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The Goresky-Kottwitz-MacPherson (GKM) graph is a combinato-
rial analogue of a compact connected symplectic manifold with
a Hamiltonian action of a compact torus. This graph has been
intensively studied by Guillemin and Zara, who discovered ana-
logues in graph theory of classical results such as: symplectic
reduction and “quantization and reduction commute.” In this
paper, we describe the implementation of algorithms illustrating
their results.

1. INTRODUCTION

In 1988, Thomas Delzant [Delzant 88] opened a new path
between Hamiltonian geometry and the world of convex
polytopes. For any symplectic compact connected mani-
fold with Hamiltonian effective action, the dimension of
the manifold is at least twice the dimension of the torus
and the image of the manifold by the moment map is a
convex polytope. Moreover, if this dimension is exactly
twice that of the torus, then the convex polytope (named
Delzant’s polytope) characterizes up to isomorphism the

FIGURE 1. GKM graph of the manifold (GL(3, C)/B)
×G2,5(C) (screenshot from our program).
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FIGURE 2. Image by the moment map of the coad-
joint orbit U(3) · V and GKM graph of the flag manifold
U(3)/{diagonal matrices}.

Hamiltonian manifold. In other words, all data from the
Hamiltonian manifold is stored in this polytope.

Demazure [Demazure 70] introduced the notion of
toric manifold (see also [Audin 91, Guillemin 94]). A cer-
tain subcategory of these manifolds, containing, in par-
ticular, projective spaces, satisfy hypotheses of Delzant’s
theorem. Unfortunately, many interesting manifolds do
not fulfill these drastic conditions, for example, Grass-
mannian and flag manifolds. Thus, during the passage
from these manifolds to their associated polytope loss of
data occurs. Hence, we want to know how to encode all
data from a compact connected manifold with action of
a torus of any dimension.

Goresky, Kottwitz, and MacPherson proved [Goresky
et al. 98] that the ring of equivariant cohomology of
certain compact connected manifolds—GKM manifolds,
which we will discuss later—can be computed with tools
from graph theory. Among GKM manifolds are toric
manifolds and homogeneous spaces G/H, where G is a
compact connected group and H a subgroup of G of same
rank.

Guillemin and Zara highlighted a graph associated
to each GKM manifold. This graph, with edges
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FIGURE 3. Relationship between manifold reduction and
1-skeleton reduction.

oriented and labeled by an axial vector, is called
the Goresky-Kottwitz-MacPherson (GKM) graph, or
1-skeleton [Guillemin and Zara 99]. For example, in the
Hamiltonian case, this graph takes into account the fact
that images of fixed points by the moment map are linked
not only by edges in the sense of polytopes (intersection
of facets), but also sometimes by edges “inside” the poly-
tope (see Figure 2).

Guillemin and Zara then “forgot” the underlying man-
ifold: the abstract 1-skeleton was born. Since then, they
have investigated properties of this new object [Guillemin
and Zara 00, Guillemin and Zara 01a, Guillemin and
Zara 01b]). In graph theory, they found many analogues
of notions of symplectic geometry: orientation, cohomol-
ogy, K-theory, quantization. They also proved in GKM
theory counterparts of several classical theorems from
symplectic geometry, like Atiyah-Bott-Berline-Vergne’s
localization theorem [Berline and Vergne 82, Atiyah and
Bott 84] and Jeffrey-Kirwan’s theorem [Jeffrey and Kir-
wan 95].

Under certain hypotheses, Guillemin and Zara com-
puted the reduction of an abstract 1-skeleton by a one-
dimensional torus and at a regular value of a moment
map of the graph. The reduction remains an abstract
1-skeleton. This graph operation imitates the reduction
of a manifold, so that the reduction of the graph of a
manifold is the graph of the reduced manifold (when this
makes sense). See Figure 3.

Probably, the most fascinating part of their research
in the framework of the reduction of a GKM graph by a
one-dimensional torus is as follows. In fact, the invari-
ant character of a K-theory element equals a character
built only with data coming from the reduced graph (and
from the K-theory element), called the reduced charac-
ter. This result is the analogue in graph theory of the as-
sertion “quantization and reduction commute” from the
symplectic world [Meinrenken and Sjamaar 99]. In addi-
tion, while the invariant character of a K-theory element
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FIGURE 4. GKM graphs of G1,5(C) = P
4(C) (left, dashed), and G2,5(C) (left, plain) and its reduction along ξ =

(0, 1, 2, 3,−6) at c = 7/2 (right).

is a rather big polynomial, the reduced character is a
condensed rational fraction.

Reduction of a 1-skeleton is a fastidious task. Af-
ter low-dimensional examples we have to face intractable
computations. For example, the graph of the Grass-
mannian of complex 2-planes in C

5 is 6-valent and has
ten vertices (hence 30 edges). Its reductions by the torus
generated by ξ = (0, 1, 2, 3,−6) are 5-valent and pos-
sess 6, 10, 12, and 14 vertices (hence 15, 25, 30, and 35
edges). See Figure 4. Computer science is a great help,
when studying nontrivial examples.

