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In this paper, we consider the sequence of Frobenius conjugacy
classes for a Galois extension K/Q, ordered by the increasing
sequence of rational primes. For a given K, we look at the
frequencies of nonoverlapping consecutive k-tuples in this se-
quence. We compare these frequencies to what would be ex-
pected by the Cebotarev density theorem if there were statistical
independence between successive Frobenius classes. We find
striking variations of behavior as K varies.

1. INTRODUCTION

For any Galois number fieldK/Q of degree d and discrim-
inant Δ, the sequence Frob2, Frob3, Frob5, . . . of con-
jugacy classes in Gal(K/Q) is defined, except for those
rational primes p that are ramified in K. We num-
ber the conjugacy classes in Gal(K/Q) by the integers
0, 1, 2, . . . , n, and then consider this sequence s = s(K)
of integers, which we will call the Frobenius sequence of
K. (To keep file sizes of constant length, we arbitrar-
ily assign 0 to the finitely many ramified primes.) For
example, if K is a quadratic extension, the Frobenius se-
quence records the quadratic residue/nonresidue status
of successive primes with respect to some modulus.

The Čebotarev density theorem (CDT) says that a
given conjugacy class C of cardinality c will appear with
limiting frequency c

d in s(K). This paper grew out of the
question, given these frequencies, to what extent does
s(K) look “random”?

Of course, the Frobenius sequence is completely de-
terministic. However, one may apply statistical tests to
sequences of integers to test whether they deserve the ti-
tle of “pseudorandom.” Dozens of such tests have been
proposed, as may be seen by a web search.1

We experimented with a number of different ap-
proaches, some of which we may report on in another
paper. For example, we looked at autocorrelations of a
Frobenius sequence. We divided a Frobenius sequence

1For example, many tests may be found at http://www.
ciphersbyritter.com/RES/RANDTEST.HTM and http://csrc.nist.
gov/groups/ST/toolkit/rng/stats tests.html.
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into chunks of equal size and used nonparametric tests
on various statistics of the chunks. We compared Frobe-
nius sequences for all pairs of different fields having the
same Galois group using a comparison χ2-value for k-
tuple frequencies.

In the end, the clearest and most suggestive data we
obtained came from the two tests we report on in this
paper. The data came from the frequencies of nonover-
lapping k-tuples of the Frobenius sequence. First we
asked, do successive nonoverlapping k-tuples of the se-
quence exhibit frequencies that are reasonably like those
that would occur in a sequence of the same length of
iid random variables, each with the discrete probability
distribution given by CDT? See [Knuth 81, pp. 38–45].
We use the χ2-statistic and the corresponding p-value to
interpret the word “reasonably” in the previous sentence.

Second, we apportion nonoverlapping pairs into two
classes, of the forms (x, x) and (x, y) with y �= x, and
count the frequencies of these two classes. Again we ask,
do these two classes exhibit frequencies that are reason-
ably like those that would occur in a sequence of the
same length of iid random variables, each with the dis-
crete probability distribution given by CDT? We call this
the “matching test.” We use a Z-score to interpret the
word “reasonably” in this case.

In the first test, when the p-value exceeds 0.99, we
will say that s(K) is exhibiting “nonrandom” behavior.
In the second test, we will do so when the absolute value
of the Z-score exceeds 3. However, we are not making
any claims about actual pseudorandomness, however de-
fined. We use the term “nonrandom” for convenience
to describe a situation in which the frequencies deviate
largely from those that would have occurred randomly
given the CDT frequencies.

We could have counted overlapping k-tuples of the se-
quence. Work of I. J. Good [Good 53] and P. Billingsley
[Billingsley 56] allows for the correct interpretation of
these data, and since there are k times as many overlap-
ping k-tuples as nonoverlapping ones, it might be thought
that the former would give stronger results. There are
three reasons why we did not use overlapping k-tuples.

1. The recommended statistic used in the overlapping
k-tuples case is a second-order difference between
the so-called ψ2-values for tuples of size k, k−1, and
k−2. We are more interested in goodness of fit than
in hypothesis testing, and this test would obscure
matters by mixing these three different-sized tuples.
More generally, it seems cleaner to use nonoverlap-
ping k-tuples, which behave independently, to study

goodness of fit, whereas overlapping k-tuples are not
independent of one another [Knuth 81, p. 60].

