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We study the solutions in s of a “Dirichlet polynomial equa-
tion” m1r

s
1 + · · · +mMr

s
M = 1. We distinguish two cases. In

the lattice case, when rj = rkj are powers of a common base
r, the equation corresponds to a polynomial equation, which
is readily solved numerically by using a computer. In the non-
lattice case, when some ratio log rj/ log r1, j ≥ 2, is irrational,
we obtain information by approximating the equation by lattice
equations of higher and higher degree. We show that the set of
lattice equations is dense in the set of all equations, and deduce
that the roots of a nonlattice Dirichlet polynomial equation have
a quasiperiodic structure, which we study in detail both theo-
retically and numerically.
This question is connected with the study of the complex

dimensions of self-similar strings. Our results suggest, in par-
ticular, that a nonlattice string possesses a set of complex di-
mensions with countably many real parts (fractal dimensions)
which are dense in a connected interval. Moreover, we find
dimension-free regions of nonlattice self-similar strings. We il-
lustrate our theory with several examples.
In the long term, this work is aimed in part at developing a

Diophantine approximation theory of (higher-dimensional) self-
similar fractals, both qualitatively and quantitatively.

1. INTRODUCTION

Let 1 > r1 ≥ · · · ≥ rN > 0 be N positive real numbers.

The equation

rs1 + · · ·+ rsN = 1 (1—1)

has one real root, called D, and many complex roots.

More generally, for M scaling ratios r0 > r1 > · · · >
rM > 0 (which we now assume to be unequal), and mul-

tiplicities mj ∈ C (j = 1, . . . ,M), a function of the form
f(s) = m0r

s
0 +m1r

s
1 + · · ·+mMr

s
M (1—2)

is a Dirichlet polynomial. In this paper, we study the

complex solutions of the Dirichlet polynomial equation

f(s) = 0. (1—3)
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In Section 2, we introduce the lattice case, when f(s) is a

polynomial of rs for some r > 0, and the nonlattice case,

when f cannot be so written. We recall some basic facts

about the complex roots of Equation (1—3), and we prove

a result about their density. In Section 3, we introduce

an approximation procedure, allowing us to replace the

study of a nonlattice equation by the study of a sequence

of lattice equations. Thus, we find that the set of lattice

equations is dense in the set of all Dirichlet polynomial

equations (Section 2.3 and Section 3). It follows that the

set of complex roots of a nonlattice equation has a qua-

siperiodic structure, in a very precise sense, amenable

to computer experimentation (see, in particular, Theo-

rem 3.6 and the comments following it). In Section 4,

we implement this program. We discuss the structure

of the complex roots of a nonlattice equation close to

the line Re s = D. The case M = 2 is dealt with ex-

plicitly, using continued fractions. For M > 2, we use

a more implicit approach, based on a suitable Diophan-

tine approximation. In this case, one could also use the

LLL-algorithm [Lenstra et al. 82]. Our results are il-

lustrated in a number of plots of the complex roots and

density plots of their approximated real parts for several

(generic and nongeneric) nonlattice equations.

Equation (1—1)–along with the more general Dirich-

let polynomial equation (1—3), with f given by (1—2)–

occurs often in many areas of mathematics. Next, we

discuss one motivation, that of self-similar fractal strings,

from the authors’ recent book [Lapidus and van Franken-

huysen 00]. We note that in Section 6, we extend the

discussion in order to deal with arbitrary “‘self-similar

strings” (with scaling ratios of noninteger multiplicity).

In that case, Equation (1—1) is replaced by an equation

of the form (1—3).

A fractal string L (one-dimensional drum with frac-

tal boundary, see [Lapidus 93, Lapidus and Pomerance

93, Lapidus and Maier 95] and [Lapidus and van Franken-

huysen 00, Chapters 1 and 2]) is a disjoint union of open

intervals, the lengths of which form a sequence

L = l1, l2, l3, . . . , (1—4)

of finite total length |L| = �∞j=1 lj . The geometric zeta
function of L is defined as

ζL(s) =
∞3
j=1

lsj , (1—5)

which we assume to have a meromorphic continuation to

the left of D, the abscissa of convergence of ζL. The

geometric meaning of D is that it coincides with the

Minkowski dimension of the boundary of L.1 The poles
of ζL (in a certain domainW ; see Section 6) are called the
complex dimensions of L. In particular, D is a complex

dimension of L.
A self-similar fractal string is defined by means of

scaling ratios, see [Lapidus and van Frankenhuysen 00,

Chapter 2] and Section 5. Let N ≥ 2 and r1, . . . , rN be

the scaling ratios of a self-similar fractal string L. We al-
ways have rj ∈ (0, 1) for j = 1, . . . , N and in this setting,

we need to assume that r1+ · · ·+ rN < 1. The geometric
zeta function of L is

ζL(s) =
1

1−�N

j=1 r
s
j

. (1—6)

(See Theorem 5.2.) Hence, the solutions to (1—1) are the

complex dimensions of L.
As an example of their geometric importance, all com-

plex dimensions–and hence, for self-similar strings, all

complex roots of (1—1)–enter into the explicit formula2

for the volume V (ε) of the inner tubular neighborhood

(of radius ε) of the boundary of L:

V (ε) =
3
ω

(2ε)1−ω

ω(1− ω) res (ζL(s);ω) + 2εζL(0) + o(ε),

(1—7)

where ω runs through the complex dimensions of L. Since
ω = D is a complex dimension, this formula expresses

V (ε) as a sum of the first term,3

(2ε)1−D

D(1−D) res (ζL;D) , (1—8)

of order ε1−D, and the oscillatory terms cωε1−ω, for cer-
tain coefficients cω . These terms have order ε

1−Reω, and
exhibit multiplicative oscillations of period e2π/ Imω.

A dimension-free region is a region in the complex

plane such that its intersection with the set of complex

dimensions is only D. If there exist positive numbers C

and p such that\
ω ∈ C : Reω ≥ D − C(1 + | Imω|)−p� (1—9)

1Except in the trivial situation when L is a finite sequence,

in which case the abscissa of convergence of ζL is equal to −∞
and D = 0. (See Footnote 3 for the definition of the Minkowski

dimension.)
2We assume here that 0 ∈ W (see Section 6 and Footnote 11)

and that the complex dimensions ω are simple poles of ζL. See
(6—11) for the general formula. Throughout, res(g(s);ω) denotes
the residue of the meromorphic function g = g(s) at ω.

3Recall that the Minkowski (or box) dimension is defined as

the unique value D ∈ [0, 1] for which limε↓0 V (ε)εδ−1 = 0 or ∞
according to whether δ > D or δ < D; see, e.g., [Lapidus 93,
Lapidus and Pomerance 93, Lapidus and Maier 95], [Lapidus and

van Frankenhuysen 00, §1.1] and [Falconer 90, Chapter 3].
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is a dimension-free region, then (1—7) allows us to deduce,

by techniques explained in [Lapidus and van Frankenhuy-

sen 01a], that for every δ > 0,

V (ε) =M(D;L)ε1−D
p
1 +O (| log ε|)δ−(1/p)

Q
, (1—10)

as ε → 0+. Here, M(D;L) = 21−D
D(1−D) res (ζL;D) is the

Minkowski content of the boundary of L. It is defined by

M(D;L) = lim
ε↓0
V (ε)ε−(1−D),

when this limit exists in (0,∞), in which case L is said to
be Minkowski measurable; see, e.g., [Lapidus 93, Lapidus

and Pomerance 93, Lapidus and Maier 95] or [Lapidus

and van Frankenhuysen 00, §1.1]. In Section 7, we de-
duce from the results of Section 4 that nonlattice strings

have a dimension-free region, which is of the form (1—9)

when the nonlattice string is badly approximable by lat-

tice strings. In general, the dimension-free region is much

thinner, with a corresponding weaker form of (1—10).

The algorithms developed in Section 4 are used–along

with our theoretical investigations–to approximate and

plot the complex dimensions of a variety of nonlattice

self-similar strings, as well as to better understand their

rich structure, in terms of Diophantine properties of their

scaling ratios (or weights); see, e.g., Examples 7.3—7.6

and Figures 8—12. Thus, the problem of finding the com-

plex dimensions becomes accessible to numerical compu-

tation. We first solve this problem for lattice strings, in

which case the associated equation is polynomial.

We end this paper with a theorem and several conjec-

tures about the dimensions of fractality of a nonlattice

string; see Section 8.

In closing this introduction, we note that although

the theory of complex dimensions of self-similar sets has

been developed so far mostly in the one-dimensional case

in [Lapidus and van Frankenhuysen 99, Lapidus and

van Frankenhuysen 00] (i.e., in the case of self-similar

strings), we expect that once it will have been suitably

extended to the higher-dimensional case, the methods de-

veloped in the present paper will also apply to that more

general situation.

Remark 1.1. A preliminary version of this paper was pro-
vided, in lesser generality, in the MSRI preprint [Lapidus

and van Frankenhuysen 01b]. We note that, in particular,

the class of Dirichlet polynomials of which we have stud-

ied the zeros in [Lapidus and van Frankenhuysen 01b]

is significantly smaller than in the present paper. The

increased generality allowed here is naturally motivated

from a mathematical point of view since the correspond-

ing equations arise frequently in the applications. More-

over, it enables us to study the complex dimensions of

“generalized self-similar strings,” as well as their dynam-

ical counterpart for “self-similar flows.” We refer to Sec-

tion 6.3 for a discussion of self-similar flows and of their

associated “dynamical zeta functions.” In our theory,

the study of the “prime orbit counting functions” of such

flows leads to equations of the type (1—3). (See especially

Remarks 6.5 and 6.4.) Analogously, general self-similar

sets (with gaps) in R also lead to the study of these equa-
tions, as is explained in Section 5.

2. DIRICHLET POLYNOMIAL EQUATIONS

For an integer M ≥ 1, let r0, . . . , rM be M + 1 positive

numbers such that r0 > r1 > · · · > rM > 0 and let

m0, . . . ,mM ∈ C be complex “multiplicities.” Write

wj = − log rj (2—1)

for j = 0, . . . ,M . In [Lapidus and van Frankenhuysen

01a], the numbers wj are interpreted as the weights of a

self-similar flow associated with L. Let

f(s) =

M3
j=0

−mjr
s
j =

M3
j=0

−mje
−wjs. (2—2)

The rj are called the scaling ratios , and the wj are the

weights. Without loss of generality, we assume the nor-

malization r0 = 1 and m0 = −1. Thus, w0 = 0 and

f(s) = 1−
M3
j=1

mjr
s
j = 1−

M3
j=1

mje
−wjs. (2—3)

2.1 The Lattice and Nonlattice Case

Consider the additive subgroup

G = Zw1 + · · ·+ ZwM (2—4)

of the group of real numbers.

Definition 2.1. If G is dense in R, then (2—3) is a non-
lattice Dirichlet polynomial, and if G is discrete in R,
then (2—3) is a lattice Dirichlet polynomial.