Consequently, I implemented, in the language of the
computer algebra system Maple, the reduction of a
1-skeleton, using a program named reduction.mws. The
output is not only data of the reduced graph (vertices,
edges, and axial vectors), but also a graphical represen-
tation of the result.

Similarly, the computation and the storage of the in-
variant character are intractable even for small examples.
For instance, the dilatation of the K-theory element im-
plies an impressive growth of the number of terms of the
character. For the K-theory element Θ(p) = e2iπθp of
the manifold P

3(C) and for the one-dimensional torus
with infinitesimal generator ξ = (1, 2,−1,−2), invariant
characters χ(Θn)H for n = 1, 10, 100, and 1, 000 have
respectively 1, 12, 867, and 83, 667 monomials. This is
why I also implemented the computation of the reduced
character of a K-theory element of a GKM graph, in a
program named character.mws. The output is a sum of
rational fractions with constant size whatever the dilata-
tion of the K-theory element is.

My two programs (reduction.mws and character

.mws) contain a library of examples. Procedures generate
Grassmannians Gk,n(C) and the cycle with 4N vertices.
The flag manifold U(3)/{diagonal matrices} (whose re-

duction is a GKM hypergraph) is also available. A pro-
cedure performs the product of 1-skeleta.

These two programs aim to make the understanding of
GKM graphs easier. I implemented them using Maple, a
widespread software whose language is quite understand-
able. There are lots of commentaries along with both
programs, so that a curious user may understand inter-
nal procedures. The source code is freely available and
may be modified. The independence of subroutines al-
lows adapting programs to one’s needs.

Programs can be downloaded at http://www.math.
jussieu.fr/∼cochet/.

This paper is organized as follows. Sections 2–5 con-
tain a survey of results of Guillemin and Zara about
GKM theory. Only Sections 6–7 are original. Section 2
introduces GKM graphs. Fundamental examples (Grass-
mannians and flag manifolds) are described in Section 3.
Section 4 features the reduction of abstract GKM graphs.
Section 5 is devoted to the analogue for GKM graphs
of the theorem “quantization and reduction commute.”
Examples are included, for the sake of clarity. Section 6
contains the description of my programs. Finally, we ex-
amine several tests of programs in Section 7, and discuss
their implementation and performances.

2. DEFINITION AND FIRST PROPERTIES
OF GKM GRAPHS

2.1 GKM Graph of a Manifold

Let G = (S1)n be the n-dimensional torus with Lie alge-
bra g = R

n. Let (ej)j be the canonical basis of R
n. Its

dual basis is (θj)j ⊂ g∗. Let uj = e2iπθj (1 ≤ j ≤ n).
We denote by Z

∗
G = Z

n the set of weights of linear forms
λ =

∑n
j=1 λjθj with λj ∈ Z. The set Z

∗
G is the weight

lattice for G. Let ξ = (ξ1, . . . , ξn) be an element of g.
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Definition 2.1. A compact connected manifold M of di-
mension 2d on which G acts is a GKM manifold if:

1. the set MG of fixed points of M under the action of
G is finite;

2. M has an almost complex G-invariant structure; and

3. for all p ∈MG, weights αp,i ∈ Z
∗
G (1 ≤ i ≤ d) of the

action of G on the tangent space TpM are pairwise
linearly independent.

From a GKM manifold (M,G), let us build a d-valent
graph Γ. The set of its vertices is by definition MG. Let
Hp,i be the subtorus of G of dimension n− 1 and of Lie
algebra hp,i = ker(αp,i) ⊂ g.

Proposition 2.2. The connected component Ep,i of MHp,i

containing p is isomorphic to the complex space P
1(C),

that is, to the Riemann sphere S2. The action of G on
Ep,i restricts to the action of S1 on S2 by rotation.

In particular, Ep,i contains two fixed points: p and,
say, q. Then p and q are linked by an edge, denoted
by e = [p, q]. Denote by e the edge [q, p]. Let αp,e =
αp,q = αp,i (respectively αq,e = αq,[q,p] = αq,j) be the
weight of the action of G on TpE

p,i (respectively TqE
p,i).

Then αp,e = −αq,e. Thus for each weight αp,i we get one
complex space P

1(C) and one q = q(p, i) linked to p by
an edge. Repeating this process with every fixed point p,
we obtain a d-valent graph Γ.

Denote by E(p) the set of edges pointing out from p,
and by N(p) the set of neighbors of p. Let VΓ be the set
of vertices of the graph Γ. The incidence relation IΓ of Γ
is the set of couples (p, e), where p ∈ VΓ and e ∈ E(p).

The application α : IΓ −→ Z
∗
G \ {0} defined by

α(p, e) := αp,e is called the axial function.

