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Extensive and systematic machine computations are carried out
to investigate the integral cohomology of the Euclidean Bianchi
groups and their congruence subgroups. The collected data give
insight into several aspects, including the asymptotic behavior
of the torsion in the first homology. Along with the experimen-
tal work, some basic properties of the integral cohomology are
recorded with an eye toward the liftability issue of Hecke eigen-
value systems.

1. INTRODUCTION

Bianchi groups are groups of the form PSL2(O), where
O is the ring of integers of an imaginary quadratic field.
First studied by L. Bianchi in 1892 [Bianchi 92], these
groups form an important class of arithmetic Kleinian
groups. In fact, it is well known that any noncocompact
arithmetic Kleinian group, after conjugation, is commen-
surable with a Bianchi group.

In this paper, I will be interested in the cohomol-
ogy of Bianchi groups with certain O-module coefficients.
These cohomology groups are fundamental to the study
of Bianchi modular forms, that is, modular forms (for
GL2) over an imaginary quadratic field. In contrast to
their analogues over totally real fields, i.e., Hilbert mod-
ular forms, the arithmetic of Bianchi modular forms is
little understood. One of the features that obstruct the
application of standard methods is the torsion in the co-
homology of Bianchi groups.

The first computations of torsion appeared in
[Elstrodt et al. 81], in which the abelianizations Γ0(p)ab

(� H1(Γ0(p), Z)) of congruence subgroups Γ0(p) for
prime ideals p of Z[i] of residue degree 1 and norm
≤ 400 were computed. In the same paper, numerical ev-
idence suggesting a connection between some of the 2-
torsion classes and certain S3-extensions of Q (i) was
exhibited. Later, [Figueiredo 99] provided several more
examples that suggested the same kind of connection
between certain 3-torsion classes and certain SL2(F 3)-
extensions of the fields Q (

√−d) with d = 1, 2, 3. Re-
cently, further examples have been given in [Şengün 11a],
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and also in [Torrey 11], where the author formulates and
tests an analogue of the strong modularity conjecture of
[Serre 87], which has since been proved.

In [Grunewald and Schwermer 93], the conjugacy
classes of small-index subgroups of several Bianchi groups
were determined. In particular, the authors computed the
abelianizations of a large number of small-index (≤ 12)
subgroups. Depending on the data they collected and the
data in [Elstrodt et al. 81], they speculated that for any
finite-index subgroup Γ of a Bianchi group G, if a prime
p appears as an exponent for an element of Γab, then p

should be smaller than half the index of Γ in G.
In the unpublished thesis [Taylor 88], the existence of

pm -torsion classes in H1(Γ1(Npr ), Ek,�(O)) was proved
(notation will be explained later) with k �= � un-
der special circumstances. In the unpublished thesis
[Priplata 00], the author numerically investigated the
torsion for some Bianchi groups, mostly for coefficient
modules Ek,� where k �= �. It is worth remarking that
the (co)homology of Bianchi groups is related to cusp-
idal Bianchi modular forms only in the parallel-weight
case, that is, in the case k = �.

In this paper, I report on my extensive systematic
computations of the integral (co)homology of Bianchi
groups. More specifically, I worked with the groups
PSL(Od) and PGL2(Od) with −d = 1, 2, 3, 7, 11 and also
with their congruence subgroups. Motivated by the pos-
sibility of congruences between cuspidal Bianchi mod-
ular forms and torsion classes, and also the arithmetic
connections mentioned above, I limited myself to the
(co)homology with parallel weights. The data I collected
make possible the following assertions:

� They show that H2
cusp can have sporadically large

torsion part with very little torsion-free part; in par-
ticular, the speculations of Grunewald and Schwer-
mer mentioned above are false.

� They support a recent conjecture of Long, Maclach-
lan, and Reid [Long et al. 06] on the existence of
certain families of rational homology spheres.

� They strongly suggest that an analogue of the very
recent result of [Bergeron and Venkatesh 10] on the
asymptotic behavior of the torsion in the homol-
ogy of cocompact arithmetic congruence lattices in
SL2(C ) holds for Bianchi groups.

Along with the computational work, I record some basic
properties of the integral cohomology with an eye toward
the liftability issue of Hecke eigenvalue systems.

2. THE MODULES

Given a commutative a ring R, let Ek (R) denote the
space of homogeneous degree k polynomials in two vari-
ables over R. Note that {xk−iyi : 0 ≤ i ≤ k} is an R-basis
of Ek (R).

For a polynomial P (X,Y ) in Ek (R) and a matrix(
a b
c d

)
in M2(R), we have the right action(
P ·
(

a b

c d

))
(X,Y ) = P

((
a b

c d

)(
X

Y

))

= P (aX + bY, cX + dY ) .

Let O be the ring of integers of an imaginary quadratic
field. Consider the M2(O)-module

Ek,�(O) := Ek (O) ⊗O E�(O).

Here the overline on the second factor indicates that ac-
tion on the second factor is twisted with complex conju-
gation. Note that we should insist that k + � be even so
that − Id acts trivially and thus PSL(2,O) acts on it as
well.

It is useful to remark that

Ek,�(O) � Symk (O2) ⊗O Sym
�
(O2)

as M2(O)-modules, where Symi(O2) is the ith symmetric
power of the standard representation of M2(O) on O2 .
Here the overline on the second factor means that the
action is twisted with complex conjugation.

Let π be a prime element of O over a rational prime
p. Put κπ for its residue field. We put

Ek,l(κπ ) := Ek,�(O) ⊗O κπ .

If p splits in O, then

Ek,l(κπ ) � Ek (κπ ) ⊗ E�(κπ̄ ).

Thus PSL2(O) acts on it by reduction modulo π on the
first factor and by reduction modulo π̄ on the second. If
p is inert in O, then

Ek,l(κπ ) � Ek (κπ ) ⊗ E�(κπ )σ .

Here PSL2(O) acts by reduction modulo π. The action
on the second factor is twisted by the nontrivial auto-
morphism σ of κπ .

Finally, when p is ramified in O, we have

Ek,l(κπ ) � Ek (κπ ) ⊗ E�(κπ ).

Here the action of PSL2(O) is via reduction modulo π

and is the same on both factors.
A result of [Brauer and Nesbitt 41] tells us that in the

inert and split cases, the PSL2(O)-modules Ek,�(κπ ) are
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irreducible only when 0 ≤ k, � ≤ p − 1. In the ramified
case, Ek,l(κπ ) is never an irreducible PSL2(O)-module
unless k = 0 ≤ � ≤ p − 1 or � = 0 ≤ k ≤ p − 1. For more
on the structure of these modules, we refer to reader to
[Şengün and Türkelli 09].

The following will be used later.

Proposition 2.1. Let O be the ring of integers of an imag-
inary quadratic field. Let k ≥ � and put R = O[ 1

k ! ]. Then
there is a PSL2(O)-equivariant perfect pairing

Ek,�(R) × Ek,�(R) → R.

It is well known (see, e.g., [Wiese 07, Lemma 2.4]) that
there is a perfect pairing on Symn (R2) coming from the
determinant pairing on R2 whenever n! is invertible in
the ring R. The proposition follows by taking the prod-
uct of the two pairings associated with the two factors
of Ek,� . For an explicit description of this pairing, see
[Berger 08, Section 2.4]. As a corollary, we see that the
modules Ek,�(R) are self-dual.

3. THE COHOMOLOGY

In this section I will investigate the integral cohomology
of Bianchi groups. My treatment is heavily influenced by
[Hida 81, Wang 94, Serre 70, Wiese 07].

Let K be an imaginary quadratic field. Let O be its
ring of integers. Let G be the associated Bianchi group.
Let Γ be a finite-index subgroup of G. In this paper, we
will focus on the O-modules

Hi(Γ, Ek,l(O)), i = 1, 2.

It is well known that these are finitely generated.

Definition 3.1. Let π ∈ O be a prime element over the
rational prime p. Assume that Hi(Γ, Ek,�(O)) has π-
torsion, i.e., that it contains a nonzero class c such that
π · c = 0. We say that π is a large torsion if k, � < p. Oth-
erwise, we say that π is a small torsion.

Proposition 3.2. Let π be prime element of O over the
rational prime p. Put κπ for its residue field. Let Γ be a
torsion-free finite-index subgroup of the Bianchi group G.

(a) If Γ surjects onto PSL2(κπ ) and π is unramified, then
H1(Γ, Ek,�(O)) has no large π-torsion.

(b) If Γ surjects onto PSL2(κπ ) and π is ramified, then
H1(Γ, Ek,�(O)) has no π-torsion if and only if k = 0
≤ � ≤ p − 1 or � ≤ 0 ≤ k ≤ p − 1.

(c) The obstruction to the lifting of a class in
H1(Γ, Ek,�(κπ )) to H1(Γ, Ek,�(O)) is the π-torsion
in H2(Γ, Ek,�(O)).

