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We classify the primitive distance-transitive representations of

the Fischer sporadic simple groups and their automorphism

groups. It turns out that the only primitive distance-transitive

representations of these groups are their rank 3 representations.

In the process of our work, we also classify and study the

primitive multiplicity-free permutation representations of these

Fischer groups. Our methods, which we describe in some

detail, demonstrate the use of computational and randomized

techniques in the classification of distance-transitive graphs

and the study of very large permutation representations.

1. INTRODUCTIONLetG be a permutation group on a �nite set V , and� an undirected, loopless, connected graph withvertex-set V . Now G has a natural action on V �V ,de�ned by (v; w)g = (vg; wg), and we say that Gacts distance-transitively on � if theG-orbits of thisaction are precisely the sets f(v; w) j d�(v; w) = ig;where i = 0; 1; : : : ;diam�. (Note that if G acts dis-tance-transitively on �, it is necessarily a vertex-transitive and ordered-edge-transitive group of au-tomorphisms of �.) The graph � is called distance-transitive if Aut � acts distance-transitively on �.The permutation representation of G on V is adistance-transitive representation (DTR) if G actsdistance-transitively on some (undirected, loopless,connected) graph with vertex-set V . A good gen-eral reference for the theory of distance-transitivegraphs is [Brouwer et al. 1989].For our purposes, a Fischer group is one of thesporadic groups Fi22, Fi22: 2 = AutFi22, Fi23 =AutFi23, Fi024, and Fi24 = Fi024: 2 = AutFi024. Themain purpose of this paper is to classify the graphs
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on which a Fischer group acts primitively and dis-tance-transitively. In the process we also classifythe primitive multiplicity-free permutation repre-sentations of these groups, and determine the cor-responding permutation characters. These results,and the techniques described in this paper, areused in the complete classi�cation [Ivanov et al.1995] of the primitive multiplicity-free permuta-tion representations of the sporadic simple groupsand their automorphism groups, and the graphs onwhich such a group acts primitively and distance-transitively.Our classi�cation uses several tools of computa-tional group theory and graph theory, such as char-acter theory algorithms, single and double cosetenumeration, permutation group algorithms, andgraph theory algorithms. We also illustrate somerandomized techniques that we use to study ex-tremely large permutation representations.We make extensive use of the group theory sys-tem GAP [Sch�onert et al. 1994] and its share li-brary package GRAPE [Soicher 1993] (for com-puting with graphs with groups acting on them),which includes the nauty package [McKay 1990](for computing automorphism groups of graphs andtesting for graph isomorphism). We usually givemore information about a graph than is strictlynecessary to determine if a given group acts on itdistance-transitively.The groups Fi22, Fi23, and Fi24 were constructedby B. Fischer [1969] as 3-transposition groups. Agroup G = (G;D) is a 3-transposition group if itis generated by a conjugacy class D of 3-transposi-tions (this means the elements of D are involutionswhose pairwise products have order 1, 2, or 3).Our main result is stated at the end of the nextsection. We use Atlas notation [Conway et al. 1985]throughout this paper for group structures, conju-gacy classes, and characters. For example, 429bdenotes the second character of degree 429, and429ab denotes the sum 429a+ 429b. The orderingof characters we use is that of the GAP version ofthe Atlas character tables, which agrees with theAtlas ordering in the case of simple groups.

2. ORBITAL GRAPHS, DISTANCE-TRANSITIVE
REPRESENTATIONS, AND THE MAIN THEOREMThroughout this section G is a transitive permuta-tion group on a �nite set V .The orbits of G (acting naturally) on V � V arecalled orbitals, and the number of these orbitalsis called the (permutation) rank of G. A directedgraph with vertex-set V and edge-set an orbitalE is called an orbital digraph. If E is an orbitalsuch that (v; w) 2 E whenever (w; v) 2 E, thenwe call E self-paired, and consider the orbital di-graph (V;E) to be an undirected (orbital) graphby identifying (v; w) 2 E with (w; v). The orbitalsfor G are in one-to-one correspondence with theorbits on V of the stabilizer Gv of a point v 2 V :this correspondence maps an orbital E to the setof points fw j (v; w) 2 Eg. The orbits of Gv onV are called suborbits of G, and their lengths arecalled the subdegrees of G.Now if G on V is a distance-transitive repre-sentation, then a corresponding distance-transitivegraph must have vertex-set V , and edge-set a self-paired orbital of G. Indeed, if G on V is a DTR,then all its orbitals must be self-paired, which isequivalent to the property that the permutationrepresentation of G on V is the sum of distinctcomplex irreducible representations, each of whichis writable over the reals [Brouwer et al. 1989].Furthermore, if G acts distance-transitively on thegraph (V;E), then the suborbit corresponding tothe orbital E is a suborbit of the smallest or thesecond smallest length greater than 1 [Brouwer etal. 1989].Now suppose that V1 = fvg, V2, : : :, Vr is anordering of the orbits of Gv, with respective rep-resentatives v1 = v, v2, : : :, vr. Let � = (V;E) bea (di)graph on which G acts as a vertex-transitivegroup of automorphisms, and de�neaij = jf(vi; w) 2 E j w 2 Vjgj:Note that aij does not depend on the choice viof suborbit representative. The r � r integer ma-trix A = (aij) is called the collapsed adjacency
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matrix for � (with respect to G and the subor-bit ordering). Much information about � can beread o� directly from its collapsed adjacency ma-trix [Praeger and Soicher]. In particular, G actsdistance-transitively on � if and only if for someordering V1 = fvg; V2; : : : ; Vr of the suborbits, thecorresponding collapsed adjacency matrix is tridi-agonal, with all entries nonzero on the upper andlower diagonals.We are now in a position to state our main the-orem. The representations and graphs describedby this theorem are well-known (see, for example,[Brouwer et al. 1989]).
Theorem 2.1. Suppose that G = Fi22, Fi22: 2, Fi23,Fi024, or Fi24. Then the primitive distance-transi-tive representations of G are precisely its (well-known) rank 3 representations, described below .The corresponding distance-transitive graphs comein complementary pairs, and the list below givestheir collapsed adjacency matrices.
1. If G = Fi22 or Fi22: 2, then G acts primitivelywith permutation rank 3 on the conjugacy classof 3-transpositions ofG0 = Fi22. The subdegreesare 1, 693, 2816, and the collapsed adjacencymatrices are:0 693 01 180 5120 126 567 0 0 28160 512 23041 567 2248
2. Let G = Fi22. Then G contains exactly twoconjugacy classes of maximal subgroups O7(3),and these classes are interchanged by an outerautomorphism of G. The group G acts on eachof these classes with permutation rank 3, andthese two representations give rise to the samecomplementary pair of graphs. The subdegreesare 1, 3159, 10920, and the collapsed adjacencymatrices are:0 3159 01 918 22400 648 2511 0 0 109200 2240 86801 2511 8408
3. If G = Fi23, then G acts primitively with per-mutation rank 3 on the conjugacy class of 3-