Definition 2.3. The couple (Γ, α) is the GKM graph or
GKM 1-skeleton of M .

The axial function satisfies the properties in Proposi-
tion 2.4.

Proposition 2.4.

1. If e = [p, q] is an edge of Γ, then αp,q = −αq,p.

2. Let (pi) = N(p). Then weights αp,pi
are pairwise

linearly independent.

3. Let e = [p, q] ∈ E(p) and ge = ker(αp,q). Let (pi) =
N(p) \ {q} (respectively (qi) = N(q) \ {p}). Then
one can renumber the qi’s such that αp,pi

= αq,qi
+

ce,iαp,q for integers ce,i.

Remark 2.5. In general G does not act faithfully on M .
Let z be the Lie algebra of the kernel Z of the represen-
tation of G in Aut(M). Then the axial function takes its
values in z⊥. We say that M is toric when its dimension
is twice the dimension of the torus G/Z.

The category of GKM Hamiltonian compact con-
nected manifolds is a source of examples of manifolds
with easily computed GKM graphs.

Remark 2.6. The construction of a GKM graph does not
require a symplectic structure. Thus, whereas a manifold
can have several symplectic structures, it has only one
GKM graph.

2.2 Abstract GKM Graph

In this section, we formalize the notion of a GKM
1-skeleton of a GKM manifold M and study its prop-
erties, independently of the existence of M .

Fix a d-valent graph Γ.

Definition 2.7. An axial function on Γ is an application
α : IΓ −→ g∗ \ {0} such that:

1. If e = [p, q] is an edge of Γ, there exist me > 0 and
me > 0 such that meαp,e = −meαq,e.

2. Let (pi) = N(p). Then vectors αp,pi
are pairwise

linearly independent.

3. Let e = [p, q] be an edge of Γ and ge = ker(αp,e).
Let (pi) = N(p) \ {q} and (qi) = N(q) \ {p}. Then
one can renumber qi’s so that there exist τe,i > 0
and ce,i ∈ R such that αp,pi

= τe,iαq,qi
+ ce,iαp,q.

The couple (Γ, α) is called an abstract 1-skeleton.

When me = me, τe,i = 1, and α takes its values in
the weight lattice Z

∗
G, we speak of an abstract GKM

1-skeleton or an abstract GKM graph. This is consistent
with Section 2.

Proposition 2.8. [Guillemin and Zara 01a] If (Γ, α) is an
abstract GKM graph, there exist a complex manifold M

and an action of G on M such that (Γ, α) is the GKM
graph of (M,G).
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Hence, it is acceptable to leave out the adjective “ab-
stract,” when speaking of an “abstract GKM graph” or
an “abstract GKM 1-skeleton.”

Remark 2.9. In Definition 2.7, I weakened both Defi-
nition 2.1 and Proposition 2.4 by introducing me and
τe,i, because, in general, the symplectic reduction of a
manifold is an orbifold, and the reduction of an abstract
1-skeleton (see Section 4), built as the analogue of the
symplectic reduction of a manifold, will be an abstract
1-skeleton and not a GKM 1-skeleton.

Definition 2.10. The abstract 1-skeleton (Γ, α) is
k-independent if for all vertices p and for all k-sets of
neighbors {q1, . . . , qk} of p, the family {αp,q1 , . . . , αp,qk

}
is linearly independent.

3. CLASSICAL EXAMPLES OF GKM MANIFOLDS
AND GRAPHS

3.1 The Grassmannian Gk,n(C)

The Grassmannian M = Gk,n(C) of complex k-planes
in C

n is equipped with the action of the complex torus
T = (S1)n deduced from the natural action on C

n.
This manifold has complex dimension k(n − k),

whereas the quotient of the torus by the kernel of the
action is (n − 1)-dimensional. Hence, if k is different
from 1 and n − 1, conditions of Delzant’s theorem are
not fulfilled. Hence, the image of a moment map does
not contain all data from the manifold.

Vertices of the GKM graph of Gk,n(C) are in one-to-
one correspondence with k-subsets S of {1, . . . , n}. The
vertex pS corresponds to the k-dimensional space gener-
ated by ej (j ∈ S). Two vertices pS and pS′ are adjacent
if and only if S ∩ S′ has k − 1 elements. Moreover the
axial function is αpS ,pS′ =

∑
i∈S′ θi −

∑
j∈S θj .

This graph has
(

n

k

)
vertices, each of them linked with

k(n− k) adjacent vertices. Consequently, there are

k(n− k)
2

(
n

k

)
=

n(n− 1)
2

(
n− 2
k − 1

)

edges. We will often write pS = S.
The projective space P

n(C) = G1,n+1(C) is equipped
with the effective action of the n-dimensional torus
(S1)n+1/(eiθ, . . . , eiθ). The Fubini-Study form endows
it with a Hamiltonian structure with moment map
φ([z])(X) = −i〈X(z), z〉/|z|2 (z ∈ C

n+1, X ∈ g). This
space satisfies the hypotheses of Delzant’s theorem, thus
the image of the moment map characterizes this space.