In the lattice case, there exist a positive real num-

ber w and natural numbers k1, . . . , kM without common

factor such that wj = kjw for j = 1, . . . ,M . The num-

ber r = e−w is called the multiplicative generator of the
function (2—3). Thus,

rj = r
kj (2—5)

for j = 1, . . . ,M .
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Since G is a free Abelian group, another way of phras-

ing this definition is as follows: The lattice case is when

the rank of G is one, and the nonlattice case is when this

rank is ≥ 2. We refine Definition 2.1 as follows: The

generic nonlattice case is when the rank of G is M .

Remark 2.2. The dichotomy lattice/nonlattice–also

referred to as arithmetic/nonarithmetic in probability

theory–comes from renewal theory (see [Feller 66, Chap-

ter X]) and was used in this and in a related con-

text in, for example, [Lalley 89, Lalley 91], [Strichartz

90, Strichartz 93], [Lapidus 93, Kigami and Lapidus

93, Lapidus and van Frankenhuysen 99, Lapidus and van

Frankenhuysen 01a] and the relevant references therein.

Remark 2.3. In a suitable sense, the nonlattice case is
the generic case. (See [Lapidus and van Frankenhuysen

00, §2.3.1] for a more precise discussion.) A key objective
of the rest of this paper is to demonstrate the relation-

ship between lattice and nonlattice equations as well as

to understand the qualitative and quantitative differences

between various nonlattice equations in terms of the Dio-

phantine properties of their scaling ratios (or weights).

In view of our discussion in Section 1 and, in a more

general setting in Section 5, it is then straightforward to

apply our results about the complex roots of nonlattice

equations to the complex dimensions of nonlattice self-

similar strings.

2.2 Examples of Dirichlet Polynomial Equations

2.2.1 Linear Example. Take one scaling factor r1 =

1/3, with multiplicity m1 = 2. The associated Dirichlet

polynomial is

f(s) = 1− 2 · 3−s. (2—6)

The complex roots are found by solving the equation

2 · 3−ω = 1 (ω ∈ C). (2—7)

We find

D = {D + inp : n ∈ Z}, (2—8)

with D = log3 2 and p = 2π/ log 3. (See Figure 1.) All

complex roots are simple.

2.2.2 Quadratic Example. Take two scaling factors

r1 = 1/2, r2 = 1/4, both with multiplicity m1 = m2 = 1.

The Dirichlet polynomial is

f(s) = 1− 2−s − 4−s. (2—9)

0 1D
◦

10

p ◦

◦

◦

◦

◦

FIGURE 1. A diagram of the complex roots of a lin-

ear Dirichlet polynomial equation. D = log3 2 and p =
2π/ log 3.

The complex roots are found by solving the quadratic

equation

(2−ω)2 + 2−ω = 1 (ω ∈ C). (2—10)

We find the two solutions 2−ω =
D−1 +√5i /2 = φ−1

and 2−ω = −φ, where

φ =
1 +
√
5

2
(2—11)

is the golden ratio. Hence,

D = {D + inp : n ∈ Z} ∪ {−D + i(n+ 1/2)p : n ∈ Z},
(2—12)

with D = log2 φ and p = 2π/ log 2. (See Figure 2.)

Again, all the roots are simple.

Remark 2.4. In the context of self-similar strings

([Lapidus and van Frankenhuysen 00, Chapter 2] and

Section 5 below) Example 2.2.1 (respectively, 2.2.2) is

related to the Cantor (respectively, Fibonacci) string;

see [Lapidus and van Frankenhuysen 00, §2.2.1 and

§2.2.2].

2.2.3 An Example with Multiple Roots. Figure 3 gives

the complex roots of the Dirichlet polynomial

f(s) = 1− 3 · 9−s − 2 · 27−s, (2—13)
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0 1D
◦

10
p

1
2p

◦

◦

◦

◦

◦

◦

−D

◦

◦

◦

◦

◦

◦

FIGURE 2. The complex roots of a quadratic Dirichlet
polynomial equation. D = log2 φ and p = 2π/ log 2.

which factors as (2z−1)(z+1)2 = 0, with z = 3−s. Thus,
we see that there is one line of simple roots ω = D+ inp

(D = log3 2 and p = 2π/ log 3, n ∈ Z), corresponding to

0 1D
◦

10

p

1
2p

◦

◦

◦

◦

◦2

◦2

◦2

◦2

◦2

FIGURE 3. The complex roots of a Dirichlet polyno-

mial equation with multiple roots. D = log3 2 and

p = 2π/ log 3. The symbol ◦2 denotes a multiple root
of order two.

the solution z = 1/2, and another line4 of double roots

ω = 1
2 ip + inp (n ∈ Z) corresponding to the double

solution z = −1.
2.2.4 The 2-3 and 2-3-4 Nonlattice Equations. The

above examples are all lattice equations, as defined in

Section 2.1. The reader may get the mistaken impression

that in general, it is easy to find the complex roots of a

Dirichlet polynomial. However, in the nonlattice case, it

is practically impossible to obtain complete information

about the complex roots. Nevertheless, in the next sec-

tions, we will obtain some partial information about the

location and the density of the complex roots of a non-

lattice Dirichlet polynomial equation. (See, in particular,

Theorem 2.5 below.)

We take two scaling factors r1 = 1/2, r2 = 1/3, with

multiplicities m1 = m2 = 1. The Dirichlet polynomial

1− 2−s − 3−s
with these scaling factors is nonlattice. Indeed, the

weights w1 = log 2, w2 = log 3 are not integer multiples

of a common generator. The complex roots are found by

solving the transcendental equation

2−ω + 3−ω = 1 (ω ∈ C). (2—14)

In particular, we find by numerical approximation that

D ≈ .78788 . . . . See Figure 4 for a diagram of the com-

plex roots.

Let us now consider the case of three scaling factors

r1 = 1/2, r2 = 1/3 and r3 = 1/4, each with multiplicity

one. Figure 5 gives the complex roots of the associated

nongeneric, nonlattice Dirichlet polynomial

f(s) = 1− 2−s − 3−s − 4−s.
The graph below the diagram of the complex roots in

Figure 5 gives a plot of the density of the real parts of

these roots. It will be explained in more detail in Section

4, Theorem 4.7 and Remark 4.13. We observe the inter-

esting phenomenon that the complex roots of the non-

generic nonlattice equation f(s) = 0 tend to be denser

at the boundaries Re s = 1.082 and Re s = −1.731 of the
“critical strip,” and around Re s = 0. Comparing the

complex roots of Figure 4 and Figure 5 more closely, one

does indeed observe that each complex root of Figure 4

has its counterpart in Figure 5, in the half strip-Re s > 0,

and extra complex dimensions are found to the left of

Re s = 0 to bring the density to log 4/(2π) instead of

log 3/(2π) (see Theorem 2.5, Equation (2—19)).

4When we talk about a “line of roots” in this context, we mean

a discrete line, as depicted in Figures 1—3. In the following, for

convenience, we will continue using this abuse of language.
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100

500

.7879-1.000

FIGURE 4. The complex roots of the nonlattice Dirichlet
polynomial equation 2−s + 3−s = 1.

2.3 The Structure of the Complex Roots

The simplest example of a Dirichlet polynomial equation

is 1 − m1r
s
1 = 0; that is, when M = 1. In this case,

the complex roots are ω = (logm1)/w1 + 2kπi/w1, with

k ∈ Z. Hence, the complex roots lie on the vertical line
Re s = (log |m1|)/w1, and are separated by 2πi/w1.
In general, the complex roots of a Dirichlet polynomial

equation lie in a strip Dl ≤ Re s ≤ Dr, determined as

follows: Dr is the unique real number such that

53+12

53

41

3*12

2*12

12

5

2
1

100

500

0 1.082–1.731

FIGURE 5. The complex roots of the nongeneric nonlat-
tice equation 2−s + 3−s + 4−s = 1. The accumulative

density of the real parts of the complex roots.

M3
j=1

|mj |rDr
j = 1, (2—15)

and Dl is the unique real number such that

1 +

M−13
j=1

|mj |rDl
j = |mM |rDl

M . (2—16)

The complex roots of the Dirichlet polynomial

f(s) = 1−
M3
j=1

mjr
s
j (2—17)

are described in the following theorem.
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Theorem 2.5. Let f be a Dirichlet polynomial with scaling
ratios 1 > r1 > · · · > rM > 0 and complex multiplicities

mj as above. Then, both in the lattice and the nonlattice

case, the set Df of complex roots of f is contained in the
horizontally bounded strip Dl ≤ Re s ≤ Dr :

Df = Df (C) ⊆ {s ∈ C : Dl ≤ Re s ≤ Dr} . (2—18)

It has density wM/(2π):

#(Df ∩ {ω ∈ C : 0 ≤ Imω ≤ T}) = wM

2π
T +O(1),

(2—19)

as T → ∞. Here, the elements of Df are counted ac-
cording to multiplicity. If all mj are real, then the set of

complex dimensions is symmetric with respect to the real

axis. Furthermore, if all multiplicities mj in (2—17) are

positive, for j = 1, . . . ,M, then the value s = D = Dr
is the only complex root of f on the real line, and it is

simple. If, moreover, the multiplicities are integral (i.e.,

mj ∈ N∗ for j = 1, . . . ,M), then D > 0.

In the lattice case, f(s) is a polynomial function of

rs = e−ws, where r is the multiplicative generator of f .
So, as a function of s, it is periodic with period 2πi/w.

The complex roots ω are obtained by finding the complex

solutions z of the polynomial equation (of degree kM )

M3
j=1

mjz
kj = 1, with e−wω = z. (2—20)

Hence there exist finitely many roots ω1,ω2, . . . ,ωq, such

that

Df = {ωu + 2πin/w : n ∈ Z, u = 1, . . . , q}. (2—21)

In other words, the complex roots of f lie periodically

on finitely many vertical lines, and on each line they are

separated by 2π/w. The multiplicity of the complex roots

corresponding to one value of z = e−wω is equal to the
multiplicity of z as a solution of (2—20).

In the nonlattice case, the complex roots of f can

be approximated (via an explicit procedure specified in

Theorem 3.6) by the complex roots of a sequence of lat-

tice equations with larger and larger oscillatory period.

Hence, the complex roots of a nonlattice equation have

a quasiperiodic structure. Furthermore, there exists a

screen5 S to the left of the line Re s = D, such that f

satisfies (H1) and (H2) with κ = 0 (see Equations (6—4)

and (6—5)), and the complex roots of f in the correspond-

ing window W are simple.

5See Section 6.

Finally, in the generic nonlattice case; i.e., if the

weights wj (j = 1, . . . ,M) are independent over the ra-

tionals, then

Dl = inf{Reω : ω is a complex root of f}
and

Dr = sup{Reω : ω is a complex root of f}.
Otherwise, the infimum of the real parts of the complex

roots may be larger than Dl and the supremum may be

smaller than Dr.