transpositions ofG. The subdegrees are 1, 3510,28160, and the collapsed adjacency matrices are:0 3510 01 693 28160 351 3159 0 0 281600 2816 253441 3159 25000
4. Let G = Fi23. Then G contains exactly one con-jugacy class of maximal subgroups O+8 (3):S3,on which G acts with permutation rank 3. Thesubdegrees are 1, 28431, 109200, and the col-lapsed adjacency matrices are:0 28431 01 6030 224000 5832 22599 0 0 1092000 22400 868001 22599 86600
5. If G = Fi024 or Fi24, then G acts primitively withpermutation rank 3 on the conjugacy class of 3-transpositions of Fi24. The subdegrees are 1,31671, 275264, and the collapsed adjacency ma-trices are:0 31671 01 3510 281600 3240 28431 0 0 2752640 28160 2471041 28431 246832We shall prove this theorem by showing that thereare no other primitive DTRs for the Fischer groups.
3. THE GENERAL APPROACHWe discuss here our general approach to classifyingthe primitive DTRs of a given �nite group G.First, a permutation representation of G is prim-itive if and only if it is equivalent to a representa-tion of G acting on the (right) cosets of a max-imal subgroup. The maximal subgroups of Fi22and Fi22: 2 are determined in [Wilson 1984; Kleid-man and Wilson 1987], those of Fi23 in [Kleidmanet al. 1989], and those of Fi024 and Fi24 in [Lintonand Wilson 1991].Next, for a permutation representation � to bea DTR, it is necessary that � be multiplicity-free,that is, the sum of distinct complex irreduciblerepresentations. Furthermore, if � is a DTR theneach of these distinct irreducible representationsmust be writable over the reals, or equivalently,
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have a character with Frobenius{Schur indicator+1. The next section contains a general discus-sion on practical computational methods to deter-mine if a given permutation representation is mul-tiplicity-free, and in Section 5 the multiplicity-freeprimitive representations of the Fischer groups areclassi�ed, and their characters determined.The problem then boils down to that of deter-mining if a given (multiplicity-free) primitive rep-resentation of G on V is a DTR.We explicitly construct some such representa-tions using single or double coset enumeration, andcalculate collapsed adjacency matrices for the or-bital graphs corresponding to the two smallest sub-degrees greater than 1 (using the method describedin [Praeger and Soicher]). Then a trivial examina-tion of these collapsed adjacency matrices deter-mines if the representation is a DTR.However, the primitive representation of G on Vmay be too large or di�cult to construct directly,but if we can construct another representation ofG as a vertex-transitive group of automorphismsof some graph � = (W;F ), such that the stabilizerH of v 2 V acts intransitively on W , then we cantry to show that G on V is not a DTR as follows.Let � be the (proper) subgraph of � inducedon some orbit of H on W . Then the action of Gon V is equivalent to the action of G on the orbit�G of subgraphs of � (as H is maximal in G, itmust be the full G-stabilizer of �). We may thenuse various computational tricks (often involvingrandomized techniques) to determine a set of rep-resentatives of the H-orbits on �G. We sometimesdistinguish the H-orbit containing �g1 from thatcontaining �g2 by showing that �\�g1 is not iso-morphic to � \ �g2, and here the nauty package[McKay 1990] is useful.Now, given H-orbit representatives �1 = �,�2, : : :, �r, we determine Hi = stabH(�i) fori = 1; : : : ; r (using GAP, say), and then obtainthe subdegrees di = jHj=jHij.Now de�ne �i to be the graph with vertex-set�G, and edge-set the orbit f�;�igG (where i > 1).We can usually show that G does not act distance-

transitively on a given �i as follows. (In general,our aim is to �nd a G-invariant relation � on �G,and X;Y 2 �G, such that d(�;X) = d(�; Y ) in�i, � � X, but � 6� Y .) First, we calculate anelement gi 2 G such that �gi = �i. We then de-termine various subgraphs of � of the form �hgii ,for random h 2 H. Such subgraphs are joined to�i in �i, and we can usually �nd two such sub-graphs X;Y such that � \X 6�= � \�i 6�= � \ Yand � \ Y 6�= � \X. In that case, in �i we haved(�;X) = d(�; Y ) = 2, but there is no element ofG taking (�;X) to (�; Y ), and we can concludethat G does not act distance-transitively on �i.
Remark. The calculations described above usuallylead to an explicit rule for determining in which G-orbital a given ordered pair of elements of �G lies.Such a rule enables us (at least in theory) to com-pute collapsed adjacency matrices for the orbitalgraphs for the action of G on V = �G. We haverecently used such rules to compute collapsed ad-jacency matrices for the nontrivial orbital graphsof the two smallest valencies for almost all of themultiplicity-free representations we consider. Al-though not usually required for the proofs of ourresults, these matrices are of interest in their ownright, say for the investigation of geometries re-lated to the corresponding orbital graphs. Manyof these matrices are published in [Ivanov et al.1995], and we include the others in this paper. Wenote that the intersection matrices in [Ivanov et al.1995] are the transposes of what we call collapsedadjacency matrices for orbital graphs, after a pos-sible reordering of the suborbits. We have decidedto retain the original proofs of our results, as thesecontain interesting information not available fromcollapsed adjacency matrices alone.
4. THE COMPUTATIONAL STUDY OF PERMUTATION

CHARACTERS

Determining a Permutation CharacterThere are several methods one can apply in orderto determine the permutation character of the per-mutation action of a �nite group G on the cosets
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of a subgroup H. These methods are distinguishedby the amount of information used by the meth-ods. As a rule of thumb, the methods that requirea detailed knowledge enable one to determine thepermutation character exactly, but are only ap-plicable for small groups. Other methods, whichneed much less information, do not always lead toa unique possibility, but can be used for very largegroups. We will deal mainly with the second kindof methods, which are based on character theory.A good reference for the character theory used hereis [Isaacs 1976].For g 2 G, the permutation character � of G,with respect to the subgroup H, has value �(g)equal to the number of �xed points in the actionof G on the (right) cosets of H. The permutationcharacter � can also be interpreted as 1GH , the triv-ial character of H induced up to G. From this,we get a formula relating �(g) = 1GH(g) to the H-conjugacy-classes lying in the G-conjugacy class ofg, as follows. Let h1; : : : ; hr be representatives forthe conjugacy classes of elements in H containedin the G-conjugacy class of g. Then the value ofthe permutation character can be written in thefollowing way:
1GH(g) = jCG(g)j rXi=1 1jCH(hi)j :

Thus, the permutation character can be derivedfrom the knowledge of theH-conjugacy classes andthe knowledge in which G-conjugacy classes theyare contained. The map that attaches to each H-conjugacy class the G-conjugacy class it is con-tained in is called the fusion map from H to G.The group theory system GAP contains a power-ful function, written by T. Breuer, which supportsthe determination of the fusion map given informa-tion, like that which can be found in a GAP char-acter table, about the H-conjugacy classes and theG-conjugacy classes. This information usually con-tains the orders of the representatives, the powermaps and the orders of the centralizers.