1

��
��

��
��

��
��

��
��

� 2

��
��

��
��

��
��

��
��

�
12

��
��

��
��

��������������� 13

���������������

��
��

��
��

14

��
��

��
��

��������������� 23

4 3 24

���������������
34

��������

FIGURE 5. GKM graphs of P
3(C) and G2,4(C) (axial

function omitted).
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FIGURE 6. GKM graph of the flag manifold GL(3, C)/B.

3.2 The Flag Manifold U(n)/{diagonal matrices}
Let K = U(n) be the group of n × n unitary matrices
and D be the subgroup of K of diagonal unitary matri-
ces. Denote by M = U(n)/D � GL(n, C)/B the flag
manifold of GL(n, C), where B is the Borel subgroup
of GL(n, C) of invertible upper triangular matrices. This
manifold does not fulfill the hypotheses of Delzant’s theo-
rem, hence the GKM graph is valuable for characterizing
this space.

The GKM graph of the flag manifold GL(n, C)/B is,
in fact, the Cayley graph associated to the permutation
group Sn. Vertices of Γ are in one-to-one correspondence
with permutations over {1, . . . , n}. Two vertices σ, σ′ are
linked by an edge if and only if there exists a transposi-
tion ti,j = (i j) such that σ′ = σti,j . Moreover ασ,σti,j

equals θj − θi if σ(j) > σ(i), else θi − θj .
For example, let α1 = θ2 − θ1, α2 = θ3 − θ2, and

α3 = α1 +α2. Then Figure 6 represents the GKM graph
of GL(3, C)/B.

4. REDUCTION OF A 3-INDEPENDENT ABSTRACT
1-SKELETON

Let (Γ, α) be a d-valent abstract 1-skeleton. Here we as-
sume that (Γ, α) is 3-independent (see Definition 2.10).
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When (Γ, α) is not 3-independent we can still com-
pute a reduction, but the result will be a hypergraph
(see [Guillemin and Zara 00]). Although my programs
can handle this case, I will not describe this similar the-
ory here.

Fix a one-dimensional subtorus H of G with infinitesi-
mal generator ξ ∈ g lying in no ker(αp,e) (where e = [p, q]
runs over the set of edges). This vector ξ gives rise to a
graph orientation oξ for (Γ, α), by saying that the edge
[p, q] satisfies p < q if and only if αp,e(ξ) < 0.

Assume that, for any codimension 2 subspace h of g

and for any divalent subgraph Γh that has edges [p, q]
such that αp,q ∈ h⊥, each connected component Γ0 of
Γh has exactly one maximum and one minimum (for the
orientation oξ). We say that Γ is strongly acyclic.

Let f be a cohomology element of (Γ, α), that is f :
Γ −→ g∗ such that f(q) − f(p) = λeαp,e for all edges
e = [p, q]. We assume that f is symplectic, that is, λe > 0
for all e. The application φ = φf,ξ : VΓ −→ R defined by
φ(p) = 〈f(p), ξ〉 satisfies φ(p)−φ(q)

αq,e(ξ) > 0 for all e = [p, q];
we then say that φ is an H-moment for (Γ, α). Fix a
regular value c for φ.

Let us build the reduced 1-skeleton, a graph Γc with
valence d − 1 that will be an abstract 1-skeleton with
axial function vanishing on ξ. This corresponds to the
fact that the reduction of a 2d-dimensional manifold M

is a 2(d−1)-dimensional orbifold endowed with the action
of G/H.

Vertices SΓc
of Γc are oriented edges e = [p, q] such

that φ(p) < c < φ(q). For such an edge e = [p, q], denote
by qi all (d−1) neighbors of p other than q. Fix an index
i. Let hi be the intersection of kernels of linear forms αp,q

and αp,qi
. The connected component Γ0 of Γhi

containing
p, q, and qi is divalent, thanks to 3-independence. By
hypothesis (Γ, α) is strongly acyclic, hence there exist in
Γ0 exactly two edges cut by c, namely e and another one,
denoted by e′ = [p′, q′]. We then link vertices [p, q] and

FIGURE 7. Reduction of an abstract 1-skeleton.

[p′, q′] by an edge in the reduction. See Figure 7. The
axial function on the edge [e, e′] of Γc is

αc
e,e′ = αp,qi

− αp,qi
(ξ)

αp,q(ξ)
αp,q. (4–1)

Notice that this is indeed a linear form vanishing on ξ.

Theorem 4.1. [Guillemin and Zara 01a] The graph
(Γc, αc) is an abstract 1-skeleton with valence (d − 1).
If (Γ, α) is k-independent, then (Γc, αc) is (k − 1)-
independent.

