =
yp−5xp−2z2 . We get the following equations:

x−1xy2x = y2x, y−1xy2y = yx2z2 ,

y−1x−1xy2xy = y2xz, x−1xy3x = y3x,

y−1xy3y = y2x2z3 , y−1x−1xy3xy = y3xz,

x−1yp−5xp−2z2x = yp−5x2p−4z2+(p−5)(p−1) ,

y−1yp−5xp−2z2y = yp−5xp−2zp ,

y−1x−1yp−5xp−2z2xy = yp−5x2p−2z2p−1 .

Therefore, since centralizing does not occur for p ≥ 7,
the result follows.

Remark 3.2. The group given by Lemma 3.1 for
p = 7 is the second group in a family of groups in
[Barker et al. 11b, Theorem 3.2]. There, it arises as a 7-
quotient of a finite-index subgroup of an infinite group
with special presentation related to a finite projective
plane.

For groups of order 53, a MAGMA search reveals that
the only Beauville 5-group of order 53 is the one given by

G := 〈x, y, z|x5 , y5 , z5 , [x, y] = z〉,
with Beauville structure {{x, y}, {xy2xy4}}.

The above has the following consequence.

Corollary 3.3. The smallest non-abelian Beauville p-group
for p ≥ 5 has order p3 .

4. GROUPS OF ORDER p4

The classification of groups of order p4 is well known;
this result is due to [Hölder 93]. We list the nonabelian
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Name Presentation
G1 , G2 , G3 as in Table 1
G

′
4 〈x, y | x8 , y2 , xy = x7 〉

G
′
5 〈x, y | x8 , y2 , xy = x3 〉

G
′
6 〈x, y | x8 , y4 , xy = x−1 , x4 = y2 〉

TABLE 2. The nonabelian 2-generated groups of order 24 .

2-generated groups of order p4 in Table 1 for p odd and
Table 2 for p = 2. The only abelian Beauville group of
order p4 is Cp2 × Cp2 for p > 3.

The group G1 is not Beauville, as a special case of
Lemma 2.1. The groups G3 , G4 G5 , G6 , and G8 are never
Beauville groups by an argument analogous to the proof
of Lemma 2.1, that is, in each case all elements of order
p are contained in a proper subgroup, so any generat-
ing set must contain an element of order p2 , but since
all elements of order p2 power up to the same elements
of order p, we cannot have a Beauville structure. The
groups in Table 2 are easily checked by computer not to
be Beauville groups.

The group G2 is a Beauville group for p > 3 by Lemma
2.2, and G7 is a Beauville group for p > 3 by an ar-
gument analogous to the proof of Lemma 3.1 showing
that {{w, z}, {wz2 , wz3}} is a Beauville structure. We
can state the above information in the following lemma.

Lemma 4.1. For every prime p ≥ 5, the groups G2 and
G7 are nonabelian Beauville groups of order p4 .

For p = 3, the groups G2 and G7 are not Beauville
groups.

5. GROUPS OF ORDER p5

Computer calculations using Magma show that this is
the first occurrence of a Beauville 3-group. This group is,
in fact, the only Beauville group of order 35.

Example 5.1. The group〈
x, y, z, w, t | x3 , y3 , z3 , w3 , t3 , yx = yz, zx = zw, zy = zt

〉
is a nonabelian Beauville group of order 35 with Beauville
structure given by {{x, y}, {xt, y2w}}.

The computer program Magma was further used to
explore the possible Beauville groups of order p5 , for
p > 3. The results of our computer experimentations are
presented in Table 3. We note that there are no abelian
Beauville groups of order p5 .

We observed that for each prime 5 ≤ p ≤ 19, there are
exactly p + 10 Beauville groups of order p5 . The presen-
tations for the p + 10 groups are given below, seven Hi

groups and p + 3 Hi,j,k ,l groups. The remainder of this
section is devoted to proving Theorem 1.4. We start by
showing that five of the seven Hi groups are Beauville
groups. We follow this up using the work of [James 80,
Section 4.5, part (6)] to analyze a family of nonisomor-
phic groups given by the groups Hi,j,k ,l .