2. There is a recommended rule of thumb, recalled be-
low, which tells us how large we can reasonably take
k when investigating nonoverlapping k-tuples using
the χ2-test. For example, this rule limits our study
of A5-fields to 1-, 2-, and 3-tuples. Assuming that
the same rule of thumb applies to the overlapping
k-tuples, it would still not permit the use of 4-tuples
in A5-fields.

3. We computed the p-values for overlapping k-tuples
for many of our test fields, and the results were not
such as to give any different impression from the p-
values reported in this paper.

When K is abelian, the work of [Rubinstein and Sar-
nak 94] and [Granville and Martin 06] may often be used
to show that s(K) is not pseudorandom in a precise
sense. (These authors’ results depend on assuming the
generalized Riemann hypothesis (GRH) and another hy-
pothesis called the grand simplicity hypothesis, but these
seem to be reasonable assumptions.) For example, sup-
pose K = Q(

√−1). Let pi denote the ith prime. Let
X1 = 0, Xi = 1 if pi ≡ 3 (mod 4) and Xi = −1 if pi ≡ 1
(mod 4). Let Y (x) = 1 if

∑
pi≤xXi > 0 and Y (x) = 0 if∑

pi≤xXi ≤ 0. Let

S(x) =
1

log x

∫ x

2

Y (t) dt
t

.

Under the assumptions mentioned above, it is proved in
[Rubinstein and Sarnak 94] that

lim
x→∞S(x) ≈ 0.9959.

Richard Arratia (via the referee of an earlier version of
this paper) showed us how this result implies that s(K)
almost surely could not be the result of a random series
of coin flips, with values in {±1}. Consider a sequence of
random variables X̃i modeling fair coin flips with values
in {±1}, and define Ỹ (x) and S̃(x) analogously to Y (x)
and S(x). Then consider the event that limx→∞ S̃(x)
exists and is greater than β. This event belongs to the
symmetric σ-algebra, and so by the Hewitt–Savage 0-1
law [Hewitt and Savage 55], it has probability either 0
or 1. By symmetry, if β > 0.5, the probability must
be 0. But if, for example, β = 0.9, our sequence s(K)
instantiates this event. Therefore, almost surely, s(K)
could not be the outcome of a sampling of iid variables.
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We shall see that the existence of an abelian subfield
of K may in fact account for all the “nonrandomness”
we observed in the k-tuple frequencies.

This paper is primarily experimental. In contrast to
what can be found in [Rubinstein and Sarnak 94], in
which a limit of a sum is studied, the sequential prop-
erties of Frobenius elements do not seem to be amenable
to proof by known analytic techniques. For example,
L-functions do not appear to give information concern-
ing frequencies of pairs of consecutive Frobenius classes.
(However, see [Pólya 59] for an interesting heuristic con-
cerning consecutive primes.)

We can work only with finite segments of a Frobenius
sequence s = s(K). We used two segments, ssmall and
slarge. The first fifty million primes made up ssmall (the
fifty millionth prime is 982451653). The first ten million
primes larger than 10100 made up slarge. This was about
as large as we could go without making the computation
time unreasonably long.

We studied these Frobenius segments for a variety of
fields with Galois groups C2, A3, S3, D5, and A5. Fields
of much larger degree would take too long to compute.
The calculations are fairly time-consuming. Each C2-
field took about one hour of computer time to find its
ssmall, and each A5-field took about one day.

Our findings may be briefly summarized as follows:
When K contains an abelian extension (which may be K
itself) with small absolute discriminant, we find nonran-
dom behavior. Otherwise, we tend to see random behav-
ior. In particular, all nine of the A5-extensions that we
considered were random, in the sense that the goodness-
of-fit p-values stayed below 0.99 and the Z-scores stayed
between −3 and 3. However, there are some nuances that
will brought out in Section 3.