(d) H2(Γ, Ek,�(O)) ⊗ κπ � H2(Γ, Ek,�(κπ )) for every
k, �.

Proof. In the following, let us put E = Ek,� . Consider the
short exact sequence

0 → E(O) ·π−→ E(O) → E(κπ ) → 0,

where ·π is the multiplication-by-π map.
The associated long exact sequence gives the short ex-

act sequence

0 → Hi(Γ, E(O)) ⊗ κπ → Hi(Γ, E(κπ ))
→ Hi+1(Γ, E(O))[π] → 0

for i ≥ 0. Here Hj (Γ, E(O))[π] denotes the kernel of the
map induced by ·π.

Putting i = 0, we get

E(κπ )Γ � H1(Γ, E(O))[π].

Now (a) and (b) follow via the irreducibility discussions
of the previous section. For i = 1, we get

0 → H1(Γ, E(O)) ⊗ κπ → H1(Γ, E(κπ ))
→ H2(Γ, E(O))[π] → 0,

which explains the claim (c). It is known that the virtual
cohomological dimension of a Bianchi group is 2. Setting
i = 2, we get

H2(Γ, E(O)) ⊗ κπ � H2(Γ, E(κπ )),

finishing the proof.

Each cohomology space comes equipped with a com-
muting family T of Hecke operators acting on it; see
[Şengün and Türkelli 09]. An eigenvalue system with val-
ues in a ring R is a ring homomorphism Φ : T → R.
We say that an eigenvalue system Φ occurs in an RT -
module A if there is a nonzero element a ∈ A such that
Ta = Φ(T )a for all T in T . Using the lifting theorem
[Ash and Stevens 86, Proposition 1.2.2], we can lift an
eigenvalue system occurring in H2(Γ, E(κπ )) to one oc-
curring in H2(Γ, E(R)), where R is some finite extension
of the completion of O at π. The possible p-torsion in
H2(Γ, E(O)) obstructs us from applying the lifting theo-
rem to lift eigenvalue systems occurring in H1(Γ, E(κπ )).
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3.1. Cuspidal Cohomology

There is a subspace of the cohomology that is of special
interest due to the fact that it can be identified with
cuspidal Bianchi modular forms.

Let K = Q (
√−d) be an imaginary quadratic field of

class number hK with ring of integers O = Od . Let P
denote the projective line over K and G = PSL2(O). The
group PSL2(K) acts naturally on K2 and thus on P . It is
well known that the cardinality |P/G| of the set P/G of
G-orbits of P is equal to hK . Hence |P/Γ| is finite for any
finite-index subgroup Γ of G. We will call the elements
of P/Γ the cusps of Γ.

For every D ∈ P , let BD be the Borel subgroup of G

defined by the (setwise) stabilizer of D in G. Then the
pointwise stabilizer of D in G is the unipotent radical
UD of the Borel subgroup BD . Let Γ be a finite-index
subgroup of G, and Dc a representative for a cusp c of Γ.
Define

Γc := BDc
∩ Γ.

If Γc is torsion-free (this is automatic if Γ is itself torsion-
free or −d �= 1, 3), then Γc = UDc

∩ Γ and Γc is free
abelian of rank two (see [Serre 70, p. 507]). The group

U(Γ) :=
⊕

c∈P/Γ

Γc

is independent, up to isomorphism, of the choice of rep-
resentatives taken for the cusps of Γ.

Let E be a Γ-module. Consider the long exact sequence
of relative group cohomology for the pair (Γ, U(Γ))

· · · → Hi−1
c (Γ, E) → Hi(Γ, E) → Hi(U(Γ), E) → · · · ,

where Hn
c (Γ, E) := Hn (Γ;U(Γ), E) and the third arrow

is given by the restriction maps.

Definition 3.3. The cuspidal cohomology Hi
cusp(Γ, E) is

defined as the image of the cohomology with compact
support in Hi(Γ, E), or equivalently as the kernel of the
restriction map Hi(Γ, E) → Hi(U(Γ), E).

Remark 3.4. Let Sk (Γ) denote the space of cuspidal
Bianchi modular forms with level Γ and weight k. In
[Harder 87] the so-called Eichler–Shimura–Harder iso-
morphism

Sk (Γ) � H1
cusp(Γ, Ek,k (C )) � H2

cusp(Γ, Ek,k (C ))

of Hecke modules is proved. Note that the second isomor-
phism is an instance of a duality result saying that if F
is a field in which 6 is invertible, then

H1
cusp(Γ, E(F ))∨ � H2

cusp(Γ, E(F )∨)

as Hecke modules, where −∨ denotes the dual; see
[Ash and Stevens 86, Lemma 1.4.3].

Deep results from [Borel and Wallach 80, Section II]
imply that whenever k �= �, the cuspidal cohomology
Hi

cusp(Γ, Ek,�(C )) vanishes. It is important to remark
that this is no longer true when the module Ek,�

is not over a field of characteristic 0. In particular,
Hi

cusp(Γ, Ek,�(O)) is completely torsion when k �= �.

Proposition 3.5. Let Γ be a finite-index subgroup of the
Bianchi group PSL2(O). Assume either that Γ is torsion-
free or that −d �= 1, 3. Then H2(U(Γ), Ek,�(O)) has no
large torsion.

Proof. It is enough to prove the claim for a single cusp
c of Γ, that is, for H2(Γc , E). So fix a cusp c and Γc .
Let E = Ek,� and t = max{k, �}. Put R = O[ 1

t! ]. Com-
position of the cup product and the perfect pairing of
Proposition 2.1 gives us a pairing

H0 (Γc , E(R)) × H2 (Γc , E(R))

∪
��

H2 (Γc , E(R) ⊗R E(R))
( ·, ·) �� H2 (Γc , R) � R

That H2(Γc , R) � R can be shown as follows. Recall that
Γc is free abelian with two generators, say a, u. It is
known (see [Mac Lane 63, p. 188]) that the tensor prod-
uct of the two resolutions

0 �� R[〈a〉] 1−a �� R[〈a〉] ε �� R �� 0,

0 �� R[〈u〉] 1−u �� R[〈u〉] ε �� R �� 0,

where ε is the usual augmentation map, gives a resolu-
tion of Γc . One sees from this resolution that the second
cohomology of Γc with any (right) R-module M can be
described as

H2(Γc ,M) � M/ (M(1 − a) + M(1 − u)) .

In the case of a trivial module R, it follows immediately
that H2(Γc , R) � R.

The above pairing gives that

H2(Γc , E(R)) � H0(Γc , E(R))∨.

Clearly H0(Γc , E(R)) � E(R)Γc is torsion-free. This im-
plies that its dual, and hence H2(Γc , E(R)), is torsion-
free. The claim that there can be only small torsion in
H2(Γc , E(O)) now follows, since R = O[ 1

t! ].

As a corollary we see that the cuspidal part of H2

is responsible for the possible large torsion. The referee
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brought to my attention that the analogue of the above
result for H1(U(Γ), Ek,k (O)) was proven in [Urban 95,
Proposition 2.4.1]. This result similarly implies that the
possible large torsion in H2

c (Γ, Ek,k (O)) comes from
H2

cusp(Γ, Ek,k (O)) as well.

Proposition 3.6. Let Γ be a torsion-free finite-index sub-
group of the Bianchi group PSL2(O). Let π be a prime
element of O over the rationa prime p, and put κπ for
the residue field of the ideal generated by π. Then

H2
cusp(Γ, Ek,�(O)) ⊗ κπ � H2

cusp(Γ, Ek,�(κπ ))

for every k, � < p.”

Proof. Put E = Ek,�(O). Now consider the commutative
diagram

H 2 (Γ, E)

��

·π �� H 2 (Γ, E)

��

�� H 2 (Γ, E(κπ ))

��

�� 0

0 �� H 2 (U (Γ), E) ·π �� H 2 (U (Γ), E) �� H 2 (U (Γ), E(κπ ))

Here the vertical maps are given by the usual restriction
maps.

The horizontal lines are exact. The exactness of the
first line comes from Proposition 3.2(d). The exactness
of the second line amounts to Proposition 3.5.

Observe that the cokernel of the restriction map
H2(Γ, E) → H2(U(Γ), E) is isomorphic to H3

cusp(Γ, E) ⊂
H3(Γ, E). Since the virtual cohomological dimension of
a Bianchi group is 2 and Γ is torsion-free, we have
H3(Γ, E) = 0. Now the claim follows by the snake
lemma.

Let us end this section with the following observation
on lifting eigenvalue systems.