Let X = {x, y, z, w, t} and set Hi := 〈X | Ri〉 for the
following relations:

R1 = {xp = w, yp = t, zp , wp , tp , [y, x] = z},
R2 = {xp, yp , zp , wp , tp , [y, x] = z, [z, x] = w, [z, y] = t},
R3 = {xp = w, yp = t, zp , wp , tp , [y, x] = z, [z, x] = t},
R4 = {xp = w, yp = tr , zp , wp , tp , [y, x] = z, [z, x] = t},

where r is taken as 2, 5, 6, 7, 6, 10 for p = 5, 7, 11, 13, 17, 19
and

R5 = {xp = w, yp = t, zp , wp , tp , [y, x] = z, [z, x] = t,

[z, y] = t},
R6 = {xp, yp , zp , wp , tp , [y, x] = z, [z, x] = w, [w, x] = t},
R7 = {xp, yp , zp , wp , tp , [y, x] = z, [z, x] = w, [z, y] = t,

[w, x] = t}.

Remark 5.2. It would be interesting to know how r, which
appears in the set of relations R4 , varies as a function
of p.

The above Hi groups correspond to Beauville groups
for 5 ≤ p ≤ 19. We now look to [Fuertes and Jones 11,
Section 4] on lifting Beauville structures to extend the
computational results to primes p > 19.

Definition 5.3. Let G be a finite group with a normal
subgroup N . An element g of G is faithfully represented
in G/N if 〈g〉 ∩ N = {e}.

If T = {g1 , . . . , gk} is a k-tuple of elements of G, we
say that this k-tuple is faithfully represented in G/N if
〈gi〉 ∩ N = {e} for 1 ≤ i ≤ k.

Lemma 5.4. [Fuertes and Jones 11, Lemma 4.2] Let G
have generating triples {xi, yi , zi} with xiyizi = e for
i = 1, 2 and a normal subgroup N such that at least one
of these triples is faithfully represented in G/N .
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p n h(p) g(p)
2 – 19 0
3 3 29 1
5 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 23, 30, 33 37 15
7 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 21, 22, 25,

32, 37 41 17
11 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 25, 26, 29, 36, 39 41 21
13 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 27, 28, 31,38, 43 49 23
17 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25,26, 31,32, 35, 42, 45 49 27
19 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 33, 34, 37, 44, 49 53 29

TABLE 3. The groups SmallGroup(p5 ,n) for p ≤ 19 a prime that have Beauville structures. Here h(p) (respectively g(p)) is the
number of 2-generated (respectively Beauville) groups of order p5 .

If the images of these triples correspond to a Beau-
ville structure for G/N , then these triples correspond to
a Beauville structure for G.

We can now make the following conclusions for some
of the group structures Hi = 〈X | Ri〉.

Lemma 5.5. Let Hi = 〈X | Ri〉 for i = 2, 6, 7 and p ≥ 5 a
prime. Then Hi is a Beauville group of order p5 .

Proof. Firstly, for p = 5, Magma calculations show that
the groups Hi for i = 2, 6, 7 have Beauville structures cor-
responding to {{x, y}, {xy2 , xy4}}.

Secondly, let p ≥ 7. For each group Hi , the cen-
ter Zi = Z(Hi) is given by the subgroup 〈t, w〉, and
{x, y}, {xy2 , xy3} are two generating sets for the groups
Hi for i = 2, 6, 7. The quotient group Hi/Zi is isomor-
phic to the group G given in Lemma 3.1. Clearly, the
images of x, y, and xy in Hi/Zi are faithfully repre-
sented (in the sense of Definition 5.3) and correspond
to the Beauville structure {{x, y}, {xy2 , xy3}} for the
group G.

Thus, by Lemma 5.4 we see that the Beauville struc-
ture {{x, y}, {xy2 , xy3}} lifts to a Beauville structure for
the groups Hi for i = 2, 6, 7.

Lemma 5.6. Let H1 = 〈X | R1〉 and let p ≥ 5 be a prime.
Then H1 is a Beauville group of order p5 .

Proof. By Lemma 2.3, with n = 2, we see that the
groups H1 have Beauville structures corresponding to
{{x, y}, {xy2 , xy4}}.

Lemma 5.7. Let H5 = 〈X | R5〉 and let p ≥ 5 be a prime.
Then H5 is a Beauville group of order p5 .

Proof. We claim that the groups H5 for p ≥ 5 have Beau-
ville structures corresponding to {{x, y}, {xy2 , xy4}}.