The case of S3-extensions is discussed briefly in Sec-
tion 4, where we show clearly how the quadratic subfield
affects the nonrandom behavior

Our results suggest three questions whose answers will
require theoretical understanding of the phenomena we
discovered:

1. Does the whole infinite sequence s(K) possess sta-
tistical properties similar to those observed for ssmall

and slarge? In other words, if we observed random
or nonrandom behavior for a field K, does this be-
havior persist to infinity?

Note that the best known error term for effective
CDT is too weak to predict even the asymptotic sta-
tistical behavior of the 1-serial χ2-statistic (defined
in Section 2 below) for s(K). This is true even if

we admit the GRH for K. Indeed, let πC(x) denote
the number of primes less than or equal to x whose
Frobenius class is C. Let r(x) = πC(x)− (c/d)π(x),
where π(x) is the number of primes less than or equal
to x. Then it is proved in [Lagarias and Odlyzko 77],
under GRH, that |r(x)| ≤ κ((c/d)x1/2 log(Δxd) +
log Δ) for some explicit constant κ. This is too weak
to control the numerator in the formula for χ2.

2. What is the exact role of the discriminant of K or
of its abelian Galois subfields in predicting random-
ness? We do not know whether the product of the
prime factors of the discriminant or the root discrim-
inant is more or less important than the discriminant
itself. On the other hand, the signature of K plays
an obscure role, if any.

3. Is the existence of an abelian subfield the only source
of nonrandom behavior for K?

We observed in many cases that a lack of randomness
seems to occur because s(K) is trying too hard to satisfy
the CDT frequencies. That is, in these cases, if (a, b)
is a consecutive pair of terms in s, then a �= b is more
likely than would be predicted by the CDT frequencies.
We measured this phenomenon using the “matching test”
described above. The results are described in Section 3.

We actually computed statistics for about one hundred
fields. To save space, we include in this paper results for
just 58 fields, which provide an adequate sample of the
various kinds of behavior we found.

These computations were mostly performed on Mac-
intosh computers using the programming language C++,
NTL (Number Theory Library), and GSL (GNU Scien-
tific Library). Some of the number-theoretic computa-
tions were performed using PARI.

In practice, there are at least two ways in which
our implementation differs slightly from that described
above. First, to save computer time, in some cases, Frobp

was assigned on the basis of the factorization of f mod-
ulo p (and hence not necessarily to 0 if p | Δf ), where
K is the splitting field of the monic integral polynomial
f and Δg denotes the discriminant of a polynomial g.
The number of ramified primes in the fields we studied is
very small compared with the total number of entries in
the portion of the Frobenius sequence in question, so the
arbitrary coding of ramified primes is harmless. Second,
our segment of ten million large primes actually consisted
of numbers that were only very probably prime.
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2. PROTOCOLS

Fix a Galois number field K with n+1 conjugacy classes
and Frobenius sequence s = s(K). Let s∗ be a finite
segment of this sequence of length N .

Consider the space of all sequences of length N with
terms drawn from {0, 1, . . . , n}. On this space we place
the probability measure determined by the probabilities
for each conjugacy class specified by CDT for K, under
the assumption of independence of each term. In other
words, if ci is the number of elements in the ith conjugacy
class and d is the degree of K, we set pi = ci/d. Then
Prob(u1, . . . , uN ) =

∏
j puj .

There are some random variables on this space whose
distributions are known to a high degree of accuracy if
N is large. In this paper, we compute statistics that
follow either the normal or χ2-distributions to a good
approximation.

We used (1) the χ2-statistic to measure the goodness
of fit of the frequencies of nonoverlapping k-tuples of s∗
to the frequencies that would be predicted by CDT and
the assumption of independence of each term in s∗ from
the other terms. From the χ2-value we computed the
p-value. We used (2) the Z-score of a “matching” test
to measure the goodness of fit of nonoverlapping pairs
s∗ under the same assumption. For brevity we use the
term “nonrandom” when the goodness of fit is poor, as
measured by p ≥ 0.99 or |Z| ≥ 3.