For all sporadic simple groups other than Fi024,the baby monster group B, and the monster groupM , the conjugacy classes and the character tablesfor all maximal subgroups have now been deter-mined. These tables are publicly available as partof the GAP character table library, which formspart of the GAP system [Sch�onert et al. 1994].We give a short outline of how one proceeds todetermine a permutation character using GAP andits character table library. More information onthe use of the functions described below can beobtained using the online help system of GAP.One �rst reads in the character table of the cho-sen �nite simple groupG using the command Char-Table supplied with the library name of the char-acter table of G. The GAP character table of Gis a so-called GAP record, and one component ofthis record is a list (maxes) containing the namesunder which the character tables of the maximalsubgroups of G can be found in the library. Usingthe name for the chosen maximal subgroup H, weread in the character table of H.The function SubgroupFusions, when suppliedwith the character tables of H and G as the mainarguments, returns the possible fusion maps consis-tent with all the restrictions. Since fusion maps areonly determined up to automorphisms of the char-acter tables, the function RepresentativesFusionscan be used to get a list of representatives for thefusion maps. For each of the representatives in turnwe can determine the permutation character of Gon the cosets of H via the function Induced sup-plied with the fusion map and the trivial characterof H. Since we are interested in the multiplicitiesof the irreducible characters in the resulting per-mutation character, we determine the decomposi-tion of the permutation character into ordinary ir-reducible characters using the function MatScalar-Products, applied to the irreducible characters ofG and the permutation character. It is then triv-ial to derive from the decomposition whether thepermutation character is multiplicity-free or not.Observe that even though there might be severalpossible fusion maps, it is still possible that the
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putative permutation characters corresponding tothese maps coincide. A more detailed account ofthe basic theory is contained in [Breuer 1991]; seealso [Neub�user et al. 1984]. We remark that manyfusion maps are now explicitly stored in the GAPcharacter table library.
Useful Tricks to Show That Certain Characters Are Not

Multiplicity-FreeLet H and K be subgroups of a �nite group G.Then the number of orbits ofH acting on the cosetsof K in G is equal to the scalar product [1GH ; 1GK ]of the permutation characters corresponding to Hand K (in particular, the permutation rank of Gon H is [1GH ; 1GH ]). Thus, if 1GK is the sum of at mostm irreducible characters (counting multiplicities),and we can show that H has more than m orbitson the cosets of K, then 1GH cannot be multiplic-ity-free.As an application, we record the following well-known result.
Lemma 4.1. Let a and b be elements of G, in respec-tive G-conjugacy classes A and B, and let C(a) andC(b) denote the centralizers in G of a and b. Let mbe the number of conjugacy classes C of G such thatthe (A;B;C) structure constant in G is nonzero.Then C(a) has at least m orbits on the cosets ofC(b), and thus, if 1GC(b) is the sum of fewer than mirreducible characters, then 1GC(a) is not multiplic-ity-free.Now each of our Fischer groups F has a rank 3action on a class D of 3-transpositions, which in-duces a group of automorphisms of hDi. Often wecan show that the stabilizer H in F of a small sub-set S of elements of D has more than three orbitson D, by showing that there are more than threeisomorphism classes of groups hS; di, as d rangesover D. For example, if S � D, hSi �= 22, thenthe isomorphism types of groups of the form hS; di(d 2 D) are 22, 23, 2 � S3, and S4. If S � D,hSi �= S3, then the isomorphism types of groupsof the form hS; di (d 2 D) are S3, 2 � S3, S4, and32:S3 [Fischer 1969]. We thus have:

Lemma 4.2. Let F be a Fischer group (as de�nedon page 235), acting on a class D of 3-transposi-tions. Let H be the stabilizer in F of a set S of3-transpositions, such that hSi �= 22 or hSi �= S3.Then the action of F on the cosets of H is notmultiplicity-free.
On the Permutation Characters of G:2Now let G be a �nite simple group having an outerautomorphism of order 2, and G:2 be the extensionof G by this outer automorphism. The irreduciblecharacters of G:2 and their relationship with theirreducible characters of G are explicitly describedby Cli�ord's theorem. We �rst note that since theouter automorphism acts on G, it also acts natu-rally on the conjugacy classes and the irreduciblecharacters of G. The irreducible characters of G:2fall into two sets, namely the ones that are exten-sions of the irreducible characters of G invariantunder the outer automorphism, and those that arethe induction of the irreducible characters of G notinvariant under the automorphism. There are al-ways two extensions of a given invariant character,and the induced characters of the two noninvariantcharacters in the same orbit are identical.Let us now consider a not necessarily irreduciblecharacter � of G and an extension �0 of � to G:2.It follows from Frobenius reciprocity that the mul-tiplicity of an induced irreducible character of G:2in �0 is the same as the multiplicity of the origi-nal (noninvariant) irreducible character of G in �.Also, the sum of the multiplicities of the exten-sions of a given invariant irreducible character  equals the multiplicity of  in �. We thus have thefollowing result.
Lemma 4.3. Let M be a subgroup of G:2 such thatjM : M \ Gj = 2. If the permutation charac-ter 1GM\G is multiplicity-free, then the permutationcharacter 1G:2M is again multiplicity-free. If 1GM\Ghas a noninvariant irreducible constituent havingmultiplicity at least 2, or 1GM\G has any irreducibleconsituent having multiplicity at least 3, then 1G:2Mis not multiplicity-free.
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The maximal subgroups of G:2 also fall into twosets. As de�ned in [Wilson 1985], a nonnovelty Mis a maximal subgroup of G:2 whose intersectionM \G is a maximal subgroup of G, and a noveltyis a maximal subgroup whose intersection with Gis not a maximal subgroup of G. In both cases, Mcontains M \G as a normal subgroup of index 2.In order to decide whether the permutation char-acter 1G:2M is multiplicity-free, we �rst consider thethe permutation character of G on M \ G. If thepermutation character of G on this intersection ismultiplicity-free, then so is the permutation char-acter 1G:2M . If the permutation character for G con-tains either an invariant character with multiplicityat least 3 or a noninvariant character with multi-plicity at least 2 then the permutation characterfor G:2 is not multiplicity-free. If none of thesecases hold, we may determine the extended per-mutation character of the given one for G, usingthe fact that the extended permutation characteron the maximal subgroup M of G:2 is a summandof the permutation character of G:2 on M \ G.This poses a strong restriction on the irreduciblecharacters of G:2 that may appear in the extendedpermutation character. In order to determine thepermutation character for G:2 on the maximal sub-group M , we have written a GAP program thatlists the subsums of the constituents of the per-mutation character of G:2 on M \G, which ful�llcertain necessary conditions of being a permuta-tion character (for G:2 onM). In the cases we hadto consider we were always led to a unique solution.
5. THE MULTIPLICITY-FREE PRIMITIVE PERMUTATION