Corollary 2.6. Every integral positive6 Dirichlet polyno-
mial has infinitely many complex roots with positive real

part.

Proof of Theorem 2.5: For a proof, see [Lapidus and van

Frankenhuysen 00, Theorem 2.13, pages 37—40]. There,

Dl and Dr were not introduced, but their property

(2—18) can be deduced by an argument similar to that

used for D. The density estimate (2—19) gives the as-

ymptotic density of the number of roots of f , counted

with multiplicity. We will prove it here, since the O(1)

term improves [Lapidus and van Frankenhuysen 00, The-

orem 2.22, page 47].

We need to estimate the winding number of the func-

tion f(s) = 1−�M

j=1mjr
s
j when s runs around a contour

C1+C2+C3+C4, where C1 and C3 are vertical segments

c1 − iT → c1 + iT and c3 + iT → c3 − iT , with c1 > Dr
and c3 < Dl, respectively, and C2 and C4 are horizontal

line segments c1 + iT → c3 + iT and c3 − iT → c1 − iT ,
with T > 0.

For Re s = c1, |
�M
j=1mjr

s
j | < 1, so the winding num-

ber along C1 is at most 1/2. Likewise, for Re s = c3, we

have |1−�M−1
j=1 mjr

s
j | ≤ 1 +

�M−1
j=1 |mj |rc3j < |mM |rc3M ,

so the winding number along C3 is that of mMr
s
M , up to

at most 1/2. Hence, the winding number along C1 + C3

is (T/π) log r−1M = wMT/π, up to at most 1.

We will now show that the winding number along

C2 + C4 is bounded, by a classical argument, origi-

nally applied to the Riemann zeta function (see [Ing-

ham 92, page 69]). Let n be the number of distinct

points on C2 at which Re f(s) = 0. For real values

of z, 2Re f(z + iT ) =
�M

j=1mjr
z+iT
j +

�M
j=1 m̄jr

z−iT
j .

Hence, putting g(z) =
�M

j=1mjr
z+iT
j +

�M
j=1 m̄jr

z−iT
j ,

we see that n is bounded by the number of zeros of g in

a disc containing the interval [Dl, Dr]. We take the disc

centered at Dr + 1, with radius Dr − Dl + 2. We have
6I.e., such that mj ∈ N∗ for j = 1, . . . ,M .
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|g(Dr+1)| ≥ 2f(Dr+1). Furthermore, let G be the max-
imum of g on the disc with the same center and radius

e · (Dr −Dl + 2), so G ≤ 2 + 2
�M

j=1 r
Dr+1−e(Dr−Dl+2)
j .

By [Ingham 92, Theorem D, page 49], it follows that

n ≤ log |G/g(Dr + 1)|. This gives a uniform bound on

the winding number over C2. The winding number over

C4 is estimated in the same manner.

The approximation of a nonlattice equation by lattice

equations–along with the quasiperiodic structure of the

complex roots of a nonlattice equation mentioned at the

end of the statement of the theorem–is discussed in Sec-

tion 3; see especially Theorem 3.6 (and the remark fol-

lowing it), which provides more detailed qualitative and

quantitative information than in the earlier results ob-

tained in [Lapidus and van Frankenhuysen 00, §2.6].

Remark 2.7. For later reference, we point out the follow-
ing strip that contains the complex roots. Recall that the

weights are ordered in increasing order: w0 = 0 < w1 <

· · · < wM . Then the horizontally bounded strips ∈ C : − log
p
1 +
�M

j=1 |mj |
Q
− log |mM |

wM − wM−1 ≤ Re s

≤
log
p
1 +
�M

j=1 |mj |
Q

w1

 (2—22)

contains all the complex roots of f . This can be seen as

follows: A value s cannot be a root of
�M

j=0mjr
s
j = 0

if |m0r
s
0| is larger than the sum of the other terms. Now

|�M
j=1mjr

s
j | ≤ rσ1

�M
j=1 |mj |, provided σ = Re s ≥ 0.

Hence, |�M
j=1mjr

s
j | < rσ1

�M
j=0 |mj |. The bound on the

right is the real solution to the equation rσ1
�M

j=0 |mj | =
|m0|rσ0 , taking into account our normalization w0 = 0

and m0 = −1. Note that this bound is necessarily posi-
tive. Similarly, the bound on the left is the real solution

to rσM−1
�M

j=0 |mj | = |mM |rσM .

3. APPROXIMATING A NONLATICE EQUATION BY
LATTICE EQUATIONS

We begin by stating several definitions and a result re-

garding the convergence of a sequence of analytic func-

tions and of the associated complex roots (i.e., zeroes).

Then we study in more detail the particular situation of

Dirichlet polynomials.

Definition 3.1. Let f be a holomorphic function on the
open set W ⊆ C, and let

\
f (n)
�∞
n=1

be a sequence of

holomorphic functions on W (n). We say that the se-

quence f (n) converges to f (and write f (n) → f) if for

every compact set K ⊆ W , we have that K ⊆ W (n)

for all sufficiently large n, and f (n)(s)→ f(s) uniformly

on K.

Definition 3.2. Let f be a holomorphic function with

set of complex roots D = D(W ) and let {f (n)}∞n=1 be a
sequence of holomorphic functions, with set of complex

roots D(n) = D(W (n)). We say that the complex roots of

f (n) converge locally to those of f (and write D(n) → D),
if for every compact set K ⊆ W and every ε > 0, there

is an integer n0 such that for all integers n ≥ n0, K is

contained in W (n) and there exists a bijection

bn : K ∩D → D(n) (3—1)

that respects multiplicities and such that

|ω − bn(ω)| < ε for all ω ∈ K ∩D.

More precisely, bn is a set-valued map from K ∩ D to

finite subsets of D(n), such that the multiplicities of the
elements of bn(ω) add up to the multiplicity of ω and

the distance from ω to each of the elements of bn(ω) is

bounded by ε.

In the next theorem, we use the notations f (n) → f

and D(n) → D of Definitions 3.1 and 3.2. For a proof,

see [Lapidus and van Frankenhuysen 00, Theorem 2.26,

page 49], with the obvious change of notation.

Theorem 3.3. Let f be a holomorphic function and let
{f (n)}∞n=1 be a sequence of holomorphic functions such
that f (n) → f . Then D(n) → D.

We now focus our attention on the case of Dirichlet

polynomials. Let scaling ratios r1, . . . , rM be given that

generate a nonlattice Dirichlet polynomial f ; i.e., by Def-

inition 2.1, the dimension of the Q-vector space generated
by the numbers wj = − log rj (j = 1, . . . ,M) is at least 2.
The following lemma on simultaneous Diophantine ap-

proximation can be found in [Schmidt 80], Theorem 1A

and the remark following Theorem 1E.

Lemma 3.4. Let w1, w2, . . . , wM be weights (see Equa-

tion (2—1)) such that at least one ratio wj/w1 is ir-

rational. Then for every Q > 1, there exist integers

1 ≤ q < QM−1 and k1, . . . , kM such that

|qwj − kjw1| ≤ w1Q−1
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for j = 1, . . . ,M. In particular, |qwj − kjw1| <

w1q
−1/(M−1) for j = 1, . . . ,M.

Remark 3.5. Note that |qwj − kjw1| W= 0 when wj/w1 is
irrational, so that q →∞ when Q→∞.

Theorem 3.6. Let f be a nonlattice Dirichlet polyno-

mial with weights w0 = 0 < w1 < · · · < wM , with

multiplicities m0 = −1 and m1, . . . ,mM ∈ C, as in (2—
3).Let Q > 1, and let q and kj be as in Lemma 3.4.

Let w̃ = w1/q. Then the lattice Dirichlet polynomial 4f
with weights w̃j = kjw̃ and the same multiplicities mj

(j = 1, . . . ,M) approximates f in the sense of Defini-

tion 3.1. This approximation is such that for every given

ε > 0, the complex roots of f are approximated up to

order ε for εCQ periods of 4f, where
C =

�M
j=1 |mj |
2π

X
1 +
�M

j=1 |mj |
min{1, |mM |}

~−2wM/min{w1,wM−wM−1}

Remark 3.7. Since the number of periods for which this
approximation is valid tends to infinity as Q → ∞, this
shows that the complex roots of a nonlattice equation ex-

hibit a quasiperiodic behaviour. This quasiperiodic be-

haviour evolves in the sense that after following a peri-

odic pattern for a certain (large) number of periods, this

pattern starts to disappear, and gradually, a new peri-

odic pattern, belonging to the next value of q, begins to

emerge. The number of periods for which the pattern

belonging to q persists increases with q. Since the de-

nominators q increase exponentially as Q → ∞, every
old pattern is only a small fraction (less than one new

period) of the new pattern.

Proof of Theorem 3.6: Let rj = e−wj and r̃ = e−w̃. To
show that f is well approximated by f̃ , we consider the

expression

rsj − r̃kjs = −s
8 wj

kjw̃

e−sx dx.

Using kjw̃ = w̃j and |wj − w̃j | ≤ w1/(qQ), we obtain

eersj − r̃kjsee ≤ |s||wj − w̃j |e−σwj max{1, e−σ(w̃j−wj)}
≤ |s|w1

qQ
e|σ|(wM+w1/(qQ))

for j = 1, . . . ,M . We simplify this bound further, using

w1/(qQ) < wM in the exponent, to findeeef(s)− f̃(s)eee
≤

M3
j=1

eemjr
s
j −mj r̃

kjs
ee

≤ |s|w1
qQ
e2wM |σ|

M3
j=1

|mj |.

By (2—22) in Remark 2.7, we may restrict s = σ + it to

−
log
p
1 +
�M
j=1 |mj |

Q
− log |mM |

wM − wM−1

≤ σ ≤
log
p
1 +
�M

j=1 |mj |
Q

w1
.

For such s,eeef(s)− f̃(s)eee
≤ |s|w1

qQ

M3
j=1

|mj |
X
1 +
�M
j=1 |mj |

min{1, |mM |}

~2wM/min{w1,wM−wM−1}
= |s| w1

2πqQ
C−1.

Thus, if |s| < εCQ 2πq
w1
, then |f(s)− f̃(s)| < ε. Since 2πiq

w1

is the period of 4f , the theorem follows.

We state the converse, which is of independent inter-

est, but will not be needed in the sequel. For a proof,

see [Lapidus and van Frankenhuysen 00, Theorem 2.30,

page 51].