In test (1) we calculate the χ2-statistic by the formula

χ2 :=
∑

0≤i≤n

(Ni − Ei)2

Ei
,

where Ni is the number of times i occurs in s∗, and Ei is
the expected number of times i occurs. Thus, N =

∑
Ni

and Ei = Npi.
The number of degrees of freedom is one less than

the number of conjugacy classes, i.e., n. We then calcu-
late a p-value using the χ2-distribution [Bulmer 79, pp.
154–158]. Our convention is to have a p-value of 0 in-
dicate a perfect adherence to CDT probability densities
and to have p-values approaching 1 indicate a strong de-
viation from the CDT densities. Thus, for truly random
sequences, a p-value exceeding 0.99 would occur 1% of
the time.

The test just described is generally called the frequency
test, although we will also refer to it as the 1-serial test.
Let k ≥ 1. We can generalize this test by redefining
Ni and Ei to represent the number of times and the
expected number of times the ith k-tuple (a1, . . . , ak)
appears in the sample of nonoverlapping consecutive k-

tuples of s∗: (s1, . . . , sk), (sk+1, . . . , s2k), . . . . In this
case, Ei = N

k

∏k
j=1 paj . We refer to this generalization

as the k-serial test. We use nonoverlapping k-tuples for
reasons explained in the introduction.

When using the k-serial test, we follow the rule of
thumb that the test should not be employed if Ei < 5
for any i. Empirical evidence shows that following this
rule works well in actual statistical practice [Knuth 81,
p. 42]. For example, suppose that N = 5 · 107. In the
case that [K : Q] = 2, there will be 2k possible k-tuples,
each occurring with predicted probability 2−k. By the
rule of thumb, we can allow k to be as large as 19: We
have 2−195·107/19 ≈ 5.02, while 2−205·107/20 ≈ 2.38. If
Gal(K/Q) = S3, we can allow k to be only as large as 7,
while if Gal(K/Q) = A5, the maximum allowable value
of k is 3. In general, for each Galois group, we performed
the k-serial test for k = 1, . . . , kmax, where kmax is the
largest k allowed by our rule of thumb. However, we
will include in Table 2 results only for 1 ≤ k ≤ 3, since
we never observed any interesting phenomena when using
other values of k that were not already apparent for these
values.

The matching test (2) is an ad hoc test that we devel-
oped because of an empirical observation: In many cases,
a conjugacy class occurred twice in succession less often
than expected by CDT. This test relies on the normal
distribution and seeks nonrandom behavior that might
occur because there is more alternation between conju-
gacy classes in s∗ than would be expected for a random
process.

The test starts with a finite segment s† of a Frobenius
sequence. We then replace s† with the sequence s∗ of
half its length as follows. We divide s† into consecutive
nonoverlapping pairs. If the two entries of a pair are the
same, we place an M in the corresponding position of s∗;
otherwise, we place an N . In other words, M = match
and N = nonmatch.

If s† were randomly and independently generated ac-
cording to the CDT, then the outcome s∗ would be a
sequence of outcomes of a Bernoulli trial, with the prob-
ability of M being p =

∑
0≤i≤n p

2
i . If X counts the num-

ber of matches in s∗, then we can measure how likely it is
that the sequence of M ’s and N ’s was drawn from such
a Bernoulli trial by computing the Z-score:

Z :=
X − p�√
p(1 − p)�

,

where � is the length of s∗.
For a given Frobenius sequence s(K), let ssmall denote

its first 5 · 107 terms and let slarge denote the portion of
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s corresponding to the 107 consecutive primes starting
with the smallest prime larger than 10100. We performed
tests (1) and (2) for both s∗ = ssmall and s∗ = slarge, and
listed the p-values and Z-scores in Table 2.

The higher the absolute value of a given Z-score, the
less random behavior is to be imputed to s†. For example,
a Z-score greater than 3 would be expected less than
about 0.3% of the time if the sequence were truly random.

3. DATA ANALYSIS

Broadly speaking, if K or an abelian subfield of K has
small absolute discriminant, its Frobenius sequence s(K)
is more likely to have high p-values and Z-scores in our
tests. The effect of the discriminant is particularly no-
ticeable in the quadratic case. In each pair of quadratic
fields generated by x2±a, the one with the lower discrim-
inant never showed less nonrandomness than the other.
In fact it is surprising that multiplying the discriminant
by 4 sometimes makes a big difference. The examples of
fields 7, 8, 9, and 10 show that the signature of the field
seems not to be a factor here.

