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In this work we address the question of proving the stability of el-
liptic 2-periodic orbits for strictly convex billiards. Even though
it is part of a widely accepted belief that ellipticity implies stabil-
ity, classical theorems show that the certainty of stability relies
upon more precise conditions. We present a review of the main
results and general theorems and describe the procedure to ful-
fill the supplementary conditions for strictly convex billiards.

1. INTRODUCTION

Let α be a plane, closed, regular, and strictly convex
curve. The billiard problem on α consists of describing
the free motion of a point particle in the plane region en-
closed by α, with unitary velocity and elastic reflections
when it impacts with the boundary. The trajectories are
polygons in the region.

The motion is completely determined by the point
of reflection at α and the direction of motion immedi-
ately after each reflection. For instance, the arclength
parameter s, which locates the point of reflection, and
the tangential component of the momentum p = sin θ,
where θ is the angle between the direction of motion and
the normal to the boundary at the reflection point, de-
scribe the system. Good introductions to billiards can be
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FIGURE 1. Trajectory in a convex billiard.

c© A K Peters, Ltd.
1058-6458/2005 $ 0.50 per page

Experimental Mathematics 14:3, page 299



300 Experimental Mathematics, Vol. 14 (2005), No. 3

FIGURE 2. Two different behaviours of maps with a linearly stable fixed point.

found in [Birkhoff 27, Chernov and Markarian 03, Has-
selblat and Katok 02, Katok and Hasselblat 95, Kozlov
and Treshchëv 91] or [Tabachnikov 95].

The billiard model defines a map T that for each (s, p)
in the annulus A = [0, L) × (−1, 1), associates the next
impact and direction:

T : A → A
(s, p) �−→ (S(s, p), P (s, p)).

Since the particle can travel along the same polygon
in both directions, the problem is time-reversing and the
inverse map T−1 is well defined.

The derivative of T at (s, p) is implicitly calculated
and is given by the formulae:

∂S

∂s
=

l(s, p) − R(s) cos θ(p)
R(s) cos θ(P )

∂S

∂p
=

l(s, p)
cos θ(p) cos θ(P )

(1–1)

∂P

∂s
=

l(s, p) − R(s) cos θ(p) − R(S) cos θ(P )
R(s)R(S)

∂P

∂p
=

l(s, p) − R(s) cos θ(P )
R(S) cos θ(p)

where S stands for S(s, p) and P for P (s, p), l(s, p) is
the distance between the two consecutive impact points
α(s) and α(S), R is the radius of curvature of α, and
cos θ(p) =

√
1 − p2 is the normal component of the mo-

mentum.
If α is a Ck curve, k ≥ 2, the billiard model gives

rise to a discrete two-dimensional Ck−1 area preserving
dynamical system, whose orbits are given by

O(s, p) = {T j(s, p), j ∈ ZZ} ⊂ A.

A billiard has no fixed points. However, given n ≥ 2,
Birkhoff’s theorem states that T has at least two differ-
ent orbits of period n which will be fixed points of Tn.
The linearization of Tn at any of these fixed points, say

(s, p), gives the linear area preserving map DTn
(s,p), which

has a fixed point at the origin (0, 0). According to the
eigenvalues of this linear map, the fixed point (s, p) is
classified as: hyperbolic if the eigenvalues are µ and 1

µ ,
µ ∈ IR, µ �= ±1; elliptic if the eigenvalues are µ = eiγ

and µ, µ �= ±1; or parabolic if the eigenvalues are 1 or
−1.

In the hyperbolic case, the Hartman-Grobman Theo-
rem (see, for instance, [Katok and Hasselblat 95] or [Palis
and de Melo 78]) assures that, on a neighbourhood of the
fixed point (s, p), the dynamical behaviour of Tn is the
same as the dynamical behaviour of DTn

(s,p) on a neigh-
bourhood of the origin. So, (s, p) is an unstable fixed
point of Tn and {(s, p), T (s, p), ..., Tn−1(s, p)} is an un-
stable periodic orbit of T . In this case, the instability of
the equilibrium of the linear map DTn

(s,p) implies the local
instability of the periodic orbit for the complete map T .