Theorem 3.8. Let f be a Dirichlet polynomial, with scal-
ing ratios r0 = 1 > r1 > · · · > rM > 0 and multiplicities

mj ∈ C. Let {f (n)}∞n=1 be a sequence of Dirichlet polyno-
mials, with scaling ratios 1 > r

(n)
1 > · · · > r(n)

M (n) > 0 and

multiplicities m
(n)
j ∈ C. Let W =W (n) = C for all n. If

f (n) → f, then the scaling ratios converge with the correct

multiplicity: for every ε > 0, there exists n0 such that for

all n ≥ n0 we have: for each j, there exists jI such that
|r(n)j − rjI | < ε, and for each jI, |�jm

(n)
j − mjI | < ε,

where the sum is over those j between 1 and M (n) for

which |r(n)j − rjI | < ε.

Note that the statement starts to be interesting for

ε ≤ min1≤j<M (rj − rj+1)/2; that is, when ε is so small
that |r(n)j − rjI | < ε uniquely determines jI. Then it says
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that the r
(n)
j start to cluster around the rjI in the sense

that for each j there is a unique jI, and the corresponding
multiplicities add up to approximately mjI .

3.1 The Computations

The computations for the nonlattice examples in this pa-

per were done using Maple. The programs can be found

on the web page of the second author [van Franken-

huysen 03]. In each case, we approximated the non-

lattice equation by a lattice one, resulting in a polyno-

mial equation of degree d between 400 and 5000. Solving

the corresponding polynomial equation yields d complex

numbers z in an annulus, and the roots ω are given by

ω = log z/ log r + 2kπi/ log r, for k ∈ Z.
For Figure 4, we approximated f(s) = 1−2−s−3−s by

p(z) = 1− z306− z485, with z = 2−s/306 and r = 2−1/306.
The corresponding lattice equation with ratios r306 and

r485 has a period of p = 2π · 306/ log 2 ≈ 2773.8. For

example, the real root D ≈ .7878849110 of f is approxi-
mated by D̃ ≈ D − .1287 · 10−5. We have |f(D̃)| ≈ .11 ·
10−5 and |f(D̃ + ip)| ≈ .39 · 10−2. As another example,
the root ω̃ = .7675115443+45.55415979i approximates a

root ω of f with an error ω−ω̃ ≈ (−.12+.75i)·10−4. Both
|p(rω)| and |f(ω̃)| are approximately equal to .64 · 10−4,
and |f(ω̃ + ip)| approximately equals .40 · 10−2. Lem-
mas 4.2 and 4.10, along with Theorems 4.3, 4.5, and 4.12

in the next sections give theoretical information about

the error of approximation.

Since in the applications, we consider only equations

with real values for mj , the roots come in complex conju-

gate pairs. Maple normalizes log z so that the imaginary

part lies between −πi and πi. For the density graphs,

we took the real parts of the roots log z/ log r for those

z with −πi ≤ Im z ≤ 0, and ordered these values. This
way, we obtained a sequence of (d+ 1)/2 or d/2 + 1 real

parts v1 ≤ v2 ≤ . . . in nondecreasing order. The density
graph is a plot of the points (vj , j) for 1 ≤ j ≤ d/2 + 1.
Interestingly, if one takes the roots not in one full pe-

riod, but up to some bound for the imaginary part, the

density graph is not smooth, but seems to exhibit a frac-

tal pattern. For M = 2, this pattern can be predicted

from the α-adic expansion of T ; see Section 4.1. This

reflects the fact that roots come in quasiperiodic arrays,

each one slightly shifted from the previous one, reaching

completion only at a period.

The maximal degree 5000 is the limit of computation:

It took several hours with our software on a Sun work-

station to compute the golden diagram, Figure 8, which

involved solving a polynomial equation of degree 4181.

However, finding the roots of the polynomial is the most

time-consuming part of the computation. Since these

polynomials are “sparse” in the sense that they contain

only a few monomials, there may exist ways to speed up

this part of the computation.

4. COMPLEX ROOTS OF A NONLATTICE
DIRICHLET POLYNOMIAL

A nonlattice Dirichlet polynomial has weights w1 < · · · <
wM , where at least one ratio wj/w1 is irrational. Let

f(s) = 1−
M3
j=1

mje
−wjs. (4—1)

Assume that all multiplicities mj are positive. Recall

from Theorem 2.5 that in this case, D = Dr is the unique

real solution of the equation f(s) = 0. Moreover, the

derivative

f I(s) =
M3
j=1

mjwje
−wjs (4—2)

does not vanish at D. We first consider the case M = 2.

4.1 Continued Fractions

We refer the interested reader to [Hardy and Wright 60]

for an introduction to the theory of continued fractions,

of which we now briefly recall some basic as well as some

less well-known elements.

Let α be an irrational real number with a continued

fraction expansion

α = [[a0, a1, a2, . . . ]] = a0 + 1/(a1 + 1/(a2 + . . . )).

We recall that the two sequences a0, a1, . . . and

α0,α1, . . . are defined by α0 = α and, for n ≥ 0, an =
[αn], the integer part of αn, and αn+1 = 1/(αn − an).
The convergents of α,

pn

qn
= [[a0, a1, a2, . . . , an]], (4—3)

are successively computed by

p−2 = 0, p−1 = 1, pn+1 = an+1pn + pn−1,

q−2 = 1, q−1 = 0, qn+1 = an+1qn + qn−1.
(4—4)

We also define qIn = α1 ·α2 · · · · ·αn, and note the formula
qIn+1 = αn+1qn + qn−1. Then

qnα− pn = (−1)n
qIn+1

. (4—5)
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For all n ≥ 1, we have qn ≥ φn−1, where φ = (1 +
√
5)/2

is the golden ratio.

Let n ∈ N and choose l such that ql+1 > n. We can

successively apply division with remainder to compute

(see [Ostrowski 22])

n = dlql + nl, nl = dl−1ql−1 + nl−1, . . . , n1 = d0q0,

where dν is the quotient and nν < qν is the remainder of

the division of nν+1 by qν . We set dl+1 = dl+2 = . . . = 0.

Then

n =

∞3
ν=0

dνqν . (4—6)

We call this the α-adic expansion of n. Note that

0 ≤ dν ≤ aν+1 and that if dν = aν+1, then dν−1 = 0.

Also d0 < a1. It is not difficult to show that these proper-

ties uniquely determine the sequence d0, d1, . . . of α-adic

digits of n.

Lemma 4.1. Let n be given by (4—6). Suppose that the
last k digits vanish: k ≥ 0 is such that dk W= 0 and

dk−1 = · · · = d0 = 0. Put m =
�∞

ν=k dνpν . Then

nα−m lies strictly between

(−1)k
qIk+1

D
dk − 1 + α−1k+2

i
and

(−1)k
qIk+1

D
dk + α−1k+2

i
.

In particular, nα − m lies strictly between (−1)k/qIk+2
and (−1)k/qIk.

Proof: We have nα −m =
�∞

ν=k dν(αqν − pν), which is
close to the first term dk(−1)k/qIk+1 by Equation (4—5).
Again by this equation, the terms in this sum are alter-

nately positive and negative, and it follows that nα−m
lies between the sum of the odd numbered terms and the

sum of the even numbered terms. To bound these sums,

we use the inequalities dν ≤ aν+1 for ν > k. Moreover,

dk ≥ 1, hence dk+1 ≤ ak+2 − 1. It follows that nα −m
lies strictly between

dk(αqk−pk)+ak+3(αqk+2−pk+2)+ak+5(αqk+4−pk+4)+. . .

and

dk(αqk − pk) + (ak+2 − 1)(αqk+1 − pk+1)
+ ak+4(αqk+3 − pk+3) + . . . .

Now aν+1(αqν − pν) = (αqν+1− pν+1)− (αqν−1− pν−1),
so both sums are telescopic. The first sum evaluates to

dk(αqk− pk)− (αqk+1− pk+1) = (−1)k(dk+α−1k+2)/qIk+1.

The second sum equals dk(αqk − pk)− (αqk+1 − pk+1)−
(αqk − pk) = (−1)k(dk − 1 + α−1k+2)/q

I
k+1.

The cruder bounds follow on noting that 1 ≤ dk ≤
ak+1, and using q

I
k+2 = αk+2q

I
k+1 and ak+1 + α−1k+2 =

αk+1.

4.2 Two Generators

Assume thatM = 2, and let f be defined as in (4—1) with

positive multiplicities m1 and m2 and weights w1 and

w2 = αw1, for some irrational number α > 1.
7 We want

to study the complex solutions to the equation f(ω) = 0

that lie close to the line Re s = D.8 First of all, such

solutions must have e−w1ω close to e−w1D, so ω will be
close to D + 2πiq/w1, for an integer q. We write ∆ for

the difference ω −D − 2πiq/w1, so that

ω = D +
2πiq

w1
+∆.

Then we write αq = p+ x(2πi)−1; hence,

x = 2πi(qα− p),

for an integer p, which we will specify below. With these

substitutions, the equation f(ω) = 0 becomes

1−m1e
−w1De−w1∆ −m2e

−w2De−xe−w2∆ = 0.

This equation defines ∆ as a function of x.

Lemma 4.2. Let w1, w2 > 0 and α = w2/w1 > 1; let D

be the real number such that m1e
−w1D +m2e

−w2D = 1,
and let ∆ = ∆(x) be the function of x, defined implicitly

by

m1e
−w1De−w1∆ +m2e

−w2De−xe−w2∆ = 1, (4—7)

and ∆(0) = 0. Then ∆ is analytic in x, in a disc of radius

at least π around x = 0, with power series

∆(x) = −m2e
−w2D

f I(D)
x+

m1m2w
2
1e
−w1De−w2D

2f I(D)3
x2

+O(x3), as x→ 0.

All the coefficients in this power series are real. Further,

the coefficient of x2 is positive.

Proof: Write e−w1∆ = y(x), so that y is defined by

m1e
−w1Dy + m2e

−w2De−xyα = 1 and y(0) = 1. Since

7In the terminology of dynamical systems, this case corresponds

to Bernoulli flows; see [Lapidus and van Frankenhuysen 01a, §6.2].
8More generally, analogous results can be obtained for the com-

plex solutions close to the vertical line Re s = Reω0, where ω0 is
any given complex root of f ; see, e.g., Remarks 4.4 and 4.11.
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y does not vanish, it follows that if y(x) is analytic in a

disc centered at x = 0, then ∆ will be analytic in that

same disc. Moreover, y is real-valued and positive when

x is real. Thus, ∆ is real-valued as well when x is real.

Further, y(x) is locally analytic in x, with derivative

yI(x) =
m2e

−w2Dyαe−x

m1e−w1D + αm2e−w2Dyα−1e−x
.

Hence, there is a singularity at those values of x at which

the denominator vanishes, which is at

y =
α

m1e−w1D(α− 1)

and e−x = −α−α(α − 1)α−1mα
1 /m2. Since this latter

value is negative, the disc of convergence of the power

series for y(x) is

|x| < |−α logα+ (α− 1) log(α− 1)
+α logm1 − logm2 + πi| .

This is a disc of radius at least π. The first two terms of

the power series for ∆(x) are now readily computed.