The A3-extensions versus the C2-extensions generally
show a much stronger tendency to nonrandomness as a
function of their root discriminants. For example, com-
pare fields 7 and 19. Since both extensions are abelian
and the root discriminant seems like a reasonable basis
of comparison, we have no explanation for this behavior.
As a function of the absolute discriminant, it seems even
more strange. Fields 27 and 28 show that a huge dis-
criminant need not result in much lower p-values than a
merely big discriminant.

The elementary observations about S3-extensions in
Section 4 show that there are S3-extensions with arbi-
trarily large discriminant exhibiting nonrandom behav-
ior because of a quadratic subfield with small discrimi-
nant. However, the fields 39 and 40 make a curious pair
of S3-fields. The quadratic subfield of the second has a
much larger discriminant than the quadratic subfield of
the first, and yet the second field has considerably larger
p-scores than the first, showing a much poorer fit to the
serial frequencies than would be in accordance with the
CDT frequencies.

In the last example, the second S3-field, 40, itself also
had a much larger discriminant than field 39. In the
case of the D5-extensions we have examples for which
the field’s own discriminant is less important than that
of its quadratic subfield. Field 41 has a discriminant that
is nearly 40000 times larger than the discriminant of field
43. However, it shows nonrandomness on the 2-serial test

for both ssmall and slarge and on the 3-serial test for slarge,
while field 43 has p-scores below 0.99 for all three tests.
The probable explanation for this observation is that the
quadratic subfield of field 41 has a slightly smaller dis-
criminant (in absolute value) than the quadratic subfield
of field 43 (520 and −824, respectively).

All of the A5-fields have relatively low p-values and Z-
scores, thus showing random behavior, as expected, since
there is no abelian subfield. Moreover, there seems to be
no strong correlation between the size of the discriminant
and the p-values or Z-scores.

We can make an interesting comparison of fields with
different Galois groups but with roughly equal root dis-
criminants. Compare the behavior on the 2-serial and
3-serial tests of fields 6, 8, 34, 43, 50, and 52. They all
have root discriminants between 28 and 47. All of them
have roughly similar p-scores, except that those of the
A5-fields are decidedly lower.

No number field of the more than one hundred that
we tested ever returned a p-value above 0.95 for the 1-
serial test. For ssmall, the largest p-value observed in the
1-serial test was 0.93, for field 16; for slarge, it was 0.94
(field 46). No other field had a p-value above 0.85 on the
1-serial test on ssmall. If the p-values for all one hundred
fields were distributed randomly, we would expect around
ten of them to be above 0.9. So the goodness of fit of
the singleton Frobenius classes to the CDT frequencies is
better than would be expected from true randomness, as
measured across all the fields we tested.

Table 2 shows that two of the D5-extensions, fields 41
and 42, exhibited nonrandomness in the k-serial tests.
Because of the delicacy of distinguishing the two conju-
gacy classes into which the 5-cycles fall, it is interesting
to consider for these fields a restricted subsequence con-
sisting only of those Frobenius elements that fall into
those two conjugacy classes. The resulting subsequence
is approximately 40% as long as the initial sequence. The
serial tests on this subsequence of ssmall (not reported in
detail here) showed that field 41 did not exhibit nonran-
domness in this sense for this subsequence, while field 42
produced p > 0.999 for the 3-serial test.

Overall, we observe a tendency for nonrandom behav-
ior to dissipate as we move from the small to the large
primes. However, in many cases, especially when the rel-
evant discriminants are small, p values above 0.99 are
observed for both ssmall and slarge. Among the quadratic
fields, notable cases of dissipation may be seen in fields
6 and 11. Dissipation is more often seen in the A3-fields,
especially field 25. Surprising cases of “antidissipation”
occur in the D5-fields 46 and 47.
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Similarly, in Table 2, we observe that almost all of the
time, the result of the matching test decreased in abso-
lute value between ssmall and slarge. If the sign changed,
it almost always changed from negative to positive. The
counterexamples are few and difficult for us to explain.
Field 24 has matching tests of −0.53 and −2.95 on ssmall

and slarge respectively, and field 46 behaves similarly,
except with positive Z-scores. Field 42 is particularly
notable, in that the matching test scores are 6.60 and
−8.86. The Z-scores that are largest in absolute value
are all negative, but fields 41 and 42 exhibit relatively
large positive Z-scores for ssmall.