Proposition 3.7. Let π ∈ O be a prime element over the
rational prime p > 3. Let Γ be a torsion-free finite-index
subgroup of PSL2(O). Let Φ be an eigenvalue system
occurring in H1

cusp(Γ, Ek,�(κπ )) with k, � < p and κπ =
O/(π). If Φ does not lift to H1

cusp(Γ, Ek,�(R)) for any fi-
nite extension R of the completion Oπ of O at π, then
there is a π-torsion eigenclass c ∈ H2

cusp(Γ, Ek,�(O)) re-
alizing a lift of Φ.

Proof. Since p > 3, by the duality result men-
tioned in Remark 3.4, we deduce that Φ∨ lives in
H2

cusp(Γ, Ek,�(κπ )). Note that our coefficient modules
are self-dual. Since k, � < p, using Proposition 3.6 and
the lifting theorem of Ash and Stevens mentioned after
Proposition 3.2, we infer that there is an eigenvalue

system Ψ living in H2
cusp(Γ, Ek,�(R)) lifting Φ∨ for

some finite extension R of Oπ . If Ψ is not realized
by a torsion eigenclass c ∈ H2

cusp(Γ, Ek,�(R)), then
we can realize Ψ in H2

cusp(Γ, Ek,�(L)), where L is the
field of fractions of R. By duality again, Ψ∨ occurs
in H1

cusp(Γ, Ek,�(L)). Since Ψ∨ has integral values,
it can be realized in H1

cusp(Γ, Ek,�(R)). Clearly Ψ∨

is a lift of Φ, and this contradicts our starting as-
sumption of nonliftability. To finish, observe that
Hi

cusp(Γ, Ek,�(R)) � Hi
cusp(Γ, Ek,�(O)) ⊗O R.

4. FIRST COHOMOLOGY

I will now describe a method, first observed in [Fox 53],
that allows us to compute H1 of any finitely presented
group with coefficients in a finite-dimensional module. It
is well known that Bianchi groups are finitely presented.
Presentations for many Bianchi groups are in the litera-
ture; see, for example, [Finis et al. 10].

Let me illustrate the method through an example.
A formal exposition is contained in [Finis et al. 10]. Let
w =

√−2 and G = PSL2(Z[w]). It is known that

G =
〈
A,B,U | B2 = (AB)3 = [A,U ]

= (BU 2BU−1)2 = 1
〉
,

where A,B,U can be realized respectively as(
1 1
0 1

)
,

(
0 −1
1 0

)
,

(
1 w

0 1

)
.

Let E be any G-module. Given any cocycle f : G → E,
any value f(X) can be expressed linearly in terms of the
images f(A), f(B), f(U) of the generators of G, e.g.,

f(ABU) = f(A) · BU + f(B) · U + f(U).

Moreover, f(A), f(B), f(U) satisfy the linear equations
coming from the relations of the presentation. For exam-
ple,

B2 = 1 =⇒ f(B)(B + 1) = 0.

Conversely, any pair (x, y, z) ∈ E3 satisfying the linear
equations coming from the presentation gives a cocycle
uniquely. Thus the space of cocycles can be seen as the
kernel of the matrix corresponding to this linear system.
One obtains the coboundaries similarly and hence com-
putes H1(G,E) as the quotient of the two spaces.

Note that to compute with a finite-index subgroup Γ
of G, it is not practical to apply the method to a presen-
tation of Γ (which can be derived from that of G once
the coset representatives are known). It is best to use
Shapiro’s lemma and compute H1(G,CoindG

Γ (E)).
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n norms of elementary divisors primes rank
0 0
1 [ 4] (2) 1
2 [ 2, 16 ] (2) 0
3 [ 2, 2, 4] (2) 1
4 [ 2, 2, 2, 8, 1152 ] (2,3) 0
5 [ 2, 2, 2, 2, 4, 4 ] (2) 2
6 [ 2, 2, 2, 2, 2, 2, 8, 8, 800 ] (2,5) 0
7 [ 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4] (2) 3
8 [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 8, 8, 32, 225792 ] (2,3,7) 0
9 [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4 ] (2) 3

10 [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 16, 288] (2,3) 1

TABLE 1. Data for H1 (PSL2 (O1 ), En ,n (O1 )).

4.1. Data on the Integral First Cohomology

I have implemented the above algorithm in Magma

[Bosma et al. 97] for the five Euclidean imaginary
quadratic fields K = Q (

√−d) with d = 1, 2, 3, 7, 11. In
the following, let Od denote the corresponding ring of
integers.

By the theory of modules over principal ideal domains,
we know that our O-module H1(Γ, E(O)) has a decom-
position

H1(Γ, E(O)) � O/(a1) ⊕ · · · ⊕ O/(am ) ⊕Or

with ai �= 0, 1 and ai | ai+1. The ai are called elementary
divisors and are unique up to multiplication by units.
The exponent r is called the rank.

In Tables 1 through 3, I report on some of my com-
putations. Observe that the torsion is always “small,” as
proved in Proposition 3.2. The only exception to this is
the ramifying prime, which always appears in the torsion.
We show the rank in a separate column, since it provides
a means to check our work against the dimension com-
putations of [Finis et al. 10].

5. SECOND COHOMOLOGY

The main method I employ for computing the sec-
ond cohomology is based on reduction theory as used
in [Schwermer and Vogtmann 83]. The cohomological di-
mension of Bianchi groups is 2, and the symmetric space
they act on, namely the hyperbolic 3-space H � C × R +,
is 3-dimensional. Reduction theory gives us a contractible
2-dimensional CW-complex inside H that is a deforma-
tion retract for the action of the Bianchi group. More-
over, the cellular action of the Bianchi group on the CW-
complex is cocompact. This makes the CW-complex a
suitable tool for cohomological computations.

I will continue to focus on the Euclidean imagi-
nary quadratic fields. The reduction theory for Bianchi
groups has been worked out for these fields in
[Mendoza 79] and [Flöge 83]. See also [Brunner et al. 85,
Rahm and Fuchs 11].

For an overview of Mendoza’s construction, I re-
fer readers to [Schwermer and Vogtmann 83]. I will ex-
hibit the method for the case of the Bianchi group
Γ = PSL2(Z[w]) with w =

√−2.
Let C be the 2-dimensional CW-complex constructed

by Mendoza for Γ. Then a fundamental cellular domain

n norms of elementary divisors primes rank
1 [ 8] (2) 1
2 [ 2, 32] (2) 1
3 [ 2, 2, 8] (2) 2
4 [ 2, 2, 2, 8, 1152] (2,3) 1
5 [ 2, 2, 2, 2, 8, 8] (2) 3
6 [ 2, 2, 2, 2, 2, 2, 8, 8, 7200] (2,3,5) 2
7 [ 2, 2, 2, 2, 2, 2, 2, 2, 8, 8, 8] (2) 4
8 [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 8, 8, 32, 225792] (2,3,7) 2
9 [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8] (2) 5

10 [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 32, 288] (2,3) 3

TABLE 2. Data for H1 (PSL2 (O2 ), En ,n (O2 )).
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n norms of elementary divisors primes rank
0 0
1 [ 3 ] (3) 0
2 [ 3 ] (3) 1
3 [ 3, 108 ] (2,3) 0
4 [ 3, 3, 12 ] (2,3) 0
5 [ 3, 3, 12 ] (2,3) 1
6 [ 3, 3, 3, 3, 10800 ] (2,3,5) 1
7 [ 3, 3, 3, 3, 3, 12 ] (2,3) 1
8 [ 3, 3, 3, 3, 3, 12, 2352 ] (2,3,7) 1
9 [ 3, 3, 3, 3, 3, 3, 3, 108, 972 ] (2,3) 1

TABLE 3. Data for H1 (PSL2 (O3 ), En ,n (O3 )).

F for the action of Γ on C is given by the area on the unit
hemisphere centered at the origin of H above the rectan-
gle in C × {0} with vertices (±w

2 , 0) and (1
2 ± w

2 , 0).
Let

a :=

(
1 w

w −1

)
, b :=

(
1 −1
1 0

)
, c :=

(
0 −1
1 0

)
.

The stabilizers of the edges (1-cells) and the vertices (0-
cells) of F are shown in Figure 1.

The horizontal edges are identified by the element g =
( 1 w

0 1 ), that is, gP1P2 = P4P3 . Thus the quotient by Γ is a
cylinder. Moreover, the stabilizer of the whole rectangle
(2-cell) is trivial.

From these combinatorial data, one can compute the
(co)homology. One way to do this is to feed the data into
the equivariant cohomology spectral sequence

Ep,q
1 (M) =

⊕
σ∈Σp

Hq (Γσ ,M) =⇒ Hp+q (Γ,M),

where M is any ZΓ-module and Σp is a set of rep-
resentatives of all the Γ-orbits of the p-cells of C. See
[Brown 94, p. 164] for a description. The homologi-
cal version of this spectral sequence has been used in
[Schwermer and Vogtmann 83, Rahm and Fuchs 11]. See

FIGURE 1. The stabilizers of the edges and the vertices
of F for PSL2 (O2 ).