In the elliptic case, the linear map DTn
(s,p) is a rota-

tion: the origin is surrounded by closed invariant circles
and is a stable equilibrium. However, this beautiful be-
haviour may not be inherited by the map Tn, as can be
seen in the examples in Figure 2. For both of them, the
fixed point is linearly elliptic. On the left side, the non-
linear map exhibits invariant closed curves surrounding
the fixed point, which is then stable. For the nonlinear
map on the right, no invariant curves can be observed
and the fixed point seems to be unstable.1

Moreover, it is not even clear if the pictures in Fig-
ure 2, obtained by numerical simulations, correspond
to the true behaviour of the maps. In fact, we [Dias
Carneiro et al. 03] proved that any C1 strictly convex
billiard map with an elliptic 2-periodic orbit can be ap-

1Even more surprising is the example given by Anosov and Ka-
tok in [Anosov and Katok 70] of an ergodic area-preserving map of
the disc |z| < 1, with an elliptic fixed point at z = 0. The ergod-
icity implies that the fixed point is unstable. This example does
not represent a billiard map and we don’t know if there are any
billiards with this property.
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proached by billiard maps with a 2-periodic orbit sur-
rounded by closed invariant curves, i.e., with a stable
orbit. We guess that this result can be extended to any
period. Therefore, because of natural numerical roundoff
errors, one can not be sure that the simulation corre-
sponds to the actual billiard and not to a very close one.

As a consequence, in the elliptic case, a more careful
approach is needed and higher-order terms must be taken
into account to assure the local stability of periodic or-
bits. A classical way to handle this problem is to use the
Birkhoff normal form and Moser’s twist theorem [Siegel
and Moser 71].

In what follows, we explain how this can be performed
and applied to the billiard map in the case of 2-periodic
elliptic orbits. We have employed the software Maple
to calculate the necessary data and all the worksheets
are available at http://www.mat.ufmg.br/comed/2004/
d2004/. We then apply the results to two special classes
of billiards.

Related works are [Hayli et al. 87] and [Moeckel 90].
The first author studied the stability of elliptic periodic
orbits for a family of Robnik’s billiards. The last author
studied the generic behaviour of the first Birkhoff coeffi-
cient for one-parameter families of conservative maps.

2. NONLINEAR ANALYSIS AND THE LOCAL
STABILITY OF ELLIPTIC ORBITS

Let T be an area preserving map with a n-periodic orbit
{(0, 0), T (0, 0), ..., Tn−1(0, 0)}. We will assume that the
map is Ck with k ≥ 4. In the case of the billiard map,
this is equivalent to assuming that the curve α is at least
C5.

The map Tn can then be expanded in Taylor form up
to order 3 in a neighbourhood of its fixed point (0, 0),

Tn(s, p) = (a10s + a01p + a20s
2 + ... + a03p

3,

b10s + b01p + b20s
2 + ... + b03p

3)

+ O(|(s, p)|4).
(2–1)

If the fixed point is elliptic with eigenvalues µ =
cos γ + i sin γ and µ̄, by means of a complex linear area-
preserving coordinate change which diagonalizes the lin-
ear part, the map Tn can be written as

z �→ µ(z + c20z
2 + c11zz + c02z

2

+ c30z
3 + c21z

2z + c12zz2

+ c03z
3) + O(|z|4).

(2–2)

If µj �= 1, j = 1, 2, 3, or 4 we say that µ is nonresonant,
and an analytic coordinate change brings the map into

its convergent Birkhoff normal form

z �→ ei(γ+τ1|z|2)z + O(|z|4) = µz + iµτ1z|z|2 + O(|z|4).

The first Birkoff coefficient τ1 is given by

τ1 = �(c21) +
sin γ

cos γ − 1

(
3 |c20|2 +

2 cos γ − 1
2 cos γ + 1

|c02|2
)

(2–3)
where �(c21) stands for the imaginary part of c21.

The calculations leading to Equation (2–3) are stan-
dard [Hayli et al. 87, Moeckel 90] and can be easily per-
formed using symbolic programming (see the worksheet
3NormalForm at [Dias Carneiro et al. 04]).