4. A CASE STUDY

To see the effect of an abelian subfield of small discrimi-
nant, consider the case of polynomials of the form x3±a.
For such fields, we assign Frobp to conjugacy class 0 if it
is in the class of 3-cycles in S3; we assign Frobp to class
1 if it is in the class of 2-cycles; and we assign Frobp to
class 2 if it is in the class of the identity. If p | a, we
assign Frobp to class 0.

Table 1 contains the counts of nonoverlapping pairs of
consecutive classes for the sequence ssmall for the poly-
nomial x3 − 2.

The reader can compute that the χ2-statistic corre-
sponding to this table is approximately 3 · 105, which
produces a p-value extremely close to 1.

However, we can use this table to draw more infer-
ences. A Frobenius element Frobp will be labeled with a 1
if and only if p ≡ 2 (mod 3). This observation is true for
any polynomial of the form x3±a. Therefore, any polyno-
mial of the form x3±a will have a χ2-statistic larger than
(5563851− 6250000)2/6250000 ≈ 75328. With eight de-
grees of freedom, any χ2-statistic larger than 21 will give
a p-value above 0.99, so our observations guarantee a p-
value very close to 1 independent of a, regardless of the
eight other frequency counts. A similar observation holds
for the sequence slarge.

The explanation for this phenomenon is that the
quadratic subfield of x3 ± a is always Q(

√−3). Because
that field yields a p-value so close to 1, all of the cubic

i j Ni,j i j Ni,j i j Ni,j

0 0 2471736 0 1 4622447 0 2 1235947

1 0 4628097 1 1 5563851 1 2 2311420

2 0 1236999 2 1 2311345 2 2 618158

TABLE 1. Frequency counts for x3 − 2.

fields that contain it as a subfield must yield a p-value
close to 1.

5. TABLES OF DATA

In all, we gathered data on more than one hundred fields:
51 quadratic fields, 12 A3-extensions, 22 S3-extensions,
and 9 each of D5- and A5-extensions. To save space,
we restrict consideration to a selection of fields showing
the range of behavior we observed. In Table 2, the first
column contains the ordinal of the polynomial and the
polynomial itself. (In Table 3, the polynomial is referred
to using the ordinal.)

Recall that K is the splitting field of the given polyno-
mial. The table is divided horizontally by Galois group
G = Gal(K/Q), which will be indicated for each sub-
table. The next three columns are labeled k = 1, 2, 3.
(Even though none of these fields produced a large p value
for k = 1, we include the data, since it is of interest to
see just how well the CDT frequencies themselves are ob-
served.) These contain the results of the k-serial tests on
ssmall. The next three columns give the same data for the
sequence slarge. To save space, we give the p-value mul-
tiplied by 100, truncated. A p-value of 0.99 or higher is
indicated in italics with 99 . The final two columns, both
labeled “Matching,” give the Z-score for the matching
test run on ssmall and slarge. A negative score means
that there were fewer matches than expected.

The S3- and D5-extensions both have quadratic sub-
fields that must play a role in the predictability of the
distribution of the Frobenius elements. Table 3 contains
the discriminants Δ of both the splitting field K and
of the unique quadratic subfield L, along with the root
discriminant of K,

∣∣ΔK/Q

∣∣1/[K:Q]
.

6. APPENDIX

It is not obvious how to distinguish the two conjugacy
classes of 5-cycles in A5 and D5 (and similarly for higher
degrees). We summarize the approach found in [Roberts
04]: Suppose that K is the splitting field for an irre-
ducible quintic polynomial f(x) over Q. Suppose that p
is a rational prime, and f(x) is irreducible in Fp[x]. In
this case, Frobp must be a 5-cycle.

We know that Δf must be a perfect integer square.
Let δ± be the two integer square roots of Δf .