[Yasaki 08, Section 10] for another method to extract the
same information.

Let Γi ,Γij stand for the stabilizers of the vertex Pi and
the edge between Pi and Pj respectively. Let M be a right
Γ-module over Z[w][ 1

6 ]. Since primes above 2 and 3 are
inverted, the cohomology of the (finite) stabilizers vanish
in degree greater than 0. Hence, we have Ep,q

1 (M) = 0 for
all q > 0. Therefore, the spectral sequence is concentrated
on the horizontal axis q = 0, and the cohomology of the
cochain complex

E0,0
1

d0 , 0
1−→ E1,0

1 (M)
d1 , 0

1−→ E2,0
1 (M)

gives H∗(Γ,M), that is,

H0(Γ,M) = ker(d0,0
1 ),

H1(Γ,M) = ker(d1,0
1 )/ im(d0,0

1 ),

H2(Γ,M) = M/ im(d1,0
1 ).

Now with the appropriate substitutions, the cochain com-
plex reads⊕

vertex i

H0(Γi ,M)
d0 , 0

1−→
⊕

edge ij

H0(Γij ,M)

d1 , 0
1−→ H0(〈Id〉,M).

Here 〈Id〉 is the trivial stabilizer of the 2-cell F .
To compute H2 explicitly, it remains to describe the

differential d1,0
1 . One can choose the orientation on F so

that the differential map becomes as follows:

MΓ1 ⊕ MΓ2
d0 , 0

1−→ MΓ1 2 ⊕ MΓ2 3 ⊕ MΓ4 1
d1 , 0

1−→ M,

where

d1,0
1 (m12 ,m23 ,m41) = m12 + m23 + m41 − m12 · g−1 .

The information on the fundamental 2-cell for the
groups PSL2(Od) with −d = 1, 2, 3, 7, 11 is included in
the article [Schwermer and Vogtmann 83], so I do not
repeat it here. The same information for the groups
PGL2(Od) with −d = 1, 2, 3, 7, 11 is not included in that
article, and one needs to go to the above-mentioned the-
sis of Mendoza (although information for a few of the
groups is contained in [Brunner et al. 85] as well), which
is hard to access from outside Germany. So I will now de-
scribe the information on these groups in pictorial form
as above.

PGL2(O1): Put i =
√−1. Let

a :=

(
0 i

i 0

)
, b :=

(
1 −1
1 0

)
, c :=

(
0 i

1 0

)
.
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FIGURE 2. The stabilizers of the edges and the vertices
of F for PGL2(O1 )

The stabilizers of the edges and the vertices of F are
shown in Figure 2. There are no identifications and the
stabilizer of the triangle (2-cell) is trivial.

PGL2(O2): Put w =
√−2. Let

a :=

(
0 1
1 0

)
, b :=

(
1 −1
1 0

)
,

c :=

(
w 1
1 0

)
, d :=

(
0 −1
1 0

)
.

The stabilizers of the edges and the vertices of F are
shown in Figure 3. There are no identifications and the
stabilizer of the rectangle (2-cell) is trivial.

PGL2(O3): Put w = 1+
√−3
2 . Let

a :=

(
0 1
1 0

)
, b :=

(
1 −1
1 0

)
, c :=

(
0 w

1 0

)
.

The stabilizers of the edges and the vertices of F are
shown in Figure 4. There are no identifications and the
stabilizer of the triangle (2-cell) is trivial.

FIGURE 3. The stabilizers of the edges and the vertices
of F for PGL2(O2 ).

FIGURE 4. The stabilizers of the edges and the vertices
of F for PGL2(O3 ).

PGL2(O7): Put w = 1+
√−7
2 . Let

a :=

(
0 1
1 0

)
, b :=

(
1 −1
1 0

)
,

c :=

(
1 −w

w −1

)
, d :=

(
0 −1
1 0

)
.

The stabilizers of the edges and the vertices of F are
shown in Figure 5. The two adjacent short edges on the
top are identified via g = ( 1 −w

0 −1 ), which fixes the vertex
between them. Thus these two edges are oppositely ori-
ented, and the stabilizer of the vertex between them is
D2 � 〈c, g〉. Again the stabilizer of the whole 2-cell is
trivial.

PGL2(O11): Put w = 1+
√−11
2 . Let

a :=

(
0 1
1 0

)
, b :=

(
1 −1
1 0

)
,

c :=

(
1 −w

w −2

)
, d :=

(
0 −1
1 0

)
.

The stabilizers of the edges and the vertices of F are
shown in Figure 6. The two adjacent short edges on the

FIGURE 5. The stabilizers of the edges and the vertices
of F for PGL2(O7 ).
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n primes rank
1 [ ] 1
2 [ 2 ] 1
3 [ 2, 3] 1
4 [ 2, 3 ] 1
5 [ 2 ] 2
6 [ 2, 3, 5 ] 1
7 [ 2, 3, 7 ] 3
8 [ 2, 3, 5, 7 ] 1
9 [ 2, 3 ] 3
10 [ 2, 3, 5, 7 ] 2
11 [ 2, 3, 5, 11 ] 4
12 [ 2, 3, 5, 7, 11 ] 1
13 [ 2, 3, 5 ] 5
14 [ 2, 3, 5, 7, 11, 13 ] 2
15 [ 2, 3, 5, 7 ] 5
16 [ 2, 3, 5, 7, 11, 13 ] 2
17 [ 2, 3, 5, 7 ] 6
18 [ 2, 3, 5, 7, 11, 13, 17, 19, 23 ] 2
19 [ 2, 3, 5, 7, 13, 19 ] 7
20 [ 2, 3, 5, 7, 11, 13, 17, 19, 409, 6997 ] 2
21 [ 2, 3, 5, 7, 59 ] 7
22 [ 2, 3, 5, 7, 11, 13, 17, 19, 13707791 ] 3
23 [ 2, 3, 5, 7, 11, 23, 113 ] 8
24 [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 1033, 4457, 18743 ] 2
25 [ 2, 3, 5, 7, 11, 13, 17, 1523 ] 9

TABLE 4. The primes that divide the size of the torsion part of H2 (PSL2 (O1 ), En ,n (O1 )).

top are identified via g = ( 1 −w
0 −1 ), which fixes the ver-

tex between them. Thus these two edges are oppositely
oriented, and the stabilizer of the vertex between them
is S3 � 〈c, g〉. Again the stabilizer of the whole 2-cell is
trivial.

5.1. Data on the Integral Second Cohomology: Level 1

I have implemented the above algorithm in Magma. I
have not inverted the primes above 2 and 3, and thus the

FIGURE 6. The stabilizers of the edges and the vertices
of F for PGL2(O11 ).

computations may not give correct data on 2, 3-torsion.
In Tables 4 through 13, I give a complete list of the primes
that appear in the torsion part of the second cohomology
of both PSL and PGL. The large primes are highlighted
in boldface.

The data imply that if (p) ramifies in O, then there
is p-torsion in the integral second cohomology (except in
the case k = � = 0), but I have not been able to prove
that this always obtains.

5.2. Higher Level

Now let us focus on the second cohomology of congruence
subgroups. For computational considerations, we will fo-
cus on the subgroups of the type

Γ0(a) :

{(
a b

c d

)
∈ G : c ≡ 0 mod a

}
.

Here G is the Bianchi group PSL2(Od), and a is an ideal
of Od , which is called the level.

5.2.1. Trivial Weight: Torsion.

To compute the second cohomology with trivial weight,
the approach employed in [Elstrodt et al. 81] is more
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n primes rank
1 [ ] 1
2 [ 2] 1
3 [ 2, 3] 1
4 [ 2 ] 1
5 [ 2 ] 2
6 [ 2, 3, 5 ] 1
7 [ 2, 3, 7 ] 2
8 [ 2, 3, 5, 7 ] 1
9 [ 2, 3 ] 3
10 [ 2, 3, 5, 7 ] 2
11 [ 2, 3, 11 ] 3
12 [ 2, 3, 5, 11 ] 1
13 [ 2, 3, 5 ] 4
14 [ 2, 3, 5, 7, 11, 13 ] 2
15 [ 2, 3, 5, 7 ] 4
16 [ 2, 3, 5, 7, 13 ] 2
17 [ 2, 3, 5, 7 ] 5
18 [ 2, 3, 5, 7, 11, 17 ] 2
19 [ 2, 3, 5, 19 ] 5
20 [ 2, 3, 5, 7, 13, 17, 19, 409] 2
21 [ 2, 3, 5, 7 ] 6
22 [ 2, 3, 5, 7, 11, 19 ] 3
23 [ 2, 3, 5, 7, 11, 23 ] 6
24 [ 2, 3, 5, 7, 11, 13, 17, 23, 1033 ] 2
25 [ 2, 3, 5, 7, 11, 17 ] 7
26 [ 2, 3, 5, 7, 11, 13, 19, 23, 157, 683 ] 3
27 [ 2, 3, 5, 7 ] 7
28 [ 2, 3, 5, 7, 11, 13, 17, 664197637 ] 3
29 [ 2, 3, 5, 7, 11, 13, 89 ] 8
30 [ 2, 3, 5, 7, 11, 13, 19, 23, 29, 211, 36312691 ] 3

TABLE 5. The primes that divide the size of the torsion part of H2 (PGL2(O1 ), En ,n (O1 )).

efficient than the reduction-theory approach used above.
The idea is to compute the abelianization of the con-
gruence subgroup Γ using a (finite) presentation for the
Bianchi group G and the knowledge of the permutation
action of the generators of G on a set of coset represen-
tatives of Γ in G.