It is clear that {x, y} and {xy2 , xy4} are generating
sets for H5 . Now, given xp = w, yp = t, [x, y] = z, [z, x] =
[z, y] = t, and the center Z(H5) = 〈w, t〉, we see that

Σ(x, y) = {e}
⋃(p2 −1⋃

i=1

{xi, yi , xiyi}〈z〉〈yp
)

\
p−1⋃

i,j,k=1

{
xipyjpzk , yipyjpzk , xipyipyjpzk

}
,

and

Σ(xy2 , xy4) = {e}
⋃(p2 −1⋃

i=1

{xiy2i , xiy4i , x2iy6i}〈z〉〈yp〉
)

\
p−1⋃

i,j,k=1

{xipy2ipyjpzk , xipy4ipyjpzk , x2ipy6ipyjpzk}.

We prefer to write w in terms of xip , and t in terms of
yip , for 0 ≤ i ≤ p − 1. Therefore,

Σ(x, y) ∩ Σ(xy2 , xy4) = {e}.

We are now left with the groups given by relations
Ri for i = 3, 4. We cannot lift Beauville structures from
groups of order < p5 to the groups Hi for i = 3, 4, since
any normal subgroup Ni of Hi would decrease the order
of the generators x, y. Thus, x, y would not be faithfully
represented in Hi/Ni .
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We now have the following groups for selected values
of i, j, k, l ∈ {0, . . . , p − 1}. We find that p + 3 nonisomor-
phic groups for 5 ≤ p ≤ 19 give rise to Beauville p-groups
with the following presentations”

Hi,j,k ,l :=
〈
x, y, z, w, t | xp = witj , yp = wktl , zp , wp ,

tp , [x, y] = z, [x, z] = w, [y, z] = t
〉
.

These groups correspond to the groups Small-

Group(p5 , n) for 7 ≤ n ≤ p + 9, as given by the Magma

(and GAP) small groups library.
In [James 80, Section 4.5, part (6)], the group struc-

tures for p-groups of order p5 for p > 3 are listed. The
groups having the structure of the groups Hi,j,k ,l are thus
given in the classification. We will use this classification
to find Beauville structures for the groups Hi,j,k ,l to ex-
tend the computational results to primes p > 19.

We can state the following lemma, which is a conse-
quence of the classification of groups of order p5 .

Lemma 5.8. If p > 3 is a prime, then there are p + 7 non-
isomorphic groups of the following form:

Hi,j,k ,l :=
〈
x, y, z, w, t | xp = witj , yp = wktl , zp , wp ,

tp , [x, y] = z, [x, z] = w, [y, z] = t
〉
,

where i, j, k, l ∈ {0, . . . , p − 1}.

Proof. From [James 80, Section 4.5, part (6)], we see that
there are

1 +
1
2
(p − 1) + 2 + 1 +

1
2
(p − 1) + 1 + 2 + 1 = p + 7

groups of this form.

We are now in a position to prove Theorem 1.4, which
was stated in the introduction. It is convenient to note
that all the groups Hi,j,k ,l have center Zi,j,k ,l = 〈w, t〉 and
Hi,j,k ,l/Zi,j,k ,l

∼= G, the group given by Lemma 3.1.

Proof of Theorem 1.4. Firstly, by Lemmas 5.5, 5.6, and
5.7, we have five Beauville groups for each prime p > 3.

Secondly, we consider the p + 7 nonisomorphic groups
Hi,j,k ,l given by Lemma 5.8. We note that the group given
by H0,0,0,0 corresponds to H2 , and thus (since we do not
want to count the group twice) we have p + 6 nonisomor-
phic groups of the form Hi,j,k ,l to account for.

The groups corresponding to Φ6(2111)br in [James 80,
Section 4.5, part (6)] cannot admit a Beauville structure,
since xp = e, yp = wr , where r = 1 or ν (the smallest
positive integer that is a quadratic nonresidue modulo
p), i.e., the groups H0,0,r,0 . Similarly, the group given by

Φ6(2111)a in [James 80, Section 4.5, part (6)] cannot ad-
mit a Beauville structure, since xp = w, yp = e, i.e., the
group H1,0,0,0 . We are therefore left with p + 3 noniso-
morphic groups to analyze.