REPRESENTATIONS OF THE FISCHER GROUPSWe now classify the multiplicity-free primitive per-mutation representations of the Fischer groups anddetermine their characters. Each character turnsout to contain only irreducible constituents withFrobenius{Schur indicator +1, so each of these mul-tiplicity-free representations has all its orbitals self-paired. Each of the rank 3 representations is dis-tance-transitive, and we shall show in the next sec-

tion that each multiplicity-free primitive represen-tation of a Fischer group of rank greater than 3 isnot distance-transitive.Since the character tables for the maximal sub-groups of Fi22 and Fi23 have been determined andare accessible via the character table database con-tained in GAP, it is a straightforward exercise todetermine the permutation characters belonging tothe actions of Fi22 and Fi23 on the cosets of theirmaximal subgroups.
Theorem 5.1. The multiplicity-free primitive permu-tation characters for Fi22 are:
1. 1Fi222:U6(2) = 1a+ 429a+ 3080a
2. 1Fi22O7(3) = 1a+ 429a+ 13650a
3. 1Fi22O7(3) = 1a+ 429a+ 13650a
4. 1Fi22O+8 (2):S3 = 1a+ 3080a+ 13650a+ 45045a
5. 1Fi22210:M22 = 1a + 78a + 429a + 1430a + 3080a +30030a+ 32032a+ 75075a
6. 1Fi2226:S6(2) = 1a+429a+1430a+3080a+13650a+30030a+45045a+75075a+205920a+320320a
7. 1Fi222F4(2)0 = 1a+1001a+1430a+13650a+30030a+289575a + 400400ab + 579150a + 675675a +1201200a
Theorem 5.2. The multiplicity-free primitive permu-tation characters for Fi23 are:
1. 1Fi232:Fi22 = 1a+ 782a+ 30888a
2. 1Fi23O+8 (3):S3 = 1a+ 30888a+ 106743a
3. 1Fi23S8(2) = 1a+782a+3588a+30888a+60996a+106743a + 274482a + 812889a + 1951872a +5533110a+21348600a+26838240a+29354325a
4. 1Fi23211:M23 = 1a+782a+3588a+30888a+60996a+274482a + 789360a + 812889a + 1677390a +1951872a+5533110a+7468032a+21348600a+28464800a+ 29354325a+ 97976320aThe determination of the primitive multiplicity-free representations of the simple group Fi024 dif-fers from that for Fi22 and Fi23, since not all char-acter tables of the maximal subgroups of Fi024 areknown. However, there is an obvious bound for
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the index of a subgroup whose permutation char-acter is multiplicity-free, namely the sum of thedegrees of all irreducible characters of Fi024, whichis 7824318655674. This already implies that weonly have to consider the permutation characterson the �rst nine maximal subgroups of Fi024 givenin the Atlas. For all but the sixth and the ninthmaximal subgroup the character tables have beendetermined and we can proceed in the same wayas for Fi22 and Fi23. For the sixth maximal sub-group, N(3B), the conjugacy classes and their fu-sion into Fi024 have been determined by U. Schi�er,a diploma student at RWTH Aachen, and an ac-count of this work will appear in [Schi�er 1995].The decomposition of the permutation characterfollows immediately from this information; it is:1a+57477a+249458a+1666833a+35873145aa+40536925a+79452373a+112168056a+281380736a+1264015025a+1540153692a+3208653525aa+3283490925a+5775278080a+8529641472a+9100908180a+17068369920a+17161712568a+25027497495a+45049495491a+54234085491a+63831063582a:Thus, the permutation character 1Fi024N(3B) is not mul-tiplicity-free.The ninth maximal subgroup is the 2B-central-izer. In the proof of Theorem 5.5 we show that thepermutation character of Fi24 acting on the class2B is not multiplicity-free, which implies that theaction of Fi024 on the class 2B is not multiplicity-free as well.We have thus proved:
Theorem 5.3. The multiplicity-free primitive permu-tation characters for Fi024 are:
1. 1Fi024Fi23 = 1a+ 57477a+ 249458a
2. 1Fi024O�10(2) = 1a + 8671a + 57477a + 249458a +555611a+1666833a+35873145a+48893768a+79452373a + 415098112a + 1264015025a +1540153692a + 2346900864a + 3208653525a +10169903744a+13904165275ab+17161712568a

3. 1Fi02437:O7(3) = 1a+57477a+249458a+35873145a+40536925a + 79452373a + 112168056a +281380736a + 1069551175a + 1264015025a +3208653525a + 3283490925a + 5775278080a +10776585600ab+17068369920a+17161712568a+54234085491a(The character in the third case is stated incor-rectly in [Ivanov et al. 1995].)We now turn our attention to Fi22: 2 and Fi24.
Theorem 5.4. The faithful multiplicity-free primitivepermutation characters for Fi22: 2 are as follows:
1. 1Fi22:22:U6(2):2 = 1a+ 429a+ 3080a
2. 1Fi22:2O+8 (2):S3�2 = 1a+ 3080a+ 13650a+ 45045a
3. 1Fi22:2210:M22:2 = 1a+ 78a+ 429a+ 1430a+ 3080a+30030a+ 32032a+ 75075a
4. 1Fi22:227:S6(2) = 1a+429a+1430a+3080a+13650a+30030a+45045a+75075a+205920a+320320a
5. 1Fi22:22F4(2) = 1a+1001a+1430a+13650a+30030a+289575b + 800800a + 579150a + 675675b +1201200c
Proof. We �rst consider the nonnovelties amongstthe maximal subgroups of Fi22: 2. In Fi22, onlythe �rst through sixth and the ninth maximal sub-groups lead to a multiplicity-free primitive permu-tation character of Fi22. (We order the maximalsubgroups as in the Atlas, where the list of maxi-mal subgroups of Fi22 and Fi22: 2 is complete [Klei-dman and Wilson 1987].) All of these except thesecond and the third extend to nonnovelties, andhence lead to multiplicity-free permutation charac-ters for Fi22: 2.The nonnovelty corresponding to the 7th maxi-mal subgroup of Fi22 is the (setwise) stabilizer of apair of commuting 3-transpositions, and that cor-responding to the eighth maximal subgroup is thestabilizer of a set of three 3-transpositions generat-ing an S3. By Lemma 4.2 the corresponding per-mutation characters are not multiplicity-free.We explicitly constructed the permutation char-acter � of Fi22: 2 on the extension H:2 of the tenthmaximal subgroup H of Fi22 (using the fact that
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� is a summand of the permutation character ofFi22: 2 on H), and showed that � is not multiplic-ity-free.Next, we observe that the permutation characterof Fi22 on its eleventh maximal subgroup has anirreducible constituent with multiplicity 3, and sothe extension of this character to Fi22: 2 is not mul-tiplicity-free.The twelfth and thirteenth maximal subgroupsof Fi22 do not extend to nonnovelties, and the four-teenth maximal subgroup of Fi22 has index greaterthan the sum of the character degrees of the irre-ducible characters of Fi22: 2.We are now left with the novelties in Fi22: 2.There are exactly two novelties (up to conjugacy)of Fi22: 2, namely G2(3): 2 and 35: (U4(2): 2� 2).In the case of the novelty G2(3): 2 the permu-tation character can be calculated using GAP andthe functions explained in Section 4, since the char-acter table for G2(3): 2 is an Atlas table, and there-fore contained in the GAP character table library.The permutation character we obtain is1Fi22:2G2(3):2 = 1a+429ab+10725b+13650aab+48048b+50050c+75075ae+81081b+579150ab+675675a+1164800a+1201200ac+1360800ab+1441792ab+1791153a+2027025b;and thus is not mutliplicity-free.For the second novelty 35: (U4(2): 2�2), we com-pute that1Fi2235:(U4(2)�2)=1a+429aa+3080a+13650aaa+45045a+75075a+81081a+150150a+289575a+320320a+360855aa+675675a+1360800aa:It follows that the permutation character of Fi22: 2on 35: (U4(2): 2� 2), being an extension of the per-mutation character given above, is not multiplicity-free since the corresponding permutation characterfor the simple group has an invariant irreducibleconstituent of multiplicity 3. �

Theorem 5.5. The faithful primitive multiplicity-freepermutation characters of Fi24 are precisely the ex-tensions of the primitive multiplicity-free permuta-tion characters of Fi024, and are as follows:
1. 1Fi242�Fi23 = 1a+ 57477a+ 249458a
2. 1Fi24O�10(2):2 = 1a + 8671b + 57477a + 249458a +555611b+1666833a+35873145a+48893768b+79452373a + 415098112b + 1264015025a +1540153692a + 2346900864b + 3208653525a +10169903744b+ 13904165275a+ 17161712568a
3. 1Fi2437:O7(3):2 = 1a+57477a+249458a+35873145a+40536925a + 79452373a + 112168056a +281380736a + 1069551175b + 1264015025a +3208653525a + 3283490925a + 5775278080a +17068369920a+17161712568a+21553171200a+54234085491a
Proof. We consider the maximal subgroups of Fi24,the automorphism group of Fi024, and the sum ofthe degrees of the ordinary irreducible charactersof Fi24 gives an upper bound for the indices of themaximal subgroups we have to consider. It fol-lows from the list of the maximal subgroups givenin [Linton and Wilson 1991] that we only have todeal with �rst nine nonnovelties amongst the max-imal subgroups of Fi24 listed in the Atlas. Theindices of all novelties are greater than the bound.There are exactly three primitive multiplicity-freepermutation characters for Fi024, namely the oneson Fi23, O�10(2) and 37:O7(3), and they lead to mul-tiplicity-free permutation characters of Fi24 on thenonnovelties 2� Fi23, O�10(2): 2, and 37:O7(3): 2.The permutation characters of Fi24 on the non-novelties (2� 2:Fi22): 2 and S3 �O+8 (3):S3 can beseen not to be multiplicity-free by applying Lemma4.2. The permutation characters of Fi024 on 211:M24and on 22:U6(2):S3 contain an invariant characterwith multiplicity 3, and so the permutation char-acters on the corresponding nonnovelties are notmultiplicity-free.Since we already know the permutation charac-ter of Fi024 on the normalizer of a 3B in Fi024, it isstraightforward to derive the permutation charac-
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ter of Fi24 on the normalizer of a 3B in Fi24, usingGAP. The decomposition of the permutation char-acter for Fi24 is1a+57477a+249458a+1666833a+35873145aa+40536925a+79452373a+112168056a+281380736a+1264015025a+1540153692a+3208653525aa+3283490925a+5775278080a+8529641472a+9100908180a+17068369920a+17161712568a+25027497495a+45049495491a+54234085491a+63831063582a;and hence this permutation character is not multi-plicity-free.For the ninth maximal subgroup, the 2B-cen-tralizer in Fi24, we shall use Lemma 4.1. We cal-culate the permutation character of Fi24 on its 2A-centralizer and obtain1a+ 57477aa+ 249458a+ 555611b+ 35873145a+ 79452373a+ 112168056a+ 159402880a+ 1264015025a+ 3208653525a;which is the sum of exactly 11 irreducible charac-ters. Using the GAP command ClassMultCoe�s-CharTable, we �nd that there are exactly 16 Fi24conjugacy classes C for which the (2A; 2B;C) struc-ture constant is nonzero, and conclude that thepermutation character of Fi24 on the class 2B isnot multiplicity-free. �
6. ANALYSIS OF THE MULTIPLICITY-FREE PRIMITIVE

REPRESENTATIONS OF RANK GREATER THAN 3In this section we present a case by case analysisof the multiplicity-free primitive representations ofrank greater than 3 of the Fischer groups. We givedetailed information on each such representation,including its subdegrees, and show that each is nota DTR, to complete the proof of Theorem 2.1.In the statements below, expressions in paren-theses such as (: 2) and (�2) give alternate state-ments: thus Theorem 6.1 covers the representationof Fi22 on the cosets of O+8 (2):S3 and the represen-

tation of Fi22: 2 on the cosets of O+8 (2):S3� 2, andso on.
Fi22(: 2) on O+

8 (2): S3(�2)
Theorem 6.1. The subdegrees of the representationof Fi22(: 2) on the cosets of O+8 (2):S3(�2) are 1,1575, 22400, 37800, and the representation is notdistance-transitive.
Proof. We reproduce from [Praeger and Soicher]the collapsed adjacency matrices for the orbitalgraphs corresponding to the two smallest subde-grees greater than 1:0 1575 0 01 198 512 8640 36 567 9720 36 576 963