The relationship between first homology and second
cohomology is given by the Lefschetz duality. Let R be
any module in which 6 is invertible. Then for any R[Γ]-
module E, we have

H1(Γ, E) � H2
c (Γ, E),

where the right-hand side is the cohomology with com-
pact support; see Section 2.

We are interested only in the case of the trivial coeffi-
cients R = Z[1/6]. We need to study the exact sequence

H1(Γ, R) → H1(U(Γ), R) → H2
c (Γ, R)

→ H2
cusp(Γ, R) → 0.

Assume that K has class number one and that Γ =
Γ0(p), where p is a prime ideal of residue degree one. It
is easy to see that Γ has only two cusps {0,∞}, that is,
|Γ \ P | = 2, and the two classes are represented by the
elements ( 1 0

0 1 ), ( 0 −1
1 0 ). If −d �= 1, 3, then the stabilizers

of the cusps are free abelian of rank 2, and by [Serre 70,
Corollaire 3, p. 517], the image of H1(Γ, R) has rank
2 in H1(U(Γ), R), which has rank 4. For −d = 1, 3, the
situation is complicated by the existence of torsion in
the stabilizers of cusps. In this case, let Γ+

c := Γ ∩ UDc

for each cusp c of Γ in the terminology of Section 3.1.
Then

Γc/Γ+
c � µ :=

〈(
ε 0
0 ε−1

)〉
,

where ε is a generator of the roots of unity in Od . The
inflation–restriction sequence then gives

H1(Γc , R) � H0(µ,H1(Γ+
c , R)).
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n primes rank
1 [ ] 1
2 [ 2 ] 1
3 [ 2, 3 ] 2
4 [ 2, 3 ] 1
5 [ 2, 3, 5 ] 3
6 [ 2, 3, 5 ] 2
7 [ 2, 3, 5, 7 ] 4
8 [ 2, 3, 5, 7 ] 2
9 [ 2, 3, 5, 7, 31 ] 5
10 [ 2, 3, 5, 7 ] 3
11 [ 2, 3, 5, 7, 11 ] 6
12 [ 2, 3, 5, 7, 11, 37 ] 3
13 [ 2, 3, 5, 7, 11, 13, 547 ] 7
14 [ 2, 3, 5, 7, 11, 13, 439, 110281 ] 4
15 [ 2, 3, 5, 7, 11, 13, 61, 163 ] 8

TABLE 6. The primes that divide the size of the torsion part
of H2 (PSL2 (O2 ), En ,n (O2 )).

Now let us directly show that the latter is trivial.
Without loss of generality, assume that c = ∞ and thus
that Γ+

c := ( 1 ∗
0 1 ) ∩ Γ. The action of µ on H1(Γ+

c , R) is
given as (τf)(x) = f(τxτ−1)τ = f(τxτ−1) for every τ ∈
µ and every 1-cocycle f : Γ+

c → R. Take ε ∈ O∗
d such that

ε2 = −1 and put τ = ( ε 0
0 ε−1 ). Then for any element x ∈

Γ+
c , we have τxτ−1 = x−1 . The condition f(x) = f(x−1)

for every x forces the 1-cocycle f to be the trivial cocycle
f = 0. We are done.

n primes rank
1 [ ] 1
2 [ 3 ] 1
3 [ 3 ] 1
4 [ 2, 3 ] 1
5 [ 2, 3, 5 ] 1
6 [ 2, 3, 5 ] 2
7 [ 2, 3, 5 ] 2
8 [ 2, 3, 7 ] 1
9 [ 2, 3, 7 ] 2
10 [ 2, 3, 5 ] 3
11 [ 2, 3, 5, 11 ] 2
12 [ 2, 3, 5, 7, 11 ] 2
13 [ 2, 3, 5, 11 ] 3
14 [ 2, 3, 5, 7, 13 ] 3
15 [ 2, 3, 5, 7, 13 ] 3
16 [ 2, 3, 5, 7, 11 ] 3
17 [ 2, 3, 5, 7, 17 ] 3
18 [ 2, 3, 5, 7, 13, 17 ] 4
19 [ 2, 3, 5, 7, 11, 17, 61 ] 4
20 [ 2, 3, 5, 7, 19 ] 3
21 [ 2, 3, 5, 7, 13, 19, 151 ] 4
22 [ 2, 3, 5, 7, 11, 17 ] 5
23 [ 2, 3, 5, 7, 11, 23, 103 ] 4
24 [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 53 ] 4
25 [ 2, 3, 5, 7, 11, 17, 23, 29, 947 ] 5
26 [ 2, 3, 5, 7, 11, 13 ] 5

TABLE 8. The primes that divide the size of the torsion part
of H2 (PSL2 (O3 ), En ,n (O3 )).

n primes rank
1 [ ] 1
2 [ 2 ] 1
3 [ 2 ] 2
4 [ 2, 3 ] 1
5 [ 2, 5 ] 3
6 [ 2, 3, 5 ] 1
7 [ 2, 3, 7 ] 4
8 [ 2, 3, 5, 7 ] 1
9 [ 2, 3 ] 5
10 [ 2, 3, 5, 7 ] 2
11 [ 2, 3, 5 ] 6
12 [ 2, 3, 5, 7, 11, 37 ] 1
13 [ 2, 3, 5, 13 ] 7
14 [ 2, 3, 5, 7, 11, 13, 110281] 2
15 [ 2, 3, 5, 7 ] 8
16 [ 2, 3, 5, 7, 11, 13, 1671337 ] 2
17 [ 2, 3, 5, 7, 103 ] 9
18 [ 2, 3, 5, 7, 11, 13, 17, 3812807473 ] 2
19 [ 2, 3, 5, 7, 907 ] 10
20 [ 2, 3, 5, 7, 11, 13, 17, 19, 3511, 879556698451244053] 2

TABLE 7. The primes that divide the size of the torsion part of H2 (PGL2(O2 ), En ,n (O2 )).
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n primes rank
1 [ ] 1
2 [ ] 1
3 [ 2, 3 ] 1
4 [ 2, 3 ] 1
5 [ 2, 3, 5 ] 1
6 [ 2, 3, 5 ] 1
7 [ 2, 3 ] 2
8 [ 2, 3, 7 ] 1
9 [ 2, 3 ] 2
10 [ 2, 3, 5 ] 2
11 [ 2, 3, 5, 11 ] 2
12 [ 2, 3, 5, 7, 11 ] 1
13 [ 2, 3 ] 3
14 [ 2, 3, 5, 7, 13 ] 2
15 [ 2, 3, 5 ] 3
16 [ 2, 3, 5, 7, 11 ] 2
17 [ 2, 3, 5, 17 ] 3
18 [ 2, 3, 5, 7, 13, 17 ] 2
19 [ 2, 3, 5, 7 ] 4
20 [ 2, 3, 5, 7, 19 ] 2
21 [ 2, 3, 5, 7 ] 4
22 [ 2, 3, 5, 7, 11, 17 ] 3
23 [ 2, 3, 5, 11, 23 ] 4
24 [ 2, 3, 5, 7, 11, 13, 19, 23, 53 ] 2
25 [ 2, 3, 5, 7 ] 5
26 [ 2, 3, 5, 7, 11, 13 ] 3
27 [ 2, 3, 5, 7, 11 ] 5
28 [ 2, 3, 5, 7, 11, 13, 17, 23 ] 3
29 [ 2, 3, 5, 7, 29 ] 5

TABLE 9. The primes that divide the size of the torsion part
of H2 (PGL2(O3 ), En ,n (O3 )).

An alternative way is to use the geometric approach,
which I mostly avoided in this paper. Then our discussion
here follows from the observation that the cross section of
a cusp is an orbifold with underlying manifold a sphere in
the cases −d = 1, 3 and is a torus in the remaining cases.