When the abstract 1-skeleton (Γ, α) comes from a sym-
plectic GKM manifold with Hamiltonian action, the re-
duction of (Γ, α) coincides with the GKM graph of the
reduced manifold: Γ(M)c = Γ(Mc).

Remark 4.2. The reduction does not change when c runs
over a connected component of the set of regular points.
Note also, that when we add a vector λ0 ∈ g∗ to f ,
all data are translated. Consequently, one can always
consider the reduction at c = 0.

Example 4.3. (Reductions of P
4(C).) Let H be the one-

dimensional subtorus of (S1)4 with infinitesimal genera-
tor ξ = (4, 3, 2, 1,−10). Since the GKM graph of P

4(C) is
4-independent, its reductions are 3-independent abstract
GKM 1-skeleta. Choose f(i) = θi as a symplectic coho-
mology element. Critical values for φ = φf,ξ are 4, 3, 2,
1, and −10. In fact, we can restrict ourselves to reduc-
tions at c = 7/2, 5/2, 3/2, and 0. Reductions at c = 7/2
and 0 are the same as at c = 5/2 and 3/2. See Figures 8
and 9.

Example 4.4. (Reductions of GL(3, C)/B.) Since the
GKM graph of GL(3, C)/B is not 3-independent, its re-
ductions are not graphs but hypergraphs. Let H be gen-
erated by ξ = (2, 1,−3). Let α1 = θ2 − θ1, α2 = θ3 − θ2,
and α3 = α1 + α2. Choose as a symplectic cohomology
element the function f defined by

f(id) = −(α1 + α2),
f(s1) = −α2,

f(s2s1) = α1,
f(w0) = (α1 + α2),
f(s2) = −α1,

f(s1s2) = α2.

Critical values for φ = φf,ξ are ±5, ±4, and ±1. We can
restrict ourselves to reductions at c = ±3/2, ±9/2, and
0. Reductions at c = ±3/2 are the same as at c = ±9/2.
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FIGURE 8. Reduction of P
4(C) along ξ = (4, 3, 2, 1,−10) and at c = 7/2.

FIGURE 9. Reduction of P
4(C) along ξ = (4, 3, 2, 1,−10) and at c = 5/2.

FIGURE 10. Reductions of GL(3, C)/B by ξ = (2, 1,−3) at c = 3/2, c = 0 and c = 9/2.

In every case, the reduced graph has a unique hyperedge
linking all vertices. See Figure 10.

5. QUANTIZATION AND REDUCTION COMMUTE

This section deals with the analogue of “quantization
and reduction commute” for GKM graphs, as proved by
Guillemin and Zara [Guillemin and Zara 01b] in the case
of reduction by a one-dimensional torus.

Let (Γ, α) be a d-valent abstract 1-skeleton. Fix a one-
dimensional subtorus H of G with infinitesimal generator
ξ ∈ g lying in no ker(αp,e).

Let f be a cohomology element for (Γ, α) with values
in Z

∗
G. The application Θ(p) = e2iπf(p) is called a K-

theory element for (Γ, α). The character of Θ is then
defined by

χ(Θ) =
∑
p∈VΓ

Θ(p)∏
e∈Ep

(1− e2iπαp,e)
. (5–1)

In fact, the character χ(Θ) has no pole [Guillemin and
Zara 01b].

Assume that the abstract 1-skeleton is a GKM graph
(that is, coming from a manifold) and that f is symplectic
(λe > 0 for all e). Let φ(p) = 〈f(p), ξ〉 be the H-moment.
Fix a regular value c for φ.

Guillemin and Zara proved that the invariant charac-
ter χ(Θ)H (defined as the part of χ(Θ) invariant under
the action of H) can be expressed in terms of a GKM
graph and Θ, under the condensed form of a sum of ra-
tional fractions. This more precisely expressed in Theo-
rem 5.1.
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Theorem 5.1. [Guillemin and Zara 01b] The reduced char-
acter χc(Θ) is, by definition,

∑
[p,q]∈Γc

1
|αp,q(ξ)|×

∑
ζαp,q(ξ)=1

ζ〈f(p),ξ〉e2iπ
�

f(p)− 〈f(p),ξ〉
αp,q(ξ) αp,q

�

∏
r∈N(p)\{q}

(
1−ζαp,r(ξ)e

2iπ
�

αp,r−αp,r(ξ)
αp,q(ξ) αp,q

�) .

Then the invariant character equals the reduced character
χc=0(Θ).

Remark 5.2. In the case of the reduction of a Hamil-
tonian manifold, Meinrenken and Sjamaar [Meinrenken
and Sjamaar 99] proved the equality χc(Θ) = χ(Θ)H at
a regular value c close to zero. Although Mc and (Γc, αc)
change when c crosses the critical value 0, the character
χc(Θ) remains unchanged. This result is still true in the
framework of examples that we will discuss in Section 6.
Hence in these examples, when 0 is not regular, we com-
pute the reduced character at the regular value c = 1/10
close enough to 0.