0 0 22400 00 512 8064 138241 567 8224 136080 576 8064 13760We now observe that each of these graphs has di-ameter 2, and so the above representations are notdistance-transitive. (But, as noted in [Praeger andSoicher], each of these graphs is distance-regular.)�
Fi22(: 2) on 210:M22(: 2)Let �(Fi22) be the graph whose vertex-set is theconjugacy class of 3510 3-transpositions of Fi22,two 3-transpositions being joined if and only iftheir product has order 2. Then this graph hasjust one Fi22-orbit of maximal cliques, each hav-ing size 22. The stabilizer of a maximal clique is210:M22 in Fi22, and 210:M22: 2 in Fi22: 2.
Theorem 6.2. The subdegrees of the representationof Fi22(: 2) the cosets of 210:M22(: 2) are 1, 154,1024, 3696, 4928, 11264, 42240, 78848, and therepresentation is not distance-transitive.
Proof. We perform the following sequence of cal-culations using GRAPE and GAP. The method isbased on the approach described in Section 3.We �rst use GRAPE to construct the graph � =�(Fi22) from the degree 3510 representation of Fi22on its 3-transpositions (this representation was con-structed via a coset enumeration, using a presen-tation of Y332 �= 22:Fi22 and enumerating over the
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centralizer 23:U6(2) of a 3-transposition [Conwayet al. 1988]). Then a clique K of size 22 is foundin �, and the stabilizer of this clique computed.Next, representatives K1 = K;K2; : : : ;K8 for theeight orbits of H on the maximal cliques of � arecalculated (using the GRAPE function Complete-SubgraphsOfGivenSize) and the stabilizers of theseeight cliques are determined (using GAP). The sub-degrees above are then obtained.Now to each maximal clique M of � there corre-sponds the set �M of the 1024 vertices of � joinedto no vertex of M . Ordering K1; : : : ;K8 to rep-resent suborbits in increasing order of length, we�nd that j �K \ �Kij = 1024, 512, 232, 384, 256, 352,288, 296, for i = 1; : : : ; 8, respectively.Now if Fi22 on 210:M22 (or Fi22: 2 on 210:M22: 2)is a distance-transitive representation, Fi22: 2 �=Aut� acts distance-transitively on �512 or �232,where �n is de�ned to be the graph having ver-tices the maximal cliques of �, with two verticesX;Y joined in �n if and only if j �X \ �Y j = n.We show that Fi22: 2 does not act distance-tran-sitively on �512 by �nding maximal cliques X;Y of�, such that both X and Y are at distance 2 fromK in �512, but j �K \ �Xj = 256 and j �K \ �Y j = 384,and so no element of Fi22: 2 takes (K;X) to (K;Y ).(Alternatively, a collapsed adjacency matrix for�512 is calculated in [Rowley and Walker 1993],and we see that there are exactly two suborbits atdistance 2 from a given vertex of that graph.)We complete the proof by showing that Fi22: 2does not act distance-transitively on �232. We �ndmaximal cliques X;Y of �, such that both X andY are joined to K3 in �232, but j �K \ �Xj = 296 andj �K \ �Y j = 384. �
Remark. collapsed adjacency matrices for �512 and�232 are now available in [Ivanov et al. 1995].
Fi22(: 2) on 26: S6(2)(:2)
Theorem 6.3. The representation of Fi22(: 2) on thecosets of 26:S6(2)(:2) has subdegrees 1, 135, 1260,2304, 8640, 10080, 45360, 143360, 2419202, and therepresentation is not distance-transitive.

Proof. From the permutation characters, we seethat the ranks are the same for the two permuta-tion representations of the theorem.We construct the degree 694980 representationof Fi22 on the cosets of 26:S6(2) by coset enu-meration of the cosets of Y331 �= 22:26:S6(2) inY332 �= 22:Fi22 [Conway et al. 1988]. We then cal-culate the collapsed adjacency matrices for the or-bital graphs for this representation, and record be-low the collapsed adjacency matrices for the orbitalgraphs of the smallest two valencies greater than 1(the suborbits are ordered in nondecreasing orderof length):0 135 0 0 0 0 0 0 0 01 14 56 0 64 0 0 0 0 00 6 9 0 48 0 72 0 0 00 0 0 0 30 0 0 0 105 00 1 7 8 21 0 42 0 56 00 0 0 0 0 3 36 0 0 960 0 2 0 8 8 21 0 64 320 0 0 0 0 0 0 27 54 540 0 0 1 2 0 12 32 40 480 0 0 0 0 4 6 32 48 450 0 1260 0 0 0 0 0 0 00 56 84 0 448 0 672 0 0 01 9 82 64 144 96 288 0 576 00 0 35 35 0 0 315 560 315 00 7 21 0 126 0 210 0 560 3360 0 12 0 0 84 108 384 576 960 2 8 16 40 24 162 256 336 4160 0 0 9 0 27 81 360 405 3780 0 3 3 20 24 63 240 475 4320 0 0 0 12 4 78 224 432 510The result follows. �
Fi22(: 2) on 2F4(2)0(:2)
Theorem 6.4. The subdegrees of the representationof Fi22 on the cosets of 2F4(2)0 are 1, 1755, 11700,14976, 832002, 140400, 187200, 374400, 449280,2246400. For the representation of Fi22: 2 on thecosets of 2F4(2) the suborbits of equal length arefused . Neither of these representations is distance-transitive.



246 Experimental Mathematics, Vol. 4 (1995), No. 3

Proof. We proceed along the lines described in Sec-tion 3. We use GAP and GRAPE to compute withFi22 as a group of permutations of 14080 points.In this representation, a subgroup H �= 2F4(2)0has two orbits, of 1600 and 12480 points. Fixingsuch a subgroup and letting � be its smaller orbit,we look for elements fg1; : : : ; g11g such thatf�gi j i � i � 11gis a set of representatives for the H-orbits on �G.If �g and �g0 lie in the same H-orbit, j� \�gjmust equal j� \�g0 j, and so we �rst test randomelements g of Fi22 to see how many di�erent valuesof j� \�gj we can �nd. A search of 5000 randomelements gives nine values: 196, 176, 180, 208, 192,256, 1600, 100 and 320 (our \random" elementsdeliberately included the identity).We let g1; : : : ; g9 be elements giving rise to thesevalues, and we then compute (using GAP) the or-ders of the subgroups stabH(�gi) and so obtainthe sizes of the nine orbits represented. Thesesizes are, respectively: 374400, 2246400, 449280,187200, 140400, 11700, 1, 14976 and 1755. Theseleave 166400 points unaccounted for, or about 5%of the total of jFi22 : 2F4(2)0j = 3592512 points.It seems unlikely that our random search wouldsimply have missed the two orbits containing thesepoints, so we surmise that we must have failed todistinguish them from the nine orbits we have.Accordingly, we perform a second search, usingnot just the size, but the exact graph isomorphismtype (as computed by nauty) of an orbital graphof Fi22 on the 14080 points, restricted to � \�g,to distinguish between orbits. This is much slower,but only a few dozen random elements need to besearched to �nd the two missing orbits, which have�\�g of cardinality 196, and which both have size83200. We conclude that these two orbits must befused under the action of Fi22: 2 since the permu-tation character implies that the rank is smaller inthat case.Having obtained the suborbit structure, it nowremains to check for distance-transitivity. We only