Substituting this in ω = D + 2πiq/w1 +∆, we find

ω = D + 2πi
q

w1
− m2e

−w2D

f I(D)
x

+
m1m2w

2
1e
−w1De−w2D

2f I(D)3
x2 +O(x3), (4—8)

as x = 2πi(qα−p)→ 0. We view this formula as express-

ing ω as an initial approximation D + 2πiq/w1, which is

corrected by each additional term in the power series.

The first corrective term is in the imaginary direction,

as are all the odd ones, and the second corrective term,

along with all the even ones, is in the real direction. The

second term decreases the real part of ω.

Theorem 4.3. Let α be irrational with convergents pν/qν
defined by (4—3) and (4—4). Let q be a positive integer,

and let q =
�∞

ν=k dνqν be the α-adic expansion of q, as

in Lemma 4.1. Assume k ≥ 2, or k = 1 and a1 ≥ 2, and
put p =

�∞
ν=k dνpν . Then there exists a complex root of

f at

ω = D + 2πi
q

w1
− 2πim2e

−w2D

f I(D)
(qα− p)

− 2π2m1m2w
2
1e
−w1De−w2D

f I(D)3
(qα− p)2 +O D(qα− p)3i .

(4—9)

The imaginary part of this complex root is approximately

2πiq/w1, and its distance to the line Re s = D is at least

C/qI2k+2, where C = 2π2m1m2w
2
1e
−(w1+w2)D/f I(D)3 de-

pends only on w1 and w2 and the multiplicities m1 and

m2.

Moreover, |f(s)| ( qI−2k+2 around s = D + 2πiq/w1 on

the line Re s = D, and |f(s)| reaches a minimum of size

C I(qα − p)2, where C I depends only on the weights w1
and w2 and on m1 and m2.

Proof: By Lemma 4.1, the quantity qα − p lies between
(−1)k/qIk+2 and (−1)k/qIk. Under the given conditions
on k, qIk > qk ≥ 2. Hence x = 2πi(qα− p) is less than π
in absolute value. Then (4—8) gives the value of ω. The

estimate for the distance of ω to the line Re s = D follows

from this formula.

Since the derivative of f is bounded on the line Re s =

D, and f does not vanish on this line except at s = D,

this also implies that f(s) reaches a minimum of order

(qα− p)2 on an interval around s = D+ 2πiq/w1 on the
line Re s = D.

Remark 4.4. An analogous theorem holds for any com-

plex root ω0 (rather than for D). Indeed, if f(ω0) = 0,

then f(ω0 + 2πiq/w1) will be small, and we will find a

complex root

ω = ω0 + 2πi
q

w1
+O(qα− p)

close to ω0 + 2πiq/w1. This is illustrated in Figures 8,

11 and 12 below for the repetitions of D and one other

complex root.

We obtain more precise information when q = qk and

ω is close to D + 2πiqk/w1:

Theorem 4.5. For every k ≥ 0 (or k ≥ 1 if a1 = 1),

there exists a complex root ω of f of the form

ω = D + 2πi
qk

w1
− 2πi(−1)k m2e

−w2D

f I(D)qIk+1

− 2π2m1m2w
2
1

e−(w1+w2)D

f I(D)3qI2k+1
+O
D
qI−3k+1

i
,

(4—10)

as k →∞.
Moreover, |f(s)|( qI−2k+1 around s = D+2πiqk/w1 on

the line Re s = D, and |f(s)| reaches a minimum of size

C IqI−2k+1, where C
I is as in Theorem 4.3.
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Proof: In this case, q = qk is the α-adic expansion of q.

Put p = pk. Then x = 2πi(−1)k/qIk+1, which is less than
π in absolute value. The rest of the proof is the same as

the proof of Theorem 4.3.

Remark 4.6. Theorem 4.3 implies that the density of

complex roots in a small strip around Re s = D is

w1/(2π). For “Cantor-like” lattice strings, with M = 1

(i.e., such that there is only one nonzero weight and

wM = w1), there is only one line of complex roots,

and this density coincides with formula (2—19) of Theo-

rem 2.5. However, it is unclear how wide the strip around

Re s = D should be. For example, in Figure 8, the strip

extends to the left of Re s = 0.

Theorem 4.7. Let

C =
f I(D)3/2

πw2
√
2m1m2

e(w1+w2)D/2. (4—11)

The density function of the real parts of the complex

roots,

#{Reω : ω ∈ D, 0 ≤ Imω ≤ T,Reω ≤ x}
#{Reω : ω ∈ D, 0 ≤ Imω ≤ T} , (4—12)

has a limit as T →∞. The value of this limit is approx-
imated by

1− C√D − x, (4—13)

for values of x ≤ D close to D.

Proof: By Theorem 2.5, there are approximately w2
2π T

complex roots with 0 ≤ Imω ≤ T . Given x < D, we

will count the number of these roots with Reω > x.

By Theorem 4.3, for every q with 0 ≤ q < w1
2π T , we

find a complex root with 0 ≤ Imω ≤ T and real part

approximately D − C1(qα− p)2, where

C1 = 2π
2m1m2w

2
1e
−(w1+w2)Df I(D)−3.

By Lemma 4.1, for q =
�∞

ν=k dνqν , |qα − p| is roughly
equal to dk/q

I
k+1, so we need to count the number of

q such that (roughly) dk/q
I
k+1 <

0
(D − x)/C1. Deter-

mine l such that 1/qIl+1 <
0
(D − x)/C1 ≤ 1/qIl. Thus,

we want those q with k ≥ l, and if k = l, we want

dl < q
I
l+1

0
(D − x)/C1.

We find k ≥ l with a frequency of (al+1 + 1) times in
every ql+1 numbers. Indeed, of all q with 0 ≤ q < ql+1, we
have k ≥ l only for q = 0, ql, 2ql, . . . , al+1ql. Of these mul-
tiples of ql, moreover, we want those where the multiple

dl is at most q
I
l+1

0
(D − x)/C1. Since qIl+1 ≈ ql+1, the

.005

0
.7792.5

FIGURE 6. The error in the prediction of Theorem 4.7, for
the golden Dirichlet polynomial equation 2−s+2−φs = 1.

fraction of such numbers q is
0
(D − x)/C1. Hence, in

w1
2π T numbers, we find approximately

w1
2π T
0
(D − x)/C1

values of q for which Reω > x. In a total of w22π T complex

roots, this is a density of

(w1/w2)
0
(D − x)/C1,

which is C
√
D − x, where C is given by (4—11). The

density of ω with Reω ≤ x is then asymptotically given
by 1− C√D − x.

Remark 4.8. This theorem is illustrated in the diagrams

at the bottom of Figures 8 and 11. These diagrams show

in one figure the graph of the accumulated density func-

tion (4—12) and the graph of the function (4—13). The

function (4—13) approximates the accumulative density

only in a small neighborhood of D. Figure 6 gives a

graph of the difference of the two graphs in Figure 8 for

the complex roots with real parts between 1/2 and D.

4.3 More than Two Generators

In this case, the construction of approximations pj/q

of wj , for j = 1, . . . ,M , is much less explicit than for

M = 2 since there does not exist a continued fraction

algorithm for simultaneous Diophantine approximation.

We use Lemma 3.4 as a substitute for this algorithm.

The number Q plays the role of qIk+1 in Theorem 4.5

above. In particular, if q is often much smaller than Q,

then w1, . . . , wM is well approximable by rationals, and

we find a small root-free region.

Remark 4.9. The L3-algorithm of [Lenstra et al. 82] al-

lows one to find good denominators. However, the prob-

lem of finding the best denominator is NP-complete [La-

garias 85, Theorem C]. See also [Rössner and Schnorr]

and the references therein, in particular [Hastad et al.
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89]. Also, it may be possible to adapt the algorithm

in [Elkies 00] to solve Dirichlet polynomial equations.

Again, we are looking for a solution of f(ω) = 0 close

to D + 2πiq/w1, where f is defined by (4—1). We write

ω = D + 2πiq/w1 +∆ and

wjq = w1pj +
w1

2πi
xj ,

for j = 1, . . . ,M . For j = 1, we take p1 = q and conse-

quently, x1 = 0. In general,

xj = 2πi(qwj/w1 − pj).

Then f(ω) = 0 is equivalent to

M3
j=1

mje
−wjDe−xj−wj∆ = 1.

The following lemma is the several variables analogue

of Lemma 4.2. In the present case, however, we do not

know the radius of convergence with respect to the vari-

ables x2, . . . , xM .

Lemma 4.10. Let 0 < w1 < w2 < · · · < wM , let D

be the real number such that
�M

j=1mje
−wjD = 1, and let

∆ = ∆(x2, . . . , xM ) be implicitly defined by

M3
j=1

mje
−wjDe−xj−wj∆ = 1, (4—14)

with x1 = 0. Then ∆ is analytic in x2, . . . , xM , with

power series

∆ = −
M3
j=2

mje
−wjD

f I(D)
xj +

1

2

M3
j=2

mje
−wjD

f I(D)
x2j

− 1
2

M3
j,k=2

X
f II(D)

f I(D)3
+
wj + wk

f I(D)2

~
mjmke

−(wj+wk)Dxjxk

+O

w M3
j=2

|xj |3
W
. (4—15)

This power series has real coefficients. Moreover, the

terms of degree two yield a positive definite quadratic

form.

Proof: The proof is analogous to that of Lemma 4.2. The

positive definiteness of the quadratic form follows from

the fact that the complex roots lie to the left of Re s = D;

see Theorem 2.5. It can also be verified directly.

We substitute formula (4—15) into ω = D+2πiq/w1+

∆ to find

ω = D + 2πi
q

w1
−

M3
j=2

mje
−wjD

f I(D)
xj

+
1

2

M3
j=2

mje
−wjD

f I(D)
x2j

− 1
2

M3
j,k=2

X
f II(D)

f I(D)3
+
wj + wk

f I(D)2

~
mjmke

−(wj+wk)Dxjxk

+O

w M3
j=2

|xj |3
W
, (4—16)

where xj = 2πi(qwj/w1 − pj), for j = 2, . . . ,M . Again,
this formula expresses ω as an initial approximation D+

2πiq/w1, which is corrected by each term in the power

series. The corrective terms of degree one are again in

the imaginary direction, as are all the odd degree ones,

and the corrective terms of degree two, along with all

the even ones, are in the real direction. The degree two

terms decrease the real part of ω.

Remark 4.11. As in Remark 4.4, we have a formula anal-
ogous to (4—16) corresponding to any complex root ω0.

Thus, every complex root ω0 gives rise to a sequence of

complex roots close to the points ω0 + 2πiq/w1.

Theorem 4.12. Let M ≥ 2 and let w1, . . . , wM be weights

of a nonlattice equation. Let Q and q be as in Lemma 3.4.

Then f has a complex root close to D + 2πiq/w1 at a

distance of at most O(Q−2) from the line Re s = D, as

Q → ∞. The function |f | reaches a minimum of order

Q−2 on the line Re s = D around the point s = D +

2πiq/w1.