Remark 5.3. Theorem 5.1 has two consequences. First,
we have a condensed expression (sum of rational frac-
tions) of χ(Θ)H . In fact, when (Γ, α) comes from a
Hamiltonian manifold M , the character of Q(M)H is
huge. Second, the formula of Guillemin and Zara involves
sums over roots of unity. When these roots are reason-
able, computation is possible and does not explode when,
for example, one dilates Θ.

Example 5.4. (Case of P
3(C).) Let H be the

one-dimensional torus generated by ξ = (1, 2,−1,−2).
Choose f�(p) = 
θp (p = 1, . . . , 4) with 
 ∈ N

∗ and let
Θ�(p) = e2iπf�(p). Let uj = e2iπθj (j = 1, . . . , 4). Hence
the invariant character is χ(Θ�)H =

∑
u�1

1 u�2
2 u�3

3 u�4
4 ,

where the sum is over the set of integers (
1, 
2, 
3, 
4) ∈
N

4 such that 
1 + 
2 + 
3 + 
4 = 
 and 
1 +2
2 = 
3 +2
4.
The result is a polynomial in uj with the number of
monomials quadratic in 
. For example χ(Θ500)H has
21001 monomials spreading over 93 pages.

On the other hand, one can check that Theorem 5.1
leads to a condensed formula in which size does not vary
when 
 grows. For example, χ0(Θ6m) equals

u2m+1
2 u4m+2

3 (u2u
3
3 + u2

1u3u4 + u1u2u
2
4)

(u2
2u3 − u3

1)(u
4
3 − u2u3

4)

+
u3m+1

2 u3m+1
4 (u3

2u
3
4+u1u2u3u4+u2

1+u2
1u2u

2
3u4+u3

1u
3
3)

(u3
2u4 − u4

1)(u2u3
4 − u4

3)

+
u4m+2

1 u2m+1
4 (u3

1u4 + u2
2u3u4 + u1u2u

2
3)

(u4
1 − u3

2u4)(u1u2
4 − u3

3)

+
u3m+2

1 u3m+2
3 (u1u3 + u2u4)

(u3
1 − u2

2u3)(u3
3 − u1u2

4)
.

Formulas for χ0(Θ6m+k) (1 ≤ k ≤ 5) are similar.

Remark 5.5. A direct computation of the invariant char-
acter leads to the enumeration of indices satisfying linear
conditions of the form

∑
j aj
j = T (
) (for an affine op-

erator T ) intractable problem when 
 grows.

Remark 5.6. In the case of toric manifolds, the re-
duced manifold is still toric. Brion’s formulas [Brion
and Vergne 97, Barvinok 02] have been recently imple-
mented in polynomial time with Barvinok’s algorithm by
the LattE team [De Loera et al. 04].

6. PROGRAMS

This section describes my programs reduction.mws and
character.mws, computing respectively the reduction of
an abstract 1-skeleton and the reduced character of a
K-theory element of a GKM 1-skeleton. Recall that
graph reduction needs an abstract 1-skeleton (Γ, α) (plus
other hypotheses). It returns a graph (more precisely an
abstract 1-skeleton) if (Γ, α) is 3-independent, otherwise
it returns a hypergraph. On the other hand, character
reduction needs a GKM 1-skeleton but is independent of
the notion of 3-independence.

6.1 Data Storage and Program Handling

Fix a numbering p1, . . . , pN of vertices of the abstract
1-skeleton. The set of vertices is represented by the list
S = (p1, . . . , pN ). Edges and axial function are stored
in the N ×N matrix A such that ai,j = αpi,pj

if pi and
pj are adjacent, else ai,j = 0. The matrix A is the gen-
eralized adjacence matrix of (Γ, α) (for this numbering).
This matrix allows an efficient check for adjacence, cy-
cles, connected components, etc.

Hence, an abstract 1-skeleton is represented by the
matrix A and the list S.

The cohomology element f is encoded by the list
F = (f(p1), . . . , f(pN )). Vectors and linear forms are
represented in the canonical basis of R

n; hence, the eval-
uation of a form on a vector corresponds to a scalar
product.

Example 6.1. Let us fix the numbering p1 = 1, p2 = 2,
p3 = 3 of vertices of the GKM graph of P

2(C); hence,
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S = (1, 2, 3). Since αpi,pj
= θj − θi, the generalized

adjacence matrix is


 0 (−1, 1, 0) (−1, 0, 1)

(1,−1, 0) 0 (0,−1, 1)
(1, 0,−1) (0, 1,−1) 0


 .

The cohomology element f(p) = θi is represented by F =
((1, 0, 0), (0, 1, 0), (0, 0, 1)). Suitable ξ and regular value
c are, for example, (2, 1,−3) and 3/2.