In the field Fp[x]/(f(x)), we let α1 = x+ (f(x)), and
define αk = αp

k−1 for k = 2, . . . , 5. We compute

δ =
∏

1≤i<j≤5

(αj − αi).
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k (ssmall) k (slarge) Matching
Polynomial 1 2 3 1 2 3 ssmall slarge

Quadratic extensions
1. x2 − 2 29 99 99 33 99 99 −391.54 −25.23
2. x2 + 2 10 99 99 53 99 99 −391.81 −26.63
3. x2 − 5 19 99 99 10 99 99 −478.46 −27.62
4. x2 + 5 17 99 99 56 99 99 −268.59 −20.70
5. x2 − 541 29 99 99 43 99 99 −8.85 −4.97
6. x2 + 541 50 99 99 5 0 7 3.34 0.27
7. x2 − 1987 41 24 0 89 63 86 −0.24 0.54
8. x2 + 1987 1 95 99 16 19 95 −2.84 0.10
9. x2 − 3581 76 40 99 46 24 30 −0.70 −0.37
10. x2 + 3581 74 96 31 69 24 24 2.60 −0.07
11. x2 − 7933 71 99 99 84 66 71 −4.01 0.84
12. x2 + 7933 61 50 9 28 7 25 0.80 −0.38
13. x2 − 3 · 5 · 7 · 11 · 13 22 76 99 60 36 99 −2.03 0.67
14. x2 + 3 · 5 · 7 · 11 · 13 5 99 99 24 98 81 5.68 −3.17
15. x2 − 3 · 5 · 7 · 11 · 13 · 17 24 12 39 56 71 71 0.47 1.31
16. x2 + 3 · 5 · 7 · 11 · 13 · 17 93 89 47 73 91 97 0.89 2.30

A3-extensions
17. x3 − 3x + 1 0 99 99 27 99 99 −502.25 −37.11
18. x3 − 7x + 7 0 99 99 15 99 99 −590.98 −37.52
19. x3 − 877x + 877 19 99 99 72 99 99 −7.66 −4.01
20. x3 − 379281x + 144488 20 99 99 79 24 78 1.78 −0.30
21. x3 − 14979x + 84881 0 99 99 15 72 87 −1.97 0.06
22. x3 − 73713x + 24571 79 99 93 85 64 88 −0.83 −1.63
23. x3 − 292789x + 1171156 53 98 99 44 20 94 0.78 −0.42
24. x3 − 106347x + 815327 36 96 99 62 99 4 −0.53 −2.95
25. x3 − 53247x + 3070577 58 99 99 11 8 11 −0.25 0.29
26. x3 − 87871x + 1142323 4 40 99 91 56 57 1.37 −0.72
27. x3 − 1073774599x + 1073774599 7 12 32 42 11 55 0.31 0.48
28. x3 − 31432849x + 31432849 14 7 30 31 42 0 0.42 −0.32

S3-extensions
29. x3 − 2 11 99 99 63 99 99 −438.35 −23.57
30. x3 − 5 5 99 99 20 99 99 −437.95 −24.60
31. x3 + x − 1 0 99 99 38 99 99 −122.52 −14.74
32. x3 + x + 4 27 99 99 45 99 99 14.73 −4.73
33. x3 + 7x + 4 4 99 99 4 97 99 4.96 −3.06
34. x3 + 5x + 7 10 94 99 66 67 83 −1.87 −0.83
35. x3 − 8x + 15 14 88 32 82 57 41 −2.33 0.86
36. x3 − 16x + 29 14 52 99 56 15 47 −0.30 1.16
37. x3 − 14x + 27 32 64 98 29 11 61 0.26 0.21
38. x3 − 20x + 29 16 27 51 17 93 27 1.20 0.04
39. x3 − 47x + 73 14 42 20 22 1 20 0.95 −0.55
40. x3 + 383x + 398 44 71 74 7 22 45 −0.81 1.73