By Moser’s twist theorem, if the first Birkhoff coef-
ficient τ1 is not zero there are Tn-invariant curves sur-
rounding the fixed point and therefore it is stable. We
have that each point of the n-periodic orbit is contained
in an open set, called an island, homeomorphic to a
disk and invariant under Tn. Each island contains Tn-
invariant curves surrounding the periodic point. So, the
n-periodic orbit of T is stable.

3. ELLIPTIC 2-PERIODIC ORBITS OF
CONVEX BILLIARDS

Any closed regular strictly convex C2 curve α has at least
two diameters, characterized by points with parallel tan-
gents and equal normal lines (like the axis of an ellipse).
The motion along each one of them corresponds to a 2-
periodic trajectory for the billiard map associated to α.

It is easy to prove that the longest of these diameters,
if isolated, corresponds to a hyperbolic orbit (see, for in-
stance, [Katok and Hasselblat 95] or [Kozlov 00]). The
other(s) can be either hyperbolic, elliptic, or parabolic.
Let us suppose that one of them is elliptic and let s = 0
and s = s1 be the arclength parameters of the trajec-
tory. Since the motion occurs in the normal direction,
the tangential component of the momentum p is zero
in both of the reflection points. Then {(0, 0), (s1, 0)} is
an elliptic 2-periodic orbit of the associated billiard map
T (s, p) = (S(s, p), P (s, p)) and (0, 0) is an elliptic fixed
point of T 2.

Let R0 = R(0) and R1 = R(s1) be the radii of curva-
ture of α at s = 0 and s = s1; and let L = ||α(0)−α(s1)||
be the length of the trajectory. Using Equation (1–1), the
linear map DT 2

(0,0) = DT(s1,0) DT(0,0) is given by

DT 2
(0,0) =

(
A B
C D

)
(3–1)
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where

A =
(L − R1) (L − R0)

R1 R0
+

L (L − R0 − R1)
R0 R1

,

B = −2L (L − R1)
R1

,

C = −2 (L − R0) (L − R0 − R1)
R0

2 R1

, and

D =
(L − R1) (L − R0)

R1 R0
+

L (L − R0 − R1)
R0 R1

and its eigenvalues are

2
(L − R1) (L − R0)

R0 R1
− 1

± 2
√

L (L − R0 − R1) (L − R1) (L − R0)
R0 R1

.

Since the trajectory is elliptic the relations L−R0−R1 <

0 and (L−R0)(L−R1) > 0 must be fulfilled. Assuming
that 4 (L−R0)(L−R1) �= R0R1 and 2 (L−R0)(L−R1) �=
R0R1 then µj �= 1 for j = 1, 2, 3, 4.

In the elliptic and nonresonant case, in order to in-
vestigate the stability of the fixed point, we can proceed
and examine the first Birkhoff coefficient given by (2–3) .
The complex coefficients c21, c20, and c02 in the formula
depend on the real coefficients aij and bij of the Taylor
expansion of T 2 at the origin, Equation (2–1).

The linear coefficients aij and bij , i + j = 1, are ob-
viously the entries of DT 2

(0,0) and thus given by Equa-
tion (3–1). Note that a10 = b01. As T is area preserving,
a2
10 − a01b10 = 1, and, as (0, 0) is elliptic, a01b10 < 0.

These conditions were used to write down the coor-
dinate change leading to (2–2) and we found (see the
worksheet 2Complex at [Dias Carneiro et al. 04]):

�(c21) =
a10

8

(
−a21 + 3

b10

a01
a03 − 3

a01

b10
b30 + b12

)

− b10

8

(
a12 − 3

a01

b10
a30 − a01

b10
b21 + 3b03

)

|c20|2 =
1
16

√
−a01

b10

(
b10

a01
a02 + a20 + b11

)2

+
1
16

√
− b10

a01

(
a01

b10
b20 + b02 + a11

)2

|c02|2 =
1
16

√
−a01

b10

(
b10

a01
a02 + a20 − b11

)2

+
1
16

√
− b10

a01

(
a01

b10
b20 + b02 − a11

)2

(3–2)
which shows that τ1 is linear on the real coefficients of
third order and quadratic on the second order ones.

In order to explicitly calculate the first Birkhoff co-
efficient, all that is needed now are the second- and
third-order coefficients of the Taylor expansion at (0, 0)
of T 2(s, p) = (S(S(s, p), P (s, p)), P (S(s, p), P (s, p))) .