The remaining p + 3 groups Hi,j,k ,l have nontrivial
words u(w, t), v(u, t) such that xp = u(w, t) and yp =
v(w, t). Since the words u, v are made up of elements
of the center Zi,j,k ,l of the groups Hi,j,k ,l and the order
of the elements x, y is p2 , we see that the remaining p + 3
groups satisfy the criteria Σ(x, y) ∩ Σ(xy2 , xy4) = {e} for
p > 3. That is, each element of the form xaybzc (with
both a �= 0 and b �= 0) is conjugate to elements of the
form xaybzds(w, t), where s(w, t) is a word in w, t. There-
fore, {{x, y}, {xy2 , xy4}} is a Beauville structure for the
remaining p + 3 groups. The result then follows.

We see for 5 ≤ p ≤ 19 that the number of groups found
to have Beauville structures is p + 10. From the above
work, we are led to make the following conjecture.

Conjecture 5.9. For all p ≥ 5, the number of Beauville
p-groups of order p5 is given by g(p) = p + 10.

In particular, H3 and H4 are Beauville groups for
p ≥ 5.

In the preceding paragraphs we produced p + 8 groups
of order p5 that admit a Beauville structure.

For groups of order p5 , the number of 2-generated
groups is approximately half of the total number of
groups. We see from [James 80] that the exact number
of 2-generated p-groups of order p5 for p ≥ 5 is given by

h(p) = p + 26 + 2 gcd(p − 1, 3) + gcd(p − 1, 4).

Thus, h(p) ∼ p as p → ∞. The function h(p) is an ob-
vious upper bound for the number of Beauville groups of
order p5 . Since p + 36 ≥ h(p) > g(p) ≥ p + 8, we get that
g(p) ∼ p as p → ∞, and so

lim
p→∞

g(p)
h(p)

= 1.

Thus, the proportion of 2-generated groups of order p5

that are Beauville tends to 1 as p tends to infinity, which
establishes Corollary 1.5.

6. REMARKS ON GROUPS OF ORDER p6

For groups of order p6 , we used Magma to determine
that there are no Beauville 2-groups and only three Beau-
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ville 3-groups. These groups correspond to the groups
SmallGroup(36 , n) for n = 34, 37, 40.

Remark 6.1. It is interesting to note that Corollary 1.7
also holds for nonabelian 2-generated groups of order p6 ,
since there are only three abelian ones.

For p > 3, we would like an asymptotic result for
groups of order p6 , similar to that in Section 5 for p5 .
Using [Newman et al. 04, Theorem 2 and Table 1], we
see that there are in total

f(p) = 10p + 62 + 14 gcd(3, p − 1) + 7 gcd(4, p − 1)
+ 2 gcd(5, p − 1)

2-generated groups of order p6 for p > 3 a prime. Thus,
f(p) ∼ 10p as p → ∞.

From [Newman et al. 04, Theorem 2], the family of
groups of order p6 given by 〈a, b | bp , class 2〉 give rise
to p + 15 nonisomorphic groups (see [Newman et al. 04,
Table 1]). One can generate these group presenta-
tions for each prime p by the following Magma

code:

> G:=Group<a,b|b^p>;

> P:=pQuotient(G,p,2);

> D:=Descendants(P: OrderBound := p^6);

> D := [d: d in D | #d eq p^6];

Each of the groups contained in D is 2-generated, say
by x and y. We find that for each prime p, there exists a
family of nonisomorphic groups contained in D given by
the following presentations,

Kr =
〈
x, y, z, u, v, w | xp = u, yp = wr , zp , up = v,

vp , wp , [y, x] = z, [z, x] = v, [z, y] = w
〉
,

for r = 1, . . . , p − 1.
It follows that all of the p − 1 groups have o(x) �= o(y).

You can clearly see, given the above group structures,
that if o(x) �= o(y), then Kr does not have a Beauville
structure (this is similar to the third paragraph of the
proof of Theorem 1.4, Section 5). That is, any second
set of generators one tries to construct will have ele-
ments of the form xayb , and so if o(x) �= o(y), we will
have Σ(x, y) ∩ Σ(xayb , xcyd) �= {e}. Therefore, we obtain
a family of p − 1 2-generated non-Beauville groups of or-
der p6 , which proves Theorem 1.6 and establishes Corol-
lary 1.7.
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