D5-extensions
41. x5 − 20x3 − 20x2 + 15x + 8 8 99 99 58 99 99 19.28 −0.51
42. x5 − 7x3 − 5x2 + 17x + 17 9 99 99 92 99 99 6.60 −8.86
43. x5 − 4x3 + 4x2 − x + 8 11 93 96 70 98 87 3.13 −1.06
44. x5 − 20x3 − 15x2 + 10x + 4 16 11 53 16 31 31 1.04 −1.03
45. x5 − 19x3 − 19x2 + 14x + 7 36 6 18 10 8 24 1.06 1.27
46. x5 − 19x3 − 14x2 + 10x + 4 8 28 2 94 86 77 0.19 2.69
47. x5 − 18x3 − 18x2 + 13x + 6 15 5 5 26 91 89 0.09 −0.28
48. x5 − 18x3 − 13x2 + 10x + 4 2 92 98 8 70 38 −1.04 1.74
49. x5 − 17x3 − 17x2 + 12x + 5 41 93 90 51 5 2 2.24 −0.89

A5-extensions
50. x5 + 10x3 − 10x2 + 35x − 18 6 24 65 56 5 0 1.01 −0.61
51. x5 − 5x3 − 11x2 − 17x − 13 37 26 7 65 44 95 −1.20 0.14
52. x5 − 4x3 + x2 − 2x + 9 9 2 24 18 36 72 0.08 0.35
53. x5 − 18x3 − 2x2 + 20x + 8 39 82 83 90 73 91 0.29 −1.74
54. x5 − 18x3 + 3x2 + 14x + 1 24 3 1 42 33 10 −0.31 −0.21
55. x5 − 17x3 − 9x2 + 4x + 1 34 81 89 87 93 9 0.81 −0.33
56. x5 − 17x3 + 20x2 + 20x + 27 71 25 53 90 69 96 −0.88 −0.08
57. x5 − 16x3 − 2x2 + 20x + 8 1 3 17 6 31 61 0.08 1.52
58. x5 − 16x3 + 11x2 + 20x + 1 50 28 30 10 27 14 −1.91 −0.34

TABLE 2. k-serial tests.
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Field ΔK/Q

∣∣ΔK/Q

∣∣1/[K:Q]
ΔL/Q

Quadratic extensions
1. 23 2.8
2. −23 2.8
3. 5 2.2
4. −225 4.5
5. 541 23.3
6. −22541 46.5
7. 221987 89.2
8. −1987 44.6
9. 3581 59.8

10. −223581 119.7
11. 7933 89.1
12. −227933 178.1
13. 223·5·7·11·13 245.1
14. −3·5·7·11·13 122.5
15. 223·5·7·11·13·17 1010.5
16. −3·5·7·11·13·17 505.2

A3-extensions
17. 34 4.3
18. 72 3.7
19. 8772 91.6
20. 180612 688.4
21. 49932 292.1
22. 34245712 3656.9
23. 7215122772 4409.3
24. 34354492 4669.1
25. 177492 680.4
26. 72125532 1976.5
27. 795121350492 1048597.3
28. 72672670212 99599.2

S3-extensions
29. −2437 5.7 −3
30. −3754 10.5 −3
31. −313 5.6 −31
32. −261093 20.9 −22109
33. −113413 21.2 −11 · 41
34. −18233 42.7 −1823
35. −40273 63.5 −4027
36. −63233 79.5 −6323
37. −87073 93.3 −8707
38. 92933 96.4 9293
39. 2714093 521.0 271409
40. −29286255573 15132.9 −2328625557

D5-extensions
41. 215513135 82.6 23 · 5 · 13
42. −75175 10.9 −7 · 17
43. −2151035 28.7 −23103
44. 5132575 129.9 5 · 257
45. 7514835 101.9 7 · 1483
46. 2152351495 165.6 23 · 23 · 149
47. 21020275 90.0 222027
48. 231735 152.2 23173
49. 4751315 78.5 47 · 131

A5-extensions
50. 290596 37.1
51. 113058740 232.5
52. 17302940 38.9
53. 24088140 145.9
54. 730752340 1015.8
55. 24054067740 357.9
56. 434048730 270.9
57. 24074033140 278.0
58. 614073340 1259.8

TABLE 3. Field discriminants
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In fact, δ must be an element of Fp, and δ ≡ δ± (mod p).
We assign Frobp to one conjugacy class or the other ac-
cording to whether δ ≡ δ+ or δ ≡ δ−.
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