A sequence of straightforward but long computations
using the chain rule gives those Taylor coefficients. To
illustrate it, let us give the expression of a20:

a20 =
∂2

∂s2
S(S(s, p), P (s, p))(0, 0)

=
∂S

∂s
(0, 0)

∂P

∂s
(0, 0)

∂2S

∂s∂p
(s1, 0)

+
1
2

∂S

∂s
(s1, 0)

∂2S

∂s2
(0, 0)

+
1
2

[
∂P

∂s
(0, 0)

]2
∂2S

∂p2
(s1, 0)

+
1
2

∂S

∂p
(s1, 0)

∂2P

∂s2
(0, 0)

+
1
2

[
∂S

∂s
(0, 0)

]2
∂2S

∂s2
(s1, 0).

The first derivatives of the functions S and P are
given by Formulae (1–1) and they depend on the function
l(s, p). So, to calculate the second and third derivatives
of S and P it is necessary to evaluate the first and sec-
ond derivatives of l. Let l(s, S) = ||α(S) − α(s)||. Then
l(s, p) = l(s, S(s, p)).

By differentiating

l2(s, S) = 〈α(S) − α(s), α(S) − α(s)〉

we have

l(s, S)
∂l

∂s
(s, S) = −〈α′(s), α(S) − α(s)〉 (3–3)

and so, as α′ is the unitary tangent vector,

∂l

∂s
(s, S) = −p .

Analogously,
∂l

∂S
(s, S) = P .

These relations simply show that −l(s, S) is the generat-
ing function of the billiard map.

Differentiating (3–3) with respect to s and S and using
the fact that η = R α′′ is the unitary normal vector gives

∂2l

∂s2
(s, S) =

1 − p2

l(s, S)
−

√
1 − p2

R(s)

∂2l

∂s ∂S
(s, S) =

√
(1 − p2)(1 − P 2)

l(s, S)
.



Kamphorst and Pinto-de-Carvalho: The First Birkhoff Coefficient and the Stability of 2-Periodic Orbits on Billiards 303

The same reasoning gives

∂2l

∂S2
(s, S) =

1 − P 2

l(s, S)
−

√
1 − P 2

R(S)
.

The chain rule now will give the first- and second-order
derivatives of l(s, p). To evaluate them at (0, 0) and
(s1, 0) it is useful to remember that α′(s1) = −α′(0),
η(s1) = −η(0), and α(s1) − α(0) = Lη(0).

Because of the recurrent structure of the formulae, the
explicit calculus of the aij and bij is suitable to be im-
plemented as a computer program (see the worksheets
0ThreeJet and 1TaylorCoeffs at [Dias Carneiro et al.
04]). The final expression of the Taylor expansion of T 2

is also given in the worksheet 1TaylorCoeffs.
The second-order coefficients aij , bij , i+j = 2 will have

linear dependence on dR
ds (0) = R′

0 and dR
ds (s1) = R′

1 while
the third-order coefficients aij , bij , i+ j = 3 will have lin-
ear dependence on d2R

ds2 (0) = R′′
0 and d2R

ds2 (s1) = R′′
1 and

quadratic dependence on the first-order derivatives. So
the first Birkhoff coefficient τ1 will have quadratic depen-
dence on the first derivatives of R and linear dependence
on the second derivatives. The final expression of τ1 is
obtained after substitution of the aij and bij into (3–2)
and then into (2–3) giving

τ1 = − 1
8

R0 + R1

R0R1

− 1
8

L

L − R0 − R1

(
L − R1

L − R0
R′′

0 +
L − R0

L − R1
R′′

1

)

− 1
8

L

(L − R0 − R1)2

×
(

2
L − R1

L − R0
(R′

0)
2 + 2

L − R0

L − R1
(R′

1)
2 + 3R′

0R
′
1

)

+
1
8

LR0R1

(L − R0 − R1)2(4(L − R0)(L − R1) − R0R1)

×
(

(L − R1)2

L − R0

(R′
0)

2

R0
+

(L − R0)2

L − R1

(R′
1)

2

R1
− R′

0R
′
1

)
.