My two programs are easy to use: the user only pro-
vides the 1-skeleton and reduction or character data, un-
der the form S, A, F , ξ, c. This can be done either
manually, or with procedures generating classical exam-
ples (Grassmannian, GL(3, C)/B, cycle with 4N vertices,
product of graphs). For example, consider the reduc-
tion of G2,4(C) by the torus of infinitesimal generator
ξ = (3, 2, 1,−6), at the regular value c = 0. Then the
command lines building data associated to this reduction
as well as the cohomology element f(p) = 5θp inducing
the moment map are described below.

S := Sgrass(2,4);
A := Agrass(2,4);
F := Fgrass(2,4,5);
xi := [3,2,1,-6];
c := 0;

Command lines for computing vertices, cohomology
element, and generalized adjacence matrix of the reduced
graph are described below. The last line gives a graphical
representation of the graph.

Sred := VerticesRedGraph(S,F,A,xi,c);
Ared := Reduction(S,F,A,xi,c);
Fred := CohomologyRedGraph(S,F,A,xi,c);
PrintGraph(Ared);

On the other hand, the command line for the reduced
character is

P := CharacterRed(S,F,A,xi,c);

Both programs (for reduction and character compu-
tation) contain internal checks pointing out to the user
the possible failure of any condition on input data (see
Proposition 2.4, Definition 2.7, Sections 4 and 5).

6.2 Reduction of a 3-Independent Abstract GKM
1-Skeleton

The first step of the program reduction.mws is to find all
vertices of the reduced graph, that is, all edges e = [p, q]

with φ(p) < c < φ(q). Let us fix such an edge e = [p, q]
and let r be a neighbor of p different from q.

Three-independence implies that there exists a unique
neighbor s of r other than p such that the triple
of vectors {αq,p, αp,r, αr,s} has rank 2 (see Fig-
ure 7). Finding this s is performed by the proce-
dure NeighborDimTwo(A,q,p,r); its implementation is
straightforward.

The algorithm computing the reduction of a
3-independent abstract 1-skeleton is:

For all vertex e = [p, q] of the reduced 1-skeleton
for all neighbor r of p other than q

compute the reduced axial function
find the only neighbor s of r other than p. . .
. . . such that {αq,p, αp,r, αr,s} has rank 2
repeat

if [r, s] is cut by c

then link [p, q] and [r, s] in the reduced. . .
. . . 1-skeleton

quit the “repeat” loop
else q ←− p

p←− r

r ←− s

end if
end of “repeat”

end of loop over neighbors of p

end of loop over vertices of the reduced graph

Note that strong acyclicity ensures us that the pro-
gram will never be trapped in an infinite “repeat” loop.

6.3 Computing the Invariant Character as a Sum of
Rational Fractions

The difficult part of character.mws is not implement-
ing formulas, but finding an efficient way to do it. A
raw procedure leads to computations that explode, even
for small examples. More precisely, we need to compute
sums appearing in Theorem 5.1;

S(m; k, k1, . . . , kd) =
m∑

�=1

ζ�k

(1− ζ�k1U1) · · · (1− ζ�kdUd)
,

where ζ is the mth root of unity e
2iπ
m and Uj are indeter-

minates. Using a formal series development, one easily
obtains an expression that may be used (see [Zagier 73]);

S(m; k, k1, . . . , kd) =

∑m−1
s1,...,sd=0 as1,...,sd

Us1
1 · · ·Usd

d

(1− Um
1 ) · · · (1− Um

d )
,
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Graph of the manifold Dim. effective torus Valence Number of vertices

P
2(C) 2 2 3

GL(3, C)/B 2 3 6

G2,4(C) 3 4 6

P
5(C) 5 5 6

G2,5(C) 4 6 10

P
4(C) × GL(3, C)/B 6 7 30

P
8(C) 8 8 9

G3,6(C) 5 9 20

G2,4(C) × G2,5(C) 7 10 60

P
20(C) 20 20 21

G5,10(C) 9 25 252

G6,13(C) 12 42 1716

TABLE 1. GKM graphs of classical manifolds.

where as1,...,sd
equals n when m divides k + k1s1 + · · ·+

kdsd, else 0.
Marc A. A. van Leeuwen has performed an efficient re-

cursive implementation of this formula, in the procedure
SumRootUnit(k,L,X,U,m). Here L is the list of constants
kj and X is an intermediary variable. The algorithm of
the procedure is:

let d be the cardinal of L
let recur(level,s) be a local procedure defined by

if level is strictly greater than d

then return Xs mod m

else return the sum for t = 0, . . . , m− 1 of. . .
. . . U t

level * recur(level+1,s-t*Lniv)

end of local procedure
let R be the coefficient of the polynomial. . .
. . . recur(1,0) in X of degree k mod m

return m×R divided by the product of (1− Ukj
),. . .

. . . with j ranging from 1 to d.

This procedure returns the sum of |Γ0| rational frac-
tions. The dilatation of the cohomology element by a fac-
tor 
—even of the order of billion—does not cost more
time or memory. Only a monomial factor before each
fraction grows, while the result under polynomial form
explodes (see Example 5.4).