Proof: Again, for j = 2, . . . ,M , the numbers xj are

purely imaginary, so the terms of degree 1 (and of every

odd degree) give a correction in the imaginary direction,

and only the terms of even degree will give a correction

in the real direction. Since |xj | < 2π/Q, the theorem

follows.

Remark 4.13. By analogy with Theorem 4.7, we find

1−C(D− x)(M−1)/2 as an approximation of the density
function of the complex roots close to x = D, for some

positive constant C. However, in this case, we do not

know the value of C. It may depend on the properties of

Diophantine approximation of the weights w1, . . . , wM .
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L = 1

r1 =
1
4 g1 =

1
8 r2 =

1
6 g2 =

1
8 r3 =

1
6 r4 =

1
6

1
32

1
32

1
48

1
48

1
48

1
48

1
48

1
48

...

FIGURE 7. An example of a self-similar string (with four scaling ratios r1 = 1
4 , r2 = r3 = r4 =

1
6 , and two gaps g1 = g2 =

1
8 ).

Figure 12 suggests that the accumulated density func-

tion of the “Two-Three-Five equation” (M = 3, so

(M − 1)/2 = 1) is approximated by 1 − C(D − x), for
some positive constant C.

5. SELF-SIMILAR FRACTAL STRINGS

Given an open interval I of length L, we construct a self-

similar fractal string L with scaling ratios r1, r2, . . . , rN
(see [Frantz 01, Frantz 04, Lapidus 93, Lapidus and van

Frankenhuysen 99] and [Lapidus and van Frankenhuysen

00, Chapter 2]). This construction is reminiscent of the

construction of the Cantor set. Let N scaling factors

r1, r2, . . . , rN be given (N ≥ 2), with

1 > r1 ≥ r2 ≥ . . . ≥ rN > 0. (5—1)

We also define gaps g1, . . . , gK (K ≥ 1, gj > 0 for j =

1, . . . ,K) such that

N3
j=1

rj +

K3
k=1

gk = 1. (5—2)

Moreover, we assume that the numbers rj are repeated

according to multiplicity. This is different from our ear-

lier convention. Thus, if r̂1, . . . , r̂M denote the distinct

values of the scaling ratios, and mj is the multiplic-

ity of r̂j for j = 1, . . . ,M , then N =
�M

j=1mj . Note

that mj is the number of indices ν, ν = 1, . . . , N , such

that rν = r̂j .

Subdivide I into intervals of length r1L, . . . , rNL, with

gaps g1L, . . . , gKL (see Figure 7). The K gaps form

the first lengths g1L, . . . , gKL of the string. Repeat this

process with the remaining intervals, to obtain NK new

lengths g1r1L, . . . , gKrNL in the next step, and N
k−1K

new lengths in the k-th step. As a result, we obtain a

self-similar fractal string L = {lj} consisting of intervals
of length lj given by

Lgkrν1rν2 . . . rνl , (5—3)

for k = 1, . . . ,K and all choices of l ∈ N and ν1, . . . , νl ∈
{1, . . . , N}. (We refer the interested reader to the in-
troduction of this paper for a brief discussion of fractal

strings, or to [Lapidus and van Frankenhuysen 00, Chap-

ters 1 and 2] for more detailed information.)

Remark 5.1. Throughout this paper, we always assume
that a self-similar string is nontrivial; that is, we exclude

the trivial case when L is composed of a single interval.
This permits us to avoid having to consider separately

this obvious exception to some of our theorems.

Theorem 5.2. Let L be a self-similar string, constructed
as above with scaling ratios r1, . . . , rN . Then the geomet-

ric zeta function of this string (see Equation (1—5)) has

a meromorphic continuation to the whole complex plane,

given by

ζL(s) =
Ls
�K

k=1 g
s
k

1−�N

j=1 r
s
j

, for s ∈ C. (5—4)

Here, L = ζL(1) is the total length of L, which is also
the length of I, the initial interval from which L is con-
structed.

Proof: Indeed, for each k = 1, . . . ,K, we have

N3
ν1=1

. . .

N3
νl=1

(gkrν1 . . . rνl)
s
= gsk

N3
ν1=1

. . .

N3
νl=1

rsν1 . . . r
s
νl

= gsk

X
N3
j=1

rsj

~l
.
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Let s = D be the unique real solution of
�N

j=1 r
s
j = 1.

For Re s > D, we have
ee�N

j=1 r
s
j

ee < 1. Hence, in view

of (1—5) and (5—3), we deduce that

ζL(s) =
K3
k=0

∞3
l=0

X
N3

ν1=1

. . .

N3
νl=1

(Lgkrν1 . . . rνl)
s

~

= Ls
K3
k=1

gsk

∞3
l=0

X
N3
j=1

rsj

~l
.

Thus, we obtain (5—4) for Re s > D. Since the right-

hand side of (5—4) is meromorphic on C, we deduce the
theorem.

Corollary 5.3. The set of complex dimensions DL of the
self-similar string L is the set of solutions of the equation

N3
j=1

rωj = 1, ω ∈ C. (5—5)

Moreover, the multiplicity of the complex dimension ω in

DL (that is, the multiplicity of ω as a pole of ζL) is equal
to the multiplicity of ω as a solution of (5—5).

Remark 5.4. A self-similar string L defines a self-similar
set in R, namely its boundary ∂L. As is well known

(see, e.g., [Falconer 90, Theorems 9.1, 9.3, pages 114,

118]), the Minkowski dimension D of a self-similar set

(satisfying the so-called “open set condition”) coincides

with its “similarity dimension” s [Mandelbrot 83], defined

as the unique real solution of Equation (5—5).

Remark 5.5. In [Lapidus and van Frankenhuysen 00,

Chapter 2], we have considered the case of self-similar

strings with a single gap: K = 1. An arbitrary self-

similar string,9 however, has multiple gaps, as consid-

ered by Mark Frantz in [Frantz 01, Frantz 04].10 To

go from the situation where K = 1 in [Lapidus and

van Frankenhuysen 00, Chapter 2] to the present one

where K ≥ 1, it suffices to observe that a general self-
similar string L with K gaps, as above, can be natu-

rally decomposed into a finite union of K self-similar

strings Lk (k = 1, . . . ,K) with a single gap (but with

the same scaling ratios r1, . . . , rN as L itself); namely,

with the above notation, the lengths of each Lk are
given by (5—3), for fixed k ∈ {1, . . . ,K}. Since, obvi-
ously, ζL(s) =

�K
k=1 ζLk(s), Theorem 5.2 can also be de-

duced from its counterpart in our earlier work, [Lapidus

9Corresponding to an arbitrary self-similar set in R (other than
a single interval).
10We wish to thank Mark Frantz for pointing out this more gen-

eral construction.

and van Frankenhuysen 00, Theorem 2.3, page 25], re-

called in Equation (1—6) above. Moreover, the main re-

sult of [Frantz 01] can also be deduced (by our general

methods) from those in [Lapidus and van Frankenhuysen

00, Chapters 2 and 6]. In particular, an arbitrary self-

similar string is Minkowski measurable if and only if it is

a nonlattice string, in which case its Minkowski content

M(D;L) can be computed explicitly in terms of the to-
tal length L, the scaling ratios r1, . . . , rN , and the gaps

g1, . . . , gK .

Remark 5.6. In [Lapidus and van Frankenhuysen 01a, §2],
we found an Euler product for ζL, coming from a dynam-
ical system associated with the string, also called a self-

similar flow. (See Section 6.3 below.) The lengths cor-

respond to the periodic orbits of this dynamical system;

see [Lapidus and van Frankenhuysen 01a, Remark 2.15].

Remark 5.7. Note that the zeros of the geometric zeta
function ζL(s) given by Equation (5—4) are the solutions
of the Dirichlet polynomial equation

K3
k=1

gsk = 0, s ∈ C. (5—6)

Hence, the results obtained in our present work can also

be applied to understand the structure and approximate

the values of the zeros (as well as the poles) of the geo-

metric zeta function of an arbitrary self-similar string.

This is noteworthy because when our “explicit formu-

las” (see Section 6 and [Lapidus and van Frankenhuy-

sen 00, Chapter 4]) are applied in a dynamical context

(see [Lapidus and van Frankenhuysen 01a]), the resulting

expressions involve both the zeros and poles of ζL.

6. EXPLICIT FORMULAS

We formulate the explicit formula in the framework of

generalized fractal strings, as explained in [Lapidus and

van Frankenhuysen 00, Chapter 4]. Let η be a measure

on (0,∞), locally bounded and supported away from 0.

The geometric zeta function of η is defined by

ζη(s) =

8 ∞
0

t−sη(dt). (6—1)

When we take η =
�∞

j=1 δ{l−1j }, where δ{a} denotes
the Dirac measure concentrated at the point a, we find

ζη(s) =
�∞

j=1 l
s
j , and we recover the theory of frac-

tal strings. A special case is when the measure η =�∞
j=1 δ{l−1j } has a self-similarity property as in [Lapidus
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and van Frankenhuysen 00, §3.4], in which case we re-
cover the theory of self-similar fractal strings.

For a function ϕ(t) on (0,∞), we let

4ϕ(s) = 8 ∞
0

ϕ(t)ts−1 dt (6—2)

be the Mellin transform of ϕ.

We assume that ζη has a meromorphic continuation

to a neighborhood of the set W , defined by W = {s =
σ+ it : σ ≥ S(t)}, for some function S : R→ R, bounded
from above and Lipschitz continuous.11 We denote by

Dη(W ) the set of complex dimensions of η in W , defined
as the set of poles of ζη in W :

Dη(W ) = {ω ∈W : ζη has a pole at ω} . (6—3)

We assume the following growth conditions:

There exist real constants κ ≥ 0 and C > 0 and
a sequence {Tn}n∈Z of real numbers tending to
±∞ as n→ ±∞, with T−n < 0 < Tn for n ≥ 1
and limn→+∞ T−n/Tn = −1, such that

(H1) For all n ∈ Z and all σ ≥ S(Tn),
|ζη(σ + iTn)| ≤ C · |Tn|κ, (6—4)

(H2) For all t ∈ R, |t| ≥ 1,
|ζη(S(t) + it)| ≤ C · |t|κ. (6—5)

With these conditions, we have the following explicit

formula for the distribution η:

Theorem 6.1. Let η be a generalized fractal string, sat-
isfying hypotheses (H1) and (H2). Then, for suitable

functions ϕ,8 ∞
0

ϕ(t) η(dt) =
3

ω∈Dη(W )

res (4ϕ(s)ζη(s);ω) +Rη(ϕ),
(6—6)

where ω runs through Dη(W ) and the poles of 4ϕ, and
Rη(ϕ) is the error term,

Rη(ϕ) =
1

2πi

8
S

4ϕ(s)ζη(s) ds. (6—7)

It is of order supS − 1, in a distributional sense.