I wrote programs in Magma to compute Γ0(p)ab for
the Euclidean Od , that is, for −d = 1, 2, 3, 7, 11. It is eas-
ily seen that the torsion get very large very quickly com-
pared to the norm of the level of the congruence sub-
group. Recall from the introduction that it was specu-
lated in [Grunewald and Schwermer 93] that no p-torsion
appearing in the abelianization of a finite-index sub-
group Γ is greater then half of the index of Γ inside the
Bianchi group. In the case of Γ0(p), Grunewald and Schw-
ermer’s speculation says that any p-torsion that appears
in Γ0(p)ab should satisfy

p ≤ Np + 1
2

,

where Np is the norm of the prime ideal p.

n primes rank
1 [ ] 1
2 [ 2, 7 ] 1
3 [ 2, 3, 7 ] 1
4 [ 2, 3, 7 ] 2
5 [ 2, 3, 5, 7 ] 2
6 [ 2, 3, 5, 7 ] 2
7 [ 2, 3, 5, 7 ] 3
8 [ 2, 3, 5, 7 ] 3
9 [ 2, 3, 5, 7 ] 3
10 [ 2, 3, 5, 7 ] 4
11 [ 2, 3, 5, 7, 11 ] 4
12 [ 2, 3, 5, 7, 11, 127 ] 6
13 [ 2, 3, 5, 7, 11, 13, 31 ] 5
14 [ 2, 3, 5, 7, 11, 13, 73 ] 5
15 [ 2, 3, 5, 7, 11, 13, 271, 431 ] 5
16 [ 2, 3, 5, 7, 11, 13 ] 6
17 [ 2, 3, 5, 7, 11, 13, 17, 37, 67, 89, 101, 277 ] 6
18 [ 2, 3, 5, 7, 11, 13, 17, 43, 457, 2069, 3323 ] 6

TABLE 10. The primes that divide the size of the torsion part
of H2 (PSL2 (O7 ), En ,n (O7 )).

The smallest primes that witness the falsity of this
speculation for our five Bianchi groups PSL2(Od) are
listed in Table 14.

My computations of Γ0(p)ab agree perfectly with
those of [Elstrodt et al. 81] mentioned in the introduc-
tion where they overlap. It is easily observed that the
primes in the torsion grow to astronomical sizes even
within the range Np ≤ 5000. In Table 15 is a sample
of the primes that appear in the torsion of Γ0(p)ab

with 4900 ≤ Np ≤ 5000 for the five Euclidean imaginary
quadratic fields.1

5.2.2. Trivial Weight: Rank.

In this section I will report on the rank of
H2

cusp(Γ0(a),O). This rank is clearly equal to the di-
mension of H2

cusp(Γ0(a), C ), and thus its nonvanishing
is conjecturally connected to abelian varieties of GL2

type over imaginary quadratic fields (see [Cremona 84,
Elstrodt et al. 81, Şengün 11b]). Moreover, the vanishing
of this rank in certain cases is equivalent to the exis-
tence of rational homology spheres (see [Long et al. 06]).
I report here on my computations related to these two
aspects.

As explained in the previous subsection, the rank of
Γ0(a)ab is related to the rank r of H2

cusp(Γ0(a),O). More
precisely, when p is a prime ideal of residue degree one,

1 The complete list is available on my website (http://www.uni-due.
de/hm0074).
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n primes rank
1 [ ] 1
2 [ 2 ] 1
3 [ 2, 3, 7 ] 1
4 [ 2, 3, 7 ] 1
5 [ 2, 5, 7 ] 2
6 [ 2, 3, 5, 7 ] 1
7 [ 2, 3, 7 ] 3
8 [ 2, 3, 5, 7 ] 1
9 [ 2, 3, 7 ] 3
10 [ 2, 3, 5, 7 ] 2
11 [ 2, 3, 5, 7 ] 4
12 [ 2, 3, 5, 7, 11, 127 ] 1
13 [ 2, 3, 5, 7, 13 ] 5
14 [ 2, 3, 5, 7, 11, 13, 73 ] 2
15 [ 2, 3, 5, 7, 431 ] 5
16 [ 2, 3, 5, 7, 11, 13 ] 2
17 [ 2, 3, 5, 7, 17, 37 ] 6
18 [ 2, 3, 5, 7, 11, 13, 17, 43, 457, 2069, 3323 ] 2
19 [ 2, 3, 5, 7, 13, 19, 311 ] 7
20 [ 2, 3, 5, 7, 11, 13, 17, 19, 42197, 12272815271 ] 2

TABLE 11. The primes that divide the size of the torsion part of H2 (PGL2(O7 ), En ,n (O7 )).

our discussion above shows that

r = rank(Γ0(p)ab), for − d = 1, 3

and

r + 2 = rank(Γ0(p)ab), for − d �= 1, 3.

I have computed the rank of Γ0(p)ab for prime ide-
als p of residue degree one and norm up to 45000 for
−d = 1, 3, 30000 for −d = 2, and 21000 for −d = 7, 11.
I report on the distribution of prime levels according to
the ranks in Table 16, where I use Nr (x) to denote the
number of primes of residue degree 1 with norm less than
x · 1000 and such that H2

cusp(Γ0(a),O) has rank r. It is
curious that for all five Od , approximately 90% of the
time the rank was 0. Note that in [Finis et al. 10], the
authors used an efficient method that works with finite
fields to approximate the ranks up to norm 60000 for
−d = 1. My computations for −d = 1 agree with theirs
where they overlap, except that the values 12113, 12373
are missing from their Table 10 and 12941 is missing from
their Table 11.

It is believed that there are infinitely many prime ide-
als p of residue degree 1 such that H2

cusp(Γ0(p), C )) =
0. On the other hand, in analogy with the conjecture
that there are infinitely many elliptic curves over Q
with prime conductor (see [Brumer and Silverman 96,
p. 97], it is reasonable to expect that there are
infinitely many prime ideals p of residue degree 1

and H2
cusp(Γ0(p), C )) �= 0. In [Finis et al. 10], in anal-

ogy with the distribution questions for elliptic curves
(see [Brumer and McGuinness 90]), the following ques-
tion was posed (stated here in a slightly more general
form).

Question 5.1. Let Od be the ring of integers of an imagi-
nary quadratic number field. Is there a constant Cd such

n primes rank
1 [ ] 1
2 [ 2 ] 2
3 [ 2, 3, 11 ] 2
4 [ 2, 3, 11 ] 2
5 [ 2, 3, 5, 11 ] 3
6 [ 2, 3, 5, 11 ] 4
7 [ 2, 3, 5, 7, 11 ] 4
8 [ 2, 3, 5, 7, 11 ] 4
9 [ 2, 3, 5, 7, 11, 23 ] 5
10 [ 2, 3, 5, 7, 11 ] 8
11 [ 2, 3, 5, 7, 11, 37 ] 6
12 [ 2, 3, 5, 7, 11 ] 6
13 [ 2, 3, 5, 7, 11, 13, 43, 19973 ] 7
14 [ 2, 3, 5, 7, 11, 13 ] 8
15 [ 2, 3, 5, 7, 11, 13, 31, 47, 1409, 30817 ] 8
16 [ 2, 3, 5, 7, 11, 13, 17, 19, 41, 281 ] 8

TABLE 12. The primes that divide the size of the torsion part
of H2 (PSL2 (O11 ), En ,n (O11 )).
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n primes rank
1 [ ] 1
2 [ 2 ] 1
3 [ 2 ] 2
4 [ 2, 3, 11 ] 1
5 [ 2, 11 ] 3
6 [ 2, 3, 5, 11 ] 1
7 [ 2, 3, 7, 11 ] 4
8 [ 2, 3, 5, 7, 11 ] 1
9 [ 2, 3, 11 ] 5
10 [ 2, 3, 5, 7, 11 ] 4
11 [ 2, 3, 5, 11 ] 6
12 [ 2, 3, 5, 7, 11 ] 1
13 [ 2, 3, 5, 11, 13 ] 7
14 [ 2, 3, 5, 7, 11, 13 ] 2
15 [ 2, 3, 5, 7, 11, 47 ] 8
16 [ 2, 3, 5, 7, 11, 13, 41, 281 ] 2
17 [ 2, 3, 5, 7, 11, 17, 67 ] 9
18 [ 2, 3, 5, 7, 11, 13, 17, 449, 20147, 201797 ] 2

TABLE 13. The primes that divide the size of the torsion part
of H2 (PGL2(O11 ), En ,n (O11 )).

that the asymptotic relation

∑
p,Np≤x

dim H1
cusp(Γ0(p), C ) ∼ Cd

x5/6

log x

holds as x goes to infinity, where the sum ranges over
prime ideals p � Od of residue degree 1?

Let us put Ld(x) :=
∑

p,Np≤x dim H1
cusp(Γ0(p), C ) for

the ring Od and R(x) := x5/6/ log x. Table 17 compares
the two functions L(x) and R(x) within the range of my
computations.