7. TEST OF PROGRAMS

Let me begin with several general remarks.
I stress that I rewrote Maple procedures on vectors:

addition, multiplication by a constant, scalar product,
test of colinearity, rank of three vectors, etc. This greatly
increased the speed of the programs. Moreover, using
lists instead of vectors has gained a lot of time. Finally,

encoding the null vector (corresponding to two nonad-
jacent vertices) by the integer 0 in the generalized adja-
cence matrix allowed a fast test of edges. More generally,
great care towards efficiency was taken during the imple-
mentation.

Here, I describe tests on classical examples of GKM
graphs coming from Grassmannians, from the flag man-
ifold GL(3, C)/B, and their products. In Table 1, one
can find for several classical manifolds: dimension of ef-
fective torus acting, valence, and number of vertices of
the graph.

For the Grassmannian Gn,k(C), the cohomology el-
ement is f(pS) =

∑
s∈S θs (see Example 4.3). For

the flag manifold GL(3, C)/B the cohomology element
is described in Example 4.4. Denote by ξr the vector
(r−1, . . . , 1,−r(r−1)/2) ∈ C

r. In my examples I always
reduced at the regular value c = 1/10 (see Remark 5.2).
Recall that the valence d of the GKM 1-skeleton equals
the dimension of the underlying manifold. Moreover, the
reduced graph has valence d− 1.

Tests were performed on standard 1.13-GHz computer,
running Maple 9. I checked retro-compatibility down to
Maple Vr5.

Note that for graph reduction most of the computa-
tion time is spent checking colinearity of two vectors and
checking the rank of a system of three vectors. Improv-
ing, even slightly, the speed of these two tasks would lead
to a substantial time savings. Nevertheless, the reduction
of 25-valent graphs with hundreds of vertices is already
done in a very competitive time. See Table 2.

Now come remarks on character reduction. The proce-
dure SumRootUnit(k,L,X,U,m), computing recursively
sums of roots of unity and described in Section 6.3, is
really efficient. Its two main parameters (directly influ-
encing computation time) are the valence of the graph
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Manifold Generator ξ Nb. of vertices Nb. of (hyper)edges Computation
to be reduced of H of reduced graph of reduced graph time

P
2(C) ξ3 2 1 < 0.1 sec

GL(3, C)/B (1, 0,−1) 5 1 < 0.1 sec

G2,4(C) ξ4 6 9 < 0.1 sec

P
5(C) ξ6 5 10 < 0.1 sec

P
5(C) (3, 2, . . . ,−3) 9 18 < 0.1 sec

G2,5(C) (3, 2, 1, 0,−6) 12 30 0.1 sec

P
4 × GL(3)/B ξ8 20 45 11.6 sec

P
8(C) (4, 3, . . . ,−4) 20 70 0.2 sec

G3,6(C) (3, 2, . . . ,−3) 37 148 0.4 sec

G2,4 × G2,5 ξ9 72 324 9.8 sec

P
20(C) ξ21 20 190 2.2 sec

G5,10(C) ξ10 630 7560 84.7 sec

G6,13(C) ξ13 5544 113652 8113.0 sec

TABLE 2. Reduction of GKM graphs of classical manifolds.

Manifold Generator ξ Nb. of vertices Order of Computation
to be reduced of H of reduced graph roots of unity time

P
2(C) ξ3 2 4 and 5 < 0.1 sec

GL(3, C)/B (1, 0,−1) 5 1 and 2 < 0.1 sec

G2,4(C) ξ4 6 7 to 9 0.1 sec

P
5(C) ξ6 5 16 to 20 22.0 sec

P
5(C) (3, 2, . . . ,−3) 9 2 to 6 0.2 sec

G2,5(C) (3, 2, 1, 0,−6) 12 6 to 9 16.9 sec

P
8(C) (4, 3, . . . ,−4) 20 1 to 8 743.0 sec

G3,6(C) (3, 2, . . . ,−3) 37 1 to 6 891.4 sec

TABLE 3. Computation of the reduced character of a K-theory element of classical manifolds.

and the values αp,q(ξ) involved in Theorem 5.1. On one
hand, the valence changes the depth of recursivity. On
the other hand, sums are over roots of unity of order
αp,q(ξ), where [p, q] runs over all vertices of the reduced
graph.

However, for every reduced character computation, we
need to call this procedure for each vertex of the reduced
graph. Each call to the procedure gives a rational fraction
appearing in the result. Hence, computing a reduced
character is quite expensive when the reduced graph has
many vertices.

For a fixed manifold, it is interesting to see what hap-
pens when we change the torus H. This influences the
number of sums of roots of unity that need to be evalu-
ated and the nature of the roots of unity. See Table 3 for
examples of computations of the reduced character of a
K-theory element of a GKM graph.
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