See [Lapidus and van Frankenhuysen 00, §4.4] for a
proof and discussion of the class of functions ϕ to which

11In [Lapidus and van Frankenhuysen 99, Lapidus and van

Frankenhuysen 01b], the graph of S is referred to as the screen,
while the set W is called the window.

this formula is applicable. The reader will also find there

a discussion of the order of the error term; see, in particu-

lar, [Lapidus and van Frankenhuysen 00, Theorems 4.12,

4.20, and 4.23].

We discuss three applications, the geometric count-

ing function, the volume of the tubular neighborhoods,

and the counting function of the periodic orbits of a self-

similar flow. The techniques developed in the present

work can be applied to each of these situations to obtain

significantly more precise estimates. In order to avoid un-

necessary repetitions, we leave it to the interested reader

to do so in each particular case.

6.1 The Geometric Counting Function

Let

NL(x) = #{j : l−1j ≤ x} (6—8)

be the counting function of reciprocal lengths, the geo-

metric counting function. More generally,

Nη(x) =

8 x

0

η(dt). (6—9)

We take ϕ(t) = 1 or 0 according to whether t < x and t >

x, with Mellin transform 4ϕ(s) = xs/s, in formula (6—6)

to obtain the explicit formula for the geometric counting

function:

Nη(x) =
3

ω∈Dη(W )

res

w
xsζη(s)

s
;ω

W
+ {ζη(0)}+Rη(x),

(6—10)

where the term in braces is included if 0 ∈W , but is not
a complex dimension of η. The error term Rη(x) is of

order xsupS .

6.2 The Volume of the Tubular Neighborhoods

For

ϕ(t) =

l
2ε if t ≤ 1/(2ε),
1/t if t > 1/(2ε),

with 4ϕ(s) = (2ε)1−s/(s(1− s)), we obtain the volume of
the tubular neighborhood

V (ε) =
3

ω∈Dη(W )

res

w
(2ε)1−sζη(s)
s(1− s) ;ω

W
+{2εζη(0)}+ RV (ε), (6—11)

where the term in braces is included if 0 ∈W , but is not
a complex dimension of η. When the complex dimensions
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are simple, 0 is not a complex dimension, but contained

in W , and η =
�∞

j=1 δ{l−1j }, this reduces to Equation

(1—7). The error term in (6—11) is of order ε1−supS .

Remark 6.2. There is an interesting analogy between the
above formula (or its special case (1—7)) and H. Weyl’s

formula for the volume of the tubular neighborhoods of

a submanifold of Rm. The latter formula is a polyno-
mial in ε whose coefficients are expressed in terms of the

Weyl curvature in different (integer) dimensions [Berger

and Gostiaux 88, 6.9.8 and Theorem 6.9.9]. In the above

explicit formula, V (ε) is expressed as an expansion in

ε1−ω, where ω ranges over the “visible” complex dimen-
sions. This suggests that the complex dimensions of frac-

tal strings (and the associated residues12) could have a

direct geometric interpretation. See [Lapidus and van

Frankenhuysen 00, Chapter 6] for more information.

6.3 The Periodic Orbits of Self-Similar Flows

We refer the interested reader to [Lapidus and van

Frankenhuysen 01a], [Parry and Pollicott 83], and [Parry

and Pollicott 90], in particular Chapter 6, for more in-

formation on the dynamical systems considered here.

Let N ≥ 0 be an integer and let Ω = {1, . . . , N}N
be the space of sequences over the alphabet {1, . . . , N}.
Let w : Ω → (0,∞] be a function, called the weight. On
Ω, we have the left shift σ, given on a sequence (an) by

(σa)n = an+1. We define the suspended flow Fw on the
space [0,∞)× Ω as the following dynamical system:

Fw(t, a) =
l
(t, a) if 0 ≤ t < w(a),
Fw(t−w(a),σa) if t ≥ w(a).

(6—12)

Given a finite sequence a1, a2, . . . , al, we let a =

a1, a2, . . . , al, a1, a2, . . . , al, . . . be the corresponding pe-

riodic sequence, and

p = {a,σa,σ2a, . . . }
the associated finite orbit of σ, of length #p. Note that

#p is a divisor of l. The total weight of p is

wtot(p) =
3
a∈p

w(a). (6—13)

We define the dynamical zeta function of Fw by the Euler
product,

ζw(s) =
�
p

1

1− e−wtot(p)s
, (6—14)

12Or more generally, the Laurent expansions at these poles if

they are not simple.

where p runs over all finite orbits of σ. The dynami-

cal complex dimensions of Fw are the poles and zeros ω
of ζw, counted without multiplicity. Equivalently, they

are the poles of the logarithmic derivative ζ Iw/ζw. The
following function counts the periodic orbits and their

multiples by their total weight:

ψw(x) =
3

kwtot(p)≤log x
wtot(p). (6—15)

It is related to ζw by

−ζ
I
w

ζw
(s) =

8 ∞
0

x−sdψw(x),

for Re s > D.

A flow Fw is self-similar if N ≥ 2 and the weight

function w depends only on the first letter of the sequence

on which it is evaluated. We then put

wj = w(j, j, j, . . . ), (6—16)

for j = 1, . . . , N . In this case, we have (see [Lapidus and

van Frankenhuysen 01a, Theorem 2.10]),

ζw(s) =
1

1−�N

j=1 e
−wjs

.

Thus, the dynamical complex dimensions coincide with

the geometric complex dimensions of the corresponding

self-similar string, but they are counted without multi-

plicity.

Theorem 6.3. (The Prime Orbit Theorem with Error
Term.) Let Fw be a suspended flow such that ζw satisfies
conditions (H1) and (H2). Then we have the following

equality between distributions :

ψw(x) =
xD

D
+
3

ω W=D,0
− ord (ζw;ω) x

ω

ω

+res

w
−x

sζ Iw(s)
sζw(s)

; 0

W
+R(x), (6—17)

where ord (ζw;ω) denotes the order of the zero or pole of

ζw at ω, and

R(x) = −
8
S

ζ Iw
ζw
(s)xs

ds

s
= O
D
xsupS

i
, (6—18)

as x→∞.
If 0 is not a complex dimension of the flow, then the

third term on the right-hand side of (6—17) simplifies to

−ζ Iw/ζw(0). In general, this term is of the form u+v log x,
for some constants u and v.
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If D is the only complex dimension on the line Re s =

D, then the error term,3
ω W=D,0

− ord (ζw;ω) x
ω

ω
+ res

w
−x

sζ Iw(s)
sζw(s)

; 0

W
+R(x),

(6—19)

is estimated by o(xD), as x→∞. If this is the case, then
we obtain a Prime Orbit Theorem for Fw as follows:

ψw(x) =
xD

D
+ o
D
xD
i
, (6—20)

as x→∞.

Remark 6.4. (Geometric and dynamical complex dimen-
sions.) The geometric complex dimensions of a fractal

string are defined as the poles of its geometric zeta func-

tion. Thus, the complex dimensions are counted with

a multiplicity, and the zeros of the geometric zeta func-

tion are unimportant. On the other hand, in [Lapidus

and van Frankenhuysen 01a], we defined the dynamical

complex dimensions as the poles of the logarithmic deriv-

ative of the dynamical zeta function. Thus, the dynam-

ical complex dimensions are simple, and both the zeros

and the poles of the dynamical zeta function are counted.

For self-similar flows, the dynamical zeta function and

the geometric zeta function of the corresponding string

(without gaps) coincide (up to a normalization), and this

zeta function has no zeros. Hence, as sets (without mul-

tiplicity), the geometric and dynamical complex dimen-

sions coincide for self-similar flows and strings without

gaps.

Remark 6.5. The logarithmic derivative of ζw for the

self-similar flow Fw is

ζ Iw
ζw
(s) =

�N

j=1 wje
−wjs

1−�N

j=1 e
−wjs

.

This corresponds to a self-similar string with “gaps”

ge−wj , with (in general, noninteger) multiplicity wj .

The constant g is adjusted so that (5—2) is satisfied:�N

j=1 e
−wj +

�N

j=1 ge
−wj = 1.

7. DIMENSION-FREE REGIONS

We discuss an application of the above results to the the-

ory of self-similar fractal strings, as in Section 5. We use

the language of fractal strings, as, for example, in Sec-

tion 1 and [Lapidus and van Frankenhuysen 00]. That

is, a Dirichlet polynomial corresponds to the geometric

zeta function of a self-similar string, while the complex

roots of such a polynomial correspond to the complex

dimensions of this self-similar string.

Definition 7.1. An open domain in the complex plane is
a dimension-free region for the string L if it contains the
line Re s = D and the only pole of ζL in that domain is
s = D.

We assume that we are in the setting of Section 5.

From Theorem 4.5, and with the notation of Section 4.1

and Section 4.2, we deduce in the case N = 2,

Corollary 7.2. Assume that the partial quotients

a0, a1, . . . of the continued fraction of α are bounded by

a constant C. Put B = π4e−(w1+w2)D/(2f I(D)3). Then
L has a dimension-free region of the formF

σ + it ∈ C : σ > D − B

C2t2

k
. (7—1)

The function ζL satisfies hypotheses (H1) and (H2) with

κ = 2; see (6—4) and (6—5).

More generally, let a : R+ → [1,∞) be a function such
that the partial quotients {ak}∞k=0 of the continued frac-
tion of α satisfy ak+1 ≤ a(qk) for every k ≥ 0. Then L
has a dimension-free region of the formF

σ + it ∈ C : σ > D − B

t2a2(tw1/(2π))

k
. (7—2)

If a(q) grows at most polynomially, then ζL satisfies

hypotheses (H1) and (H2) with κ such that tκ ≥
t2a2(tw1/(2π)), for all t ∈ R.

Proof: We have qIk+1 = αk+1q
I
k ≤ 2a(qk)qIk ≤ 4a(qk)qk.

By Theorem 4.5, the complex dimension close to D +

it for t = 2πqk/w1, is located at D + i(t + O(qI−1k+1)) −
(w21/π

2)BqI−2k+1 + O(q
I−4
k+1), where the big-O denote real-

valued functions. The real part of this complex dimension

is less than D −Bt−2a−2(tw1/(2π)).

Example 7.3. One of the simplest nonlattice strings is the
golden string, introduced in [Lapidus and van Franken-

huysen 00, page 33]. It is the nonlattice string with

N = 2 and α = φ, w1 = log 2. The continued frac-

tion of φ is [[1, 1, 1, . . . ]]; hence, q0, q1, . . . is the sequence

of Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, . . . , and qIk = φk.