In [Calegari and Dunfield 06], the authors constructed
a family of commensurable arithmetic rational homology
3-spheres, that is, commensurable arithmetic Kleinian
groups Γ such that H1(Γ \ H , Q ) � H1(Γ, Q ) = 0. In
[Long et al. 06], the authors asked whether there are in-
finitely many commensurability classes of arithmetic ra-
tional homology 3-spheres. In the same paper, they posed
the following two conjectures (they are slightly rephrased
in an equivalent form that fits better with this paper).

Conjecture 5.2.

(1) There exist infinitely many pairs of prime ideals
{p1 , p2} ⊂ Z[i] such that

H2
cusp(Γ0(p1p2), Q ) = 0.

(2) Let p = (1 + i). There are infinitely many prime ide-
als q ⊂ Z[i] with Nq = 1 mod 12 such that

H2
cusp(Γ0(pq), Q ) = 0.

If the second conjecture holds, then using the Jacquet–
Langlands correspondence, one gets (see [Long et al. 06,
p. 29]) a positive answer to the question of Long et al.
stated above.

I computed the ranks of Γ0(pq)ab , where p = (1 + i)
and q ⊂ Z[i] are prime with Nq = 1 mod 12 of norm ≤
14850. There are 423 such prime ideals q, 245 of them
satisfying the desired property that

H2
cusp(Γ0(pq), Q ) = Γ0(pq)ab ⊗ Q = 0.

The uniform distribution of the primes with vanishing
rank supports the second conjecture.

5.3. Asymptotics of Torsion

Very recently, significant results were obtained
[Müller 10, Bergeron and Venkatesh 10] that relate
the asymptotic behavior of the size of the torsion in
the homology of certain cocompact lattices in SL2(C )
to that of the volume of the associated 3-folds. The
following is a special case of the main result of Bergeron
and Venkatesh.

Theorem 5.3. Let Γ be an arithmetic subgroup of SL2(C )
and {Γn} be a tower of congruence subgroups of Γ such
that

⋂
n Γn = {1}. Let X denote the hyperbolic 3-fold as-

sociated to Γ with volume vol(X). Then

lim
n→∞

log |H1(Γn , Ek,�)tor)|
[Γ : Γn ]

=
1
6π

· ck,� · vol(X), k �= �,

d Norm of p rank of Γ0 (p)ab prime torsion of Γ0 (p)ab

1 401 0 [2, 5, 41, 271 ]
2 193 2 [2, 3, 23, 251 ]
3 937 0 [2, 3, 13, 599 ]
7 137 2 [2, 17, 83 ]
11 103 2 [2, 3, 17, 19, 71 ]

TABLE 14. Smallest counterexamples to Grunewald–Schwermer.
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Np some of the primes that divide the size of the torsion of Γ0 (p)ab

PSL(O1 )
4909 [ 2, 3, 7, 13, 409, 10691, 22871, 29423, 56980673, 71143433 ]
4933 [ 2, 3, 37, 101, 137, 577, 947, 21169, 194981 ]
4937 [ 2, 7, 37, 617, 10859, 108893, 4408530403, 157824962047 ]
4957 [ 2, 3, 7, 13, 31, 59, 14347, 3051863, 9405667, 23132267 ]
4969 [ 2, 3, 23, 71, 373, 191299, 39861006443, 8672729371087 ]
4973 [ 2, 11, 13, 47, 71, 113, 127, 331, 6317, 7949, 39023, 628801, 2995319 ]
4993 [ 2, 3, 5, 7, 11, 13, 101, 173, 798569, 5995036891, 18513420749 ]

PSL(O2 )
4931 [ . . . , 3772418780827, 67462419379713541, 442541106225737082232052179 ]
4937 [ . . . , 1889149903, 7397090738497, 880941232181841675673769 ]
4969 [ . . . , 2728733329370698225919458399, 114525595847400940348788195788260381871 ]
4987 [ . . . , 1354882997352809, 167973141926075800477, 109210638303577813415629 ]
4993 [ . . . , 15997185593, 14633678967206157243930187, 4844017554743814674462620193 ]

PSL(O3 )
4903 [ 3, 7, 19, 29, 37, 43, 61, 137, 191, 733 ]
4909 [ 2, 3, 7, 13, 19, 47, 67, 409, 1409 ]
4933 [ 2, 3, 5, 137, 173, 383, 719, 1451, 100057 ]
4951 [ 3, 5, 7, 11, 271, 3797, 6696049 ]
4957 [ 2, 3, 5, 7, 23, 43, 59, 233, 823, 62207 ]
4969 [ 2, 3, 5, 7, 23, 181, 2591, 516336433 ]
4987 [ 2, 3, 11, 71, 277, 619, 21977, 1971691 ]
4993 [ 2, 3, 11, 13, 29, 727, 4153, 27127 ]
4999 [ 2, 3, 7, 17, 29, 41, 83, 38593, 179623 ]

PSL(O7 )
4909 [ . . . , 3354447021713, 666100957349057134013, 13363557375430202095093 ]
4937 [ . . . , 836083247742263, 60001748772648369971, 1344885261548364695671 ]
4943 [ . . . , 94861335404089, 157213239530981, 345644733766517, 714087340201211 ]
4951 [ . . . , 42137202713,11756096619570265637, 47745831545933513537 ]
4957 [ . . . , 6803766726937001299, 21088956680308937473, 34130091188757085391 ]
4967 [ . . . , 42061245937, 3414861551033731, 385786872173747641 ]
4993 [ . . . , 16112554517, 22230923149, 47405513059, 17179435084786759 ]
4999 [ . . . , 47183940647, 47747826462797, 176725513764138170761817312541116531 ]

PSL(O11 )
4909 [ . . . , 491602700153184794115037, 3160753948740219890398523741106925031 ]
4931 [ . . . , 59242366654994144915737, 397153057377536493107457514082773 ]
4933 [ . . . , 471591580131222099301009, 753357254439534230416253 ]
4937 [ . . . , 774606120056702384410790118960699805738139 ]
4943 [ . . . , 49685906201385872741, 7533150099701393721041, 1806172579157695730540919793 ]
4951 [ . . . , 32561299447966536475490232836221, 575858582707156517384453334853901 ]
4973 [ . . . , 668079334182971453623, 2223356120717452698676440064717 ]
4987 [ . . . , 26685596532560442049106969671, 121708009502005164710374726093 ]
4999 [ . . . , 35270997998154652004835942597708494620078410433635847 ]

TABLE 15. A modest sample of large torsion occurring in Γ0 (p)ab .

where Ek,� denotes the standard Γ-lattice inside Ek,�(C ).
Here ck,� is a positive rational number that depends only
on k, �.

Bianchi groups and their congruence subgroups are
outside the scope of these results, since they are not co-

compact. It would be interesting to investigate numeri-
cally whether similar asymptotic relations hold for them
as well.

I will compare the size of the torsion in the first ho-
mology and the volume of the associated 3-folds. Since
it is computationally costly to increase the weight, I will
concentrate on increasing the level.
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d = −1 d = −2 d = −3 d = −7 d = −11
r Nr (45) % Nr (30) % Nr (45) % Nr (21) % Nr (21) %
0 2061 88.8 1480 91.8 2033 87.4 1054 89.5 1056 89.7
1 177 7.6 94 5.83 184 7.91 89 7.6 96 8.15
2 66 2.8 31 1.92 82 3.52 29 2.5 22 1.90
3 10 0.4 5 0.31 21 0.91 4 0.3 2 0.17
4 4 0.2 1 0.07 5 0.22 0 0 0 0
5 1 0.04 0 0 0 0 1 0 0 0
6 1 0.04 1 0.07 0 0 0 0.1 1 0.08
7 1 0.04 0 0 1 0.04 0 0 0 0

≥ 8 0 0 0 0 0 0 0 0 0 0
> 0 260 11.2 132 8.2 293 12.6 123 10.5 121 10.3

TABLE 16. Distribution of dimension of H2
cusp (Γ0 (p), C ).

Let Γ0(p), where p is a prime ideal of O with residue
degree one. Let H1(Γ0(p), Z)tor denote the torsion part
of the first homology of Γ0(p) with coefficients in Z. Let
vol(Γ0(p) \ H ) denote the volume of the 3-fold Γ0(p) \ H ,
where H is hyperbolic 3-space. In light of the result of
Bergeron–Venkatesh, the following is an interesting ques-
tion.

Question 5.4. With the notation of the above paragraph,
is there a constant C, independent of d, such that the
asymptotic relation

log|H1(Γ0(p), Z)tor | ∼ C · vol(Γ0(p) \ H )

holds as the norm of the ideals p � Od that are prime with
residue degree one tends to infinity?