The details leading to the formula are given in the work-
sheet 4Tau at [Dias Carneiro et al. 04].

4. BILLIARDS WITH ISLANDS

As remarked in Section 3, a billiard on a strictly convex
C2 curve always has 2-periodic orbits and the largest
one, if isolated, is hyperbolic. Unfortunately, one can not
assure that at least one of the others is elliptic. In fact,
there are many examples where all 2-periodic orbits are
isolated and hyperbolic (see, for instance, [Dias Carneiro
et al. 03] or [Kozlov 00]).

On the other hand, ellipticity is an open property, in
the sense that if a billiard associated to a C2 strictly
convex curve α has an elliptic 2-periodic orbit, then any
strictly convex curve sufficiently C2-close to α generates
a billiard with an elliptic 2-periodic orbit [Dias Carneiro
et al. 03]. So, a large class of strictly convex billiards
has elliptic 2-periodic orbits. The question is: are they
stable?

In what follows, we present two classes of billiards (lo-
cally circular and symmetric) exhibiting stable 2-periodic
orbits.

4.1 Locally Circular Billiards

Our first and simplest example is a 2-periodic orbit be-
tween two circles. More precisely, let α be a plane,
strictly convex, closed curve parameterized by the ar-
clength s, with the following properties:

• there are two points located by s = 0 and s = s1 such
that α′(0) = −α′(s1) and α(0) − α(s1) = −L�η(0),
where �η(0) is the unitary normal vector at 0.

• α is locally a circle, both near s = 0 and s = s1,
with radii R0 and R1 respectively.

• L, R0, and R1 verify L−R0 −R1 < 0, (L−R0)(L−
R1) > 0, and 4(L − R0)(L − R1) �= R0R1, 2R0R1,
which are open conditions on the (L,R0, R1)-space.

With these properties, {(0, 0), (s1, 0)} is a nonresonant
elliptic 2-periodic orbit for the billiard map T associated
to α.

As α is locally circles, T is locally analytic and the first
Birkhoff coefficient of the elliptic orbit can be calculated.
Moreover, R′ and R′′ vanish at s = 0 and s = s1. So,

τ1 = −1
8

(
1

R0
+

1
R1

)
�= 0

and this billiard has a stable 2-periodic orbit.

R
R

L
0

1

FIGURE 3. A 2-periodic orbit in a locally circular billiard.
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Although extremely simple, this example shows that
exchanging the curve α with the osculating circles at the
impact points gives information about ellipticity, but not
about stability, since τ1 depends on the derivatives of the
radius of curvature.

4.2 Ovals with a Special Symmetry

Let R be a periodic C4 function with Fourier expansion

R(ϕ) = a0 +
∑
n=1

an cos 2nϕ

with an > 0 and a0 >
∑

n=1 an, implying that R(ϕ) >

0,∀ϕ.
Let α be a curve, having R as its radius of curvature,

given by

α(ϕ) = (x(ϕ), y(ϕ))

=
(∫ ϕ

0

R(β) cos βdβ,

∫ ϕ

0

R(β) sin βdβ

)
.

It is a regular, closed, and strictly convex C5 curve.
Since R is an even function, x(−ϕ) = −x(ϕ), y(−ϕ) =

y(ϕ), and α(0)α(π) is an axis of symmetry for α, and
then {(0, 0), (π, 0)} is a 2-periodic orbit for the associated
billiard map.

We have

L = ||α(π) − α(0)|| = y(π)

= 2 a0 −
∑
n=1

2 an

(2n + 1)(2n − 1)

R(0) = R(π) = R0 = a0 +
∑
n=1

an

x

y

α(π)

α(0)

FIGURE 4. A 2-periodic orbit in a symmetric oval billiard.

and then

L − R(0) − R(π) = L − 2R0

= −2
∑
n=1

an

(
1

(2n + 1)(2n − 1)
+ 1

)

< 0

L − R(0) = L − R(π) = L − R0

= a0 −
∑
n=1

an

(
2

(2n + 1)(2n − 1)
+ 1

)
.