Numerically, we find D ≈ .7792119034 and the follow-
ing approximation to the power series ∆(x):

− .47862x+ .08812 x2 + .00450x3 − .00205x4
− .00039x5 + .00004x6 + . . . .
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For every k ≥ 0, we find a complex dimension close to
D + 2πiqk/ log 2. For example, q9 = 55, and we find a

complex dimension at D − .00023 + 498.58i. More gen-
erally, for numbers that can be written as a sum of Fi-

bonacci numbers of relatively high index, like q = 55+ 5

or q = 55−5 = 34+13+3, we find a complex dimension
close to D+2πiq/ log 2. For q = 60 and q = 50, we find a

complex dimension, respectively, atD−.023561+543.63i
and at D−.033919+453.53i. In both these cases, the dis-
tance to the line Re s = D is comparable to the distance

of the complex dimension close to D + 2πi · (5/ log 2) to
this line, which is located at D − .028499 + 45.05i. See
Figure 8, where the markers indicate the Fibonacci num-

bers, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . The pattern persists

for other complex dimensions as well. Indeed, every com-

plex dimension repeats itself according to the pattern of

the Fibonacci numbers. This is illustrated for one other

complex dimension.

The second graph, at the bottom of Figure 8, shows

the accumulative density of the real parts of the com-

plex dimensions, compared with the predicted density

(graphed for Dl ≤ x ≤ D) of Theorem 4.7.

Figure 8 was obtained by approximating φ by

4181/2584. Thus, the figure shows the complex di-

mensions of the lattice string with generator w =

(log 2)/2584, k1 = 2584, k2 = 4181. The oscillatory pe-

riod of this string is 2π/w ≈ 23423.23721. Figure 9 gives
intermediate stages of this approximation.

Example 7.4. In Figure 10, we give a diagram of the

complex dimensions of the “golden+” string, defined as

the nongeneric nonlattice string with N = 3 and ratios

2−1, 2−φ, and 2−2. For the real parts, we observe the
same phenomenon of “phase transition” in the complex

dimensions as discussed in Section 2.2.4.

To produce this diagram, we approximated 1− 2−s −
2−φs − 2−2s by 1 − z2584 − z4181 − z5168, for z = rs,

r = 2−1/2584.

Example 7.5. Figure 11 gives the complex dimensions

and the density of their real parts of the generic nonlat-

tice string with weights w1 = log 2, w2 = α log 2, where

α is the positive real number with continued fraction

[[1, 2, 3, 4, . . . ]]. One can compute that

α =

�∞
n=0

1
(n!)2�∞

n=0
1

n!(n+1)!

=
I0(2)

I1(2)
, (7—3)

where Ik(z) =
�∞

n=0
(z/2)2n+k

n!(n+k)! is the modified Bessel

function. Indeed, by [Whittaker and Watson 96,

pages 359, 373], we have the recursion relation,

In−1(z)
In(z)

=
2n

z
+

1
In(z)
In+1(z)

,

for n = 1, 2, . . . .

Thus, I0(z)/I1(z) = [[2/z, 4/z, 6/z, . . . ]] and so α is

given by Equation (7—3), as claimed. (See also [Watson

95].) For this reason, we propose to call this string the

Bessel string.

Even though α is better approximable by rationals

than numbers with bounded partial quotients, qualita-

tively there does not seem to be a significant difference

with the golden string.

Figure 11 is obtained by approximating α by

1393/972. The markers illustrate again the different

periodic patterns. The repetitions occur at denom-

inators of convergents of α, which are the numbers

1, 2, 7, 30, 157, . . . , and combinations of these (in the

sense of the α-adic expansion of Equation (4—6)).

Example 7.6. The Two-Three-Five string is an example
with N > 2. It has N = 3 scaling ratios r1 = 1/2, r2 =

1/3, r3 = 1/5. See Figure 12 for a diagram of the complex

dimensions and of the density of their real parts.

Figure 12 is obtained using the approximation log2 3 ≈
2826/1783, log2 5 ≈ 4140/1783.

In the following corollary, given N ≥ 2, we use the ex-
pression w1, . . . , wN is “a-approximable” if a : [1,∞) →
R+ is an increasing function such that for every q ≥ 1,
j ∈ {1, . . . , N} and integers pj ,

|qwj − pjw1| ≥ w1

a(q)
q−1/(N−1).

From Theorem 4.12, we deduce

Corollary 7.7. Let N ≥ 2. The best dimension-free region
that L can have is of size+

σ + it ∈ C : σ ≥ D −O
p
t−2/(N−1)

Q�
. (7—4)

The implied constant depends only on w1, . . . , wN .

If w1, . . . , wN is “a-approximable,” then the

dimension-free region has the form+
σ + it ∈ C : σ ≥ D −O

p
a−2(w1t/(2π))t−2/(N−1)

Q�
.

(7—5)

Remark 7.8. If a(q) grows faster than polynomially, we
obtain a bound of the form xD/ainv(log x) for the error

in the explicit formula for V (ε); see (6—11). Here, ainv is

the inverse function of a.
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55+13

55+21

55+8

55

34

21

13

8

5

100

500

0 .7792-.9653

FIGURE 8. The complex dimensions of the golden string; the accumulative density of their real parts, compared with the
theoretical prediction of Theorem 4.7.
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φ≈2/1
1−1

p
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◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
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◦
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◦

◦
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◦
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FIGURE 9. Approximations to the complex dimensions of the golden string. Emergence of the quasiperiodic pattern.
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55+13

55+21

55+8

55

34
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13

8

5

100

500

0 1.074–1.780

FIGURE 10. The complex dimensions of the golden+ string; the accumulative density of their real parts.
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2*30

30-7

3*30-2*7

30+2*7

2*30+7

30+7

3*7

2*7

30

7

100

500

0 .8312-1.202

FIGURE 11. The complex dimensions of the Bessel string; the accumulative density of their real parts, compared with
the theoretical prediction of Theorem 4.7.
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53

2*34

34

19

12
10

3

100

500

0 1.033-1.224

FIGURE 12. The quasiperiodic behavior of the complex dimensions of the Two-Three-Five string; the accumulative

density of the real parts of the complex dimensions.
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Remark 7.9. The best dimension-free region is obtained
when w1, . . . , wN is badly approximable by rationals; i.e.,

when the weights are only a-approximable for a constant

function a = a(q). This corresponds to the case of two

generators when α has bounded partial quotients in its

continued fraction (Corollary 7.2). When w1, . . . , wN is

better approximable by rationals, the dimension-free re-

gion is smaller and there are complex dimensions closer

to the line Re s = D. Such nonlattice strings behave

more like lattice strings (compare Theorem 2.5).

Remark 7.10. Regarding the dependence on N , we see
from comparing Corollaries 7.2 and 7.7 that in general,

depending of course on the properties of simultaneous

Diophantine approximation of the weights, nonlattice

strings with a larger number of scaling ratios have a wider

(better) dimension-free region.

Remark 7.11. By formulas (1—9) and (1—10) of the in-
troduction, we deduce that for a nonlattice self-similar

string, V (ε) is approximated by its leading term up to

an error of order | log ε|−(N−1)/2, or worse if the weights
are well approximable.

8. THE REAL PARTS OF THE COMPLEX DIMENSIONS
OF A NONLATTICE STRING

In this section, we obtain a rigorous result and make sev-

eral conjectures regarding the real parts of the complex

dimensions of nonlattice strings. It is noteworthy that

both the theorem and the conjectures were themselves

suggested by computer experimentation guided by our

theoretical investigations.

Recall from Remark 4.11 that the analogue of for-

mula (4—16) holds for any complex dimension ω, be-

sides D.

Theorem 8.1. The set of real parts of the complex dimen-
sions of a nonlattice string has no isolated points.

Proof: By formula (4—16), applied for ω, every complex

dimension gives rise to a sequence of complex dimensions

close to the points ω+2πiq/w1, for integers q. Since the

corrective terms are not all purely imaginary, we find

complex dimensions with real parts close to Reω. When

q increases through a sequence of integers such that for

each j = 1, . . . , N , xj = 2πi(qwj/w1 − pj) → 0, we find

a sequence of complex dimensions whose real parts ap-

proach Reω.

Remark 8.2. Recall from [Lapidus and van Frankenhuy-

sen 00, §10.2 and §10.3] that a string is said to be fractal
in dimension α if it has a complex dimension with real

part α. Each complex dimension gives rise to oscillations

in the geometry of the fractal string. The frequencies of

these oscillations are determined by the imaginary part of

the complex dimension, and the real part of the complex

dimension determines the amplitude of the oscillations.

We define the set of dimensions of fractality of a fractal

string as the closure of the set of real parts of its com-

plex dimensions. Thus, Theorem 8.1 can be interpreted

as saying that a nonlattice string is fractal in a perfect

set of fractal dimensions.

8.1 The Density of the Real Parts

The density of the real parts of the complex dimensions of

six different nonlattice strings are plotted in Figures 5, 8,

10—13, respectively. These figures show the graph of the

function given by formula (4—12) for some large value of

T . Since there are no horizontal pieces in these graphs,

we conjecture that the real parts are dense in [Dl, D].

More generally, we expect the same to be true for the real

parts of the complex dimensions of any generic nonlattice

string.

We summarize this discussion by stating the following

conjecture:

Conjecture 8.3. If L is a generic nonlattice string, the
set of dimensions of fractality of L is equal to the entire
interval [Dl, D], where Dl is defined in (2—16) and D is

the Minkowski dimension of L.

The graphs of densities are qualitatively different for

M = 2 and M = 3 (i.e., for either two or three different

scaling factors): The complex dimensions of the Two-

Three-Five string show a “phase transition” between neg-

ative and positive real part. (See Figures 10 and 12,

where M = 3, and compare with Figures 8 and 11 where

M = 2.) In the case of the Two-Three-Five string of Ex-

ample 7.6 (see Figure 12), the density for negative real

parts is approximately .77 (i.e., below average density),

while for positive real parts, it is 1.08, slightly above av-

erage density. The density around vanishing real part

becomes as large as 2.1. It seems that for larger M , this

phenomenon persists. Therefore, we make the following

conjecture:

Conjecture 8.4. As M → ∞, there exists a vertical line
such that the density of the complex dimensions off this

line vanishes in the limit.
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2*31

31

10
9

4

100

500

0 1.147-1.627

FIGURE 13. The complex dimensions of the nonlattice string with N = 4 and r1 = 1/2, r2 = 1/3, r3 = 1/5, r4 = 1/7;
the accumulative density of their real parts.
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We close this section with an example of the complex

dimensions and the density of the real parts of the generic

nonlattice string with r1 = 1/2, r2 = 1/3, r3 = 1/5,

and r4 = 1/7. See Figure 13. As was suggested in Re-

mark 7.10, the complex dimensions tend to be more con-

centrated in the middle, away from Re s = D and Re s =

Dl. We have used the approximation log2 3 ≈ 699/441,
log2 5 ≈ 1024/441, and log2 7 ≈ 1238/441.
Clearly, more mathematical experimentation–guided

by our theoretical investigations–is needed to determine

the generality of this phenomenon and to formulate suit-

able additional conjectures regarding the fine structure

of the complex dimensions of nonlattice strings.
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