To investigate the question computationally, we need
to approximate the volumes first. Using the well-known

formula (see [Grunewald and Kühnlein 98])

V d := vol(PSL2(Od) \ H ) =
|�d |3/2

4π2 ζKd
(2),

where �d is the discriminant of the field Kd and ζKd
is

the Dedekind zeta function of Kd , we get

V 1 ≈ 0.305321864725739671684867838311,
V 2 ≈ 1.00384100334119813727236488577,
V 3 ≈ 0.169156934401608937503533759046,
V 7 ≈ 0.888914927816353263598904154202,

V 11 ≈ 1.38260830790264587367165334450.

Now for p � Od prime of residue degree one over the ra-
tional prime p, we have

vol(Γ0(p) \ H ) = (p + 1) · V d .

I have collected data on the ratio of
log|H1(Γ0(p), Z)tor | to vol(Γ0(p) \ H ) in the case of

x R(x)/L1 (x) R(x)/L2 (x) R(x)/L3 (x) R(x)/L7 (x) R(x)/L11 (x)
3000 1.793 3.654 1.827 2.294 2.099
6000 1.650 3.172 1.540 2.489 2.101
9000 1.720 3.334 1.435 2.462 2.281
12000 1.828 3.608 1.534 2.617 2.495
15000 1.927 3.610 1.524 2.662 2.731
18000 1.950 3.292 1.482 2.457 2.678
21000 1.912 3.114 1.575 2.464 2.642
24000 1.801 2.993 1.543 - -
27000 1.782 3.000 1.594 - -
30000 1.781 2.884 1.591 - -
33000 1.830 - 1.632 - -
36000 1.831 - 1.627 - -
39000 1.825 - 1.612 - -
42000 1.885 - 1.628 - -
45000 1.887 - 1.607 - -

TABLE 17. Data related to the asymptotics of nonvanishing of cuspidal cohomology.
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O1 O2 O3 O7 O11

Np Tp/Vp Np Tp/Vp Np Tp/Vp Np Tp/Vp Np Tp/Vp

44533 0.05342 27817 0.05338 44533 0.05288 20549 0.05337 19583 0.05368
44537 0.05391 27827 0.05247 44563 0.05288 20563 0.05414 19603 0.05324
44549 0.05250 27851 0.05300 44587 0.05559 20693 0.05411 19661 0.05212
44617 0.05467 27883 0.05463 44617 0.05279 20707 0.05410 19699 0.05244
44621 0.05509 27947 0.05282 44623 0.05352 20717 0.05297 19717 0.05331
44633 0.05390 27953 0.05221 44641 0.05558 20731 0.05269 19727 0.05327
44641 0.05317 27961 0.05439 44647 0.05581 20743 0.05353 19739 0.05346
44657 0.05203 28001 0.05342 44683 0.05509 20749 0.05172 19759 0.05385
44701 0.05520 28019 0.05161 44701 0.05791 20759 0.05121 19793 0.05410
44729 0.05351 28027 0.05359 44773 0.05280 20771 0.05204 19801 0.05296
44741 0.05355 28051 0.05231 44797 0.05357 20773 0.05411 19853 0.05157
44753 0.05533 28057 0.05238 44809 0.05239 20857 0.05258 19867 0.05442
44773 0.05604 28081 0.05214 44839 0.05606 20897 0.05290 19889 0.05311
44777 0.05573 28097 0.05198 44851 0.05300 20899 0.05470 19891 0.05352
44789 0.05172 28099 0.05353 44887 0.05332 20903 0.05326 19913 0.05324
44797 0.05480 28123 0.05271 44893 0.05427 20939 0.05348 19919 0.05191
44809 0.05220 28163 0.05233 44917 0.05308 20959 0.05395 19937 0.05389
44893 0.05476 28201 0.05140 44953 0.05433 20981 0.05243 19963 0.05383
44909 0.05227 28211 0.05325 44959 0.05292 20983 0.05425 19979 0.05266
44917 0.05281 28219 0.05185 44971 0.05547 21001 0.04985 19991 0.05346
44953 0.05441 28283 0.05312 44983 0.05481 21011 0.05473 20021 0.05318

TABLE 18. the ratio the size of the torsion to the volume as level grows.

the five Euclidean Od . If we ignore the first 500 entries
in each case, the average ratios read

0.054291, 0.053140, 0.055386, 0.053206, 0.053131

respectively for −d = 1, 2, 3, 7, 11. The range of my com-
putations were up to norm

45000, 30000, 45000, 21000, 21000

respectively. It is very significant that the ratio is very
close to

1
6π

≈ 0.0530516476972984452562945877908,

which is the constant for the Lie group SL2(C ) that ap-
pears in the above result of Bergeron–Venkatesh. A small
sample is given in Table 18, where I use the convention
Tp := log|H1(Γ0(p), Z)tor | and Vp := vol(Γ0(p) \ H ). The
complete data are available at my website.
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Wiese for enlightening discussions and many comments
and corrections on this work. My correspondence with
Nicolas Bergeron and Akshay Venkatesh was very encour-
aging and gave me more directions for experimentation.
I am grateful to Nansen Petrosyan for his help with the
spectral sequences. Finally, I thank J.-P. Serre and the
referees, whose numerous comments improved the paper.

DEDICATION

After the first draft of this work was completed, Fritz
Grunewald, whom I consider my second PhD adviser,
tragically passed away. Over the years, I benefited greatly
from his invaluable guidance and generous support. I ded-
icate this paper to his memory with admiration, grati-
tude, and love.



504 Experimental Mathematics, Vol. 20 (2011), No. 4

REFERENCES

[Ash and Stevens 86] A. Ash and G. Stevens. “Cohomol-
ogy of Arithmetic Groups and Congruences between Sys-
tems of Hecke Eigenvalues.” J. Reine Angew. Math. 365
(1986), 192–220.

[Berger 08] T. Berger. “Denominators of Eisenstein Cohomol-
ogy Classes for GL2 over Imaginary Quadratic Fields.”
Manuscripta Math. 125:4 (2008), 427–470.

[Bergeron and Venkatesh 10] N. Bergeron and A. Venkatesh.
“The Asymptotic Growth of Torsion Homology for Arith-
metic Groups.” Preprint, 2010.

[Bianchi 92] L. Bianchi. “Sui gruppi di sostituzioni lineari con
coefficienti appartenenti a corpi quadratici immaginari.”
Math. Ann. 40:3 (1892), 332–412.

[Borel and Wallach 80] A. Borel and N. Wallach. Continuous
Cohomology, Discrete Subgroups, and Representations of
Reductive Groups. Princeton: Princeton University Press,
1980.

[Bosma et al. 97] W. Bosma, J. Cannon, and C. Playoust.
“The Magma Algebra System. I. The User Language.”
J. Symbolic Comput. 24:3-4 (1997), 235–265.

[Brauer and Nesbitt 41] R. Brauer and C. Nesbitt. “On the
Modular Characters of Groups.” Ann. of Math. (2) 42
(1941), 556–590.

[Brown 94] K. S. Brown. Cohomology of Groups. New York:
Springer, 1994.

[Brumer and McGuinness 90] A. Brumer and O. McGuin-
ness. “The Behavior of the Mordell–Weil Group of El-
liptic Curves.” Bulletin of the AMS 23 (1990), 375–
382.

[Brumer and Silverman 96] A. Brumer and J. Silverman.
“The Number of Elliptic Curves over Q with Conduc-
tor N .” Manuscripta Math. 91 (1996), 95–102.

[Brunner et al. 85] A. M. Brunner, Y. Lee, and N. J. Wie-
lenberg. “Polyhedral Groups and Graph Amalgamation
Products.” Topology Appl. 20:3 (1985), 289–304.

[Calegari and Dunfield 06] F. Calegari and N. Dunfield. “Au-
tomorphic Forms and Rational Homology 3-Spheres.”
Geom. Topol. 10 (2006), 295–329.

[Cremona 84] J. E. Cremona. “Hyperbolic Tessellations,
Modular Symbols, and Elliptic Curves over Complex
Quadratic Fields.” Compositio Math. 51:3 (1984), 275–
324.

[Elstrodt et al. 81] J. Elstrodt, F. Grunewald, and J. Men-
nicke. “PSL(2) over Imaginary Quadratic Integers.”
In Arithmetic Conference (Metz, 1981), Astrisque 94,
pp. 43–60. Paris: Soc. Math. France, 1982.

[Fox 53] R. Fox. “Free Differential Calculus. II. Derivation
in the Free Group Ring.” Ann. of Math. (2) 57 (1953),
547–560.

[Finis et al. 10] T. Finis, F. Grunewald, and P. Tirao. “Co-
homology of Lattices in SL2 (C ).” Exp. Math. 19 (2010),
29–63.

[Figueiredo 99] L. M. Figueiredo. “Serre’s Conjecture for
Imaginary Quadratic Fields.” Compositio Math. 118:1
(1999), 103–122.
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[Grunewald and Kühnlein 98] F. Grunewald and S. Kühn-
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