If the open conditions

(2 + k) a0 −
∑
n=1

an

[
4

(2n + 1)(2n − 1)
+ (2 − k)

]
�= 0

hold for k = 0,±1,±√
2, then {(0, 0), (π, 0)} is elliptic

and nonresonant.
Let s = s(ϕ) be the arclength parameter for α. Choos-

ing s(0) = 0 and s(π) = s1 we have

dR

ds

∣∣∣∣
s=0

=
1

R0

dR

dϕ

∣∣∣∣
ϕ=0

= 0,

dR

ds

∣∣∣∣
s=s1

=
1

R0

dR

dϕ

∣∣∣∣
ϕ=π

= 0

d2R

ds2

∣∣∣∣
s=0

=
1

R2
0

d2R

dϕ2

∣∣∣∣
ϕ=0

= −4
∑
n=1

n2an < 0,

d2R

ds2
(s1)

∣∣∣∣
s=s1

=
1

R2
0

d2R

dϕ2

∣∣∣∣
ϕ=π

= −4
∑
n=1

n2an < 0

and the first Birkhoff coefficient is

τ1 = − 1
4R0

(
1 +

L

R0(L − 2R0)
d2R

dϕ2
(0)

)
< 0.

So the 2-periodic orbit is stable.
In particular, this class of curves include those studied

numerically by Berry in [Berry 81] and defined by R(ϕ) =
1+ ε cos 2ϕ with 0 < ε < 1. If ε �= 3

5 , 3
13 , or 3

41 (13−8
√

2),
the conditions for nonresonant ellipticity are fulfilled and
the 2-periodic orbit is stable.

It is claimed in [Berry 81] that when ε = 3
5 (mean-

ing parabolicity of the 2-periodic orbit) there is neutral
stability. There is no specific observations for the other
two values of ε. It would be interesting to investigate the
behaviour of this and other examples at resonances.

5. FINAL REMARKS

We choose to restrict ourselves to the calculation of the
first Birkhoff coefficient (τ1) for 2-periodic elliptic and
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nonresonant orbits. We do not address the calculation of
higher-order coefficients nor the case of orbits with larger
periods.

This choice has some advantages and, of course, some
limitations. Initially, it was motivated by the search for
generic properties of strictly convex billiard maps. In
fact, as shown in [Dias Carneiro et al. 03], knowledge
of the explicit form of the first Birkhoff coefficient of
2-periodic elliptic orbits allows the proof that any C5

strictly convex billiard map with an elliptic 2-periodic
orbit is approached by billiards with a nonresonant 2-
periodic elliptic orbit with τ1 �= 0 and so with islands.
However, to guarantee the existence of islands for one
specific orbit, higher-order Birkhoff coefficients must be
taken into account when the first one is zero. This will
ask for higher-order Taylor coefficients for the iterations
of the billiard map which, by increasing the recurrence
level, increases the length and complication of the com-
putations. Our program may not be very efficient in this
case.

On the other hand, the analysis of k-periodic orbits is
a natural and important question. Even though Moser’s
twist theorem applies to any period, some practical prob-
lems appear. First of all, one must localize the orbit, i.e.,
find its s and p parameters. For a 2-periodic orbit this
is easy, since p = 0 at any point of the orbit. Rychlik
in [Rychlik 89] gives a geometric way to handle the 3-
periodic case, but it is not clear that his method can be
generalized to larger periods.

Once localized, the conditions of ellipticity and non-
resonance of the orbit must be fulfilled, which is feasible.
Then, for the calculation of τ1, it will be necessary to
calculate the Taylor expansion, up to order 3, of as many
iterates of the billiard map as the period in question. Al-
though our approach could be employed for any given
period, even at a very high computational cost, the gen-
eral case is out of our scope.

So, to generalize our work more sophisticated or specif-
ically designed software tools may be needed. Maybe,
the tools proposed by Rychlik in [Rychlik 00] will fit this
purpose.

At this point, it is important to note that in the cal-
culation of τ1 for 2-periodic orbits many handmade sim-
plifications and cancellations were done in order to write
an understandable and significant formula. The skills in-
volved with performing this task are usually unavailable,
even in sophisticated mathematical software.

Nevertheless, the simple case presented here has the
advantage of being accessible by nonexperts, while still

being of great interest and importance in the investiga-
tion of nonintegrable billiards.
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