need to check the orbital graphs corresponding tothe two suborbits of smallest length (greater than1). We do this as described in Section 3. In the va-lency 1755 graph, we �nd suborbits of sizes 187200and 449280 at distance 2 from a �xed vertex, and inthe valency 11700 graph we �nd suborbits of sizes449280 and 2246400 at distance 2 from a �xed ver-tex. �We remark that a collapsed adjacency matrix forthe orbital graph of valency 1755 is published in[Ivanov et al. 1995], and we record below a col-lapsed adjacency matrix for the orbital graph ofvalency 11700, for the action of Fi22 on the cosetsof 2F4(2)0:0 0 11700 0 0 0 0 0 0 0 00 80 100 0 0 0 640 640 5120 0 51201 15 516 0 1024 1024 576 96 0 3840 46080 0 0 300 0 0 0 0 1800 1200 84000 0 144 0 612 576 864 216 648 1944 66960 0 144 0 576 612 864 216 648 1944 66960 8 48 0 512 512 812 272 1088 1344 71040 6 6 0 96 96 204 1308 1440 1248 72960 24 0 72 144 144 408 720 1980 960 72480 0 100 40 360 360 420 520 800 2060 70400 4 24 56 248 248 444 608 1208 1408 7452
Fi23 on S8(2)
Theorem 6.5. The subdegrees of the permutationrepresentation of Fi23 on the cosets of S8(2) are1, 2295, 13056, 24192, 107100, 261120, 1285200,2203200, 3046400, 3290112, 12337920, 20844800and 32901120. The representation is not distance-transitive.
Proof. We construct (a compressed form of) the de-gree 86316516 representation of Fi23 on the cosetsof S8(2) by double coset enumeration of the dou-ble cosets of Y431 �= S8(2) � 2 and Y430 �= S9 inY432 �= Fi23 � 2 [Linton 1991], using a new GAPdouble coset enumeration program written by the�rst author.Since Y430 < Y431 the suborbits must be unionsof double cosets, and it is easy to calculate themall. We can then compute the collapsed adjacency
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matrices corresponding to the orbital graphs of thetwo smallest valencies greater than 1. With thesuborbits in increasing order of length, these ma-trices are:0 2295 0 0 0 0 0 0 0 0 0 0 01 30 0 0 280 1024 0 960 0 0 0 0 00 0 0 0 0 0 0 1350 0 0 945 0 00 0 0 85 0 0 850 0 0 0 0 0 13600 6 0 0 9 0 216 144 0 768 0 1152 00 9 0 0 0 135 0 135 0 126 0 1890 00 0 0 16 18 0 61 72 0 0 576 144 14080 1 8 0 7 16 42 149 224 112 56 1008 6720 0 0 0 0 0 0 162 81 108 324 648 9720 0 0 0 25 10 0 75 100 135 600 450 9000 0 1 0 0 0 60 10 80 160 160 960 8640 0 0 0 4 16 6 72 64 48 384 789 9120 0 0 1 0 0 55 45 90 90 324 855 8350 0 13056 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 7680 0 0 5376 0 01 0 210 0 1575 0 0 0 5600 0 5670 0 00 0 0 0 0 0 0 0 0 4896 0 0 81600 0 192 0 192 0 1728 0 4608 0 1728 4608 00 0 0 0 0 120 0 0 840 0 0 7560 45360 0 0 0 144 0 336 288 1152 0 4608 3456 30720 8 0 0 0 0 168 1008 0 1792 672 4032 53760 0 24 0 162 72 486 0 1944 0 3888 4536 19440 0 0 36 0 0 0 1200 0 720 1200 2700 72000 1 6 0 15 0 480 120 960 320 2130 5760 32640 0 0 0 16 64 144 288 448 288 2304 4608 48960 0 0 6 0 36 120 360 180 720 1224 4590 5820The result follows. �
Fi23 on 211:M23Let �(Fi23) be the graph whose vertex-set is theconjugacy class of 31671 3-transpositions of Fi23,two 3-transpositions being joined if and only iftheir product has order 2. Then this graph hasjust one Fi23-orbit of maximal cliques, each hav-ing size 23. The stabilizer of a maximal clique is211:M23.
Theorem 6.6. The subdegrees of the representationof Fi23 on the cosets of 211:M23 are 1, 506, 23552,28336, 113344, 129536, 971520, 1036288, 1813504,4533760, 8290304, 21762048, 31088640, 31653888,36270080, 58032128, and the representation is notdistance-transitive.
Proof. This proof is similar to the proof that Fi22on the cosets of 210:M22 is not a distance-transitiverepresentation.

We �rst construct the graph � = �(Fi23) fromthe degree 31671 representation of Fi23 on its 3-transpositions (this representation was constructedvia a coset enumeration, using a presentation ofY432 �= 2 � Fi23 and enumerating over the central-izer Y332 �= 22:Fi22 of a 3-transposition [Conway etal. 1988]). Then a clique K of size 23 is found in �,and the stabilizer of this clique computed. Next,representatives K1 = K;K2; : : : ;K16 for the six-teen orbits of H on the maximal cliques of � arecalculated (using the GRAPE functions Complete-SubgraphsOfGivenSize and OrbitRepresentatives),and the stabilizers of these sixteen cliques deter-mined. The subdegrees above are then obtained.Ordering K1; : : : ;K16 to represent suborbits inincreasing order of length, we �nd jK\Kij = 23, 7,1, 3, 1, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, for i = 1; : : : ; 16.Now de�ne �i to be the orbital graph whose ver-tices are the maximal cliques of �, and edge-set isthe orbit of fK;Kig under Fi23. We need only showthat Fi23 does not act distance-transitively on �2or �3, to complete the proof of the theorem.In �2, we �nd vertices X;Y joined to K2, suchthat jK \Xj = 3 and jK \ Y j = 1.In �3, we �nd vertices X;Y joined to K3, suchthat jK \Xj = 3 and jK \ Y j = 0. �We remark that collapsed adjacency matrices for�2 and �3 are now available in [Ivanov et al. 1995].
Fi024(: 2) on O�

10(2)(: 2)Let �(Fi24) be the graph whose vertex-set is theconjugacy class of 306936 3-transpositions of Fi24,two 3-transpositions being joined if and only iftheir product has order 2. We shall use this graphto apply the method of Section 3.
Theorem 6.7.The permutation representation of Fi024on the cosets of O�10(2), and that of Fi24 on thecosets of O�10(2):2, have subdegrees 1, 25245; 104448,157080, 12773376, 45957120, 67858560, 107233280,193881600, 263208960, 579059712, 1085736960,5147197440, 5428684800, 7238246400; 12634030080and 17371791360. Neither of these representationsis distance-transitive.
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Proof. We apply the general method of Section 3,computing in the graph � = �(Fi24). We con-struct permutations generating the action of Fi24 �=Y442=O3(Y442) on this graph by (double) coset enu-meration, using the presentation of Y442 given in[Conway and Pritchard 1992]. A subset of thesegenerators give a subgroup H �= O�10(2): 2 �= Y441.This has three orbits on the vertices of �, havingsizes 528, 104448, 201960. We call the smallest ofthese orbits �1, and the second-smallest �2.We now aim to �nd the orbits of H on �G1 , andwe proceed by computing, for random elements g 2G the numbersn1(g) = j�1 \�g1j and n2(g) = j�2 \�g1j:Each of these is an H-orbit invariant. We �nd dis-tinct pairs of values (n1(gi); n2(gi)) for i = 1; : : : ; 15.We would like to compute Si = stabH(�gi1 ) foreach i, but computing set stabilisers in a represen-tation of degree 306936 is too hard for GAP onavailable computers, so we instead computeS0i = stabH(�2 \�gi1 );which must contain Si as a subgroup. The orderof S0i is then a multiplicative upper bound for jSij,giving rise to a lower bound for j�giH1 j. We willlater show that all these bounds are exact.The results obtained so far are shown in Table 1.Assuming that all our bounds are exact, we seethat the two remaining orbits (we know from thepermutation character that the rank is 17) containjust 12798621 points. Since this number is odd, wesee that one of the two remaining orbits must haveodd size. Relatively few subgroups of H have oddindex, and for most such subgroups K, the di�er-ence 12798621 � jH : Kj does not divide jHj. Afew calculations suggest that the orbit sizes mightbe 25245 and 12773376.Based on this conjecture, we attempt to �nd arepresentative of the orbit of size 25245. The pointstabilizer in this orbit would beK �= 26+8: (A8 � S3);

i n1(gi) n2(gi) jH : S0ij1 528 0 12 66 462 1044483 36 384 15708004 3 120 459571205 10 272 678585606 15 270 1072332807 6 168 1938816008 0 132 2632089609 3 180 57905971210 6 222 108573696011 0 177 514719744012 3 192 542868480013 0 186 723824640014 0 165 1263403008015 1 182 17371791360
TABLE 1. Pairs (n1(g); n2(g)), and correspondingindices, for the permutation representation of Fi24on the cosets of O�10(2).a subgroup of index 2 of the octad stabilizer in Fi24.It thus seems reasonable to look at large cliques in�1 in the hope of �nding a structure stabilised byK. The Fi24-stabiliser of this structure will thencontain a representative of the desired orbit.Using GRAPE we can compute in the subgraphof � induced on �1 and �nd a clique C of size 16,whose stabilizer in H can be seen to be a subgroupof index 3 in our desired group K. Looking now in�, we �nd just eight points joined to all of C, whichform an octad O. Using the ProbablyStabilizerfunction of GRAPE, we can �nd the pointwise sta-bilizer of �ve points from O, which is a group oforder 27:3. A randomly chosen element g16 of thisgroup has n1(g16) = 48, n2(g16) = 0, andjH : S016j = 25245:This demonstrates (up to the strictness of ourbounds) that the subdegrees are as claimed. Ifone of the bounds were not strict, then one of thesubdegrees would have to be a proper multiple ofthe bound, and the unexhibited orbit, which weclaim to have size 12773376, would be accordingly
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smaller. It is easy to check this cannot happen,since all the subdegrees must be the indices of sub-groups of H.Finally, it is easy to check, as described in Sec-tion 3, that neither of the two suborbits of small-est length greater than 1 gives rise to a distance-transitive graph. In the valency 25245 graph, thesuborbits numbered 3 and 4 are both at distance

2 from a �xed vertex, and in the valency 104448graph, the suborbits numbered 3 and 6 are both atdistance 2 from a �xed vertex. �We have since computed collapsed adjacency ma-trices for the orbital graphs corresponding to thetwo smallest subdegrees greater than 1, for the ac-tion of Fi024 on O�10(2), and record them below.
0 25245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 60 0 1120 0 16384 0 0 7680 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 14850 0 0 10395 0 0 0 0 00 18 0 27 0 0 1296 0 864 0 9216 0 0 13824 0 0 00 0 0 0 85 0 850 0 0 0 0 0 0 2550 20400 0 13600 9 0 0 0 405 0 0 135 0 3906 0 0 5670 0 15120 00 0 0 30 160 0 151 0 360 0 0 2880 6144 480 960 0 140800 0 0 0 0 0 0 243 810 0 540 1620 0 4860 0 2592 145800 1 8 7 0 32 126 448 375 1344 224 168 0 6048 1680 10752 40320 0 0 0 0 0 0 0 990 891 0 0 1584 1980 0 7920 118800 0 0 25 0 310 0 100 75 0 285 1800 6000 1350 0 7200 81000 0 1 0 0 0 180 160 30 0 960 450 640 5040 5400 5760 66240 0 0 0 0 0 81 0 0 81 675 135 1728 3375 5265 6615 72900 0 0 4 6 48 6 96 216 96 144 1008 3200 2421 2208 5760 100320 0 0 0 36 0 9 0 45 0 0 810 3744 1656 3753 4896 102960 0 0 0 0 55 0 22 165 165 330 495 2695 2475 2805 7128 89100 0 0 0 1 0 55 90 45 180 270 414 2160 3135 4290 6480 81250 0 104448 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 61440 0 0 43008 0 0 0 0 01 0 462 5775 0 0 0 30800 0 5040 0 62370 0 0 0 0 00 0 384 384 0 0 10368 18432 0 0 0 10368 0 55296 9216 0 00 0 0 0 272 0 2720 0 0 0 4896 0 0 20400 40800 0 353600 0 0 0 0 120 0 840 0 5040 0 0 1680 22680 15120 45360 136080 0 0 240 512 0 752 2304 1440 0 0 17280 12288 15360 7680 0 465920 0 30 270 0 360 1458 4968 0 0 0 17010 7776 29160 6480 7776 291600 8 0 0 0 0 504 0 2688 0 7168 2016 0 20160 10080 21504 403200 0 2 0 0 880 0 0 0 2112 0 1782 19008 7920 9240 39744 237600 0 0 0 108 0 0 0 2400 0 1440 4200 10800 8100 5400 18000 540000 1 6 15 0 0 1080 1680 360 432 2240 5082 4608 24480 18000 15360 311040 0 0 0 0 15 162 162 0 972 1215 972 9006 12690 19800 29322 301320 0 0 16 48 192 192 576 720 384 864 4896 12032 13584 11136 20736 390720 0 0 2 72 96 72 96 270 336 432 2700 14080 8352 14580 24192 391680 0 0 0 0 165 0 66 330 828 825 1320 11946 8910 13860 30558 356400 0 0 0 26 36 182 180 450 360 1800 1944 8928 12210 16320 25920 36092

Collapsed adjacency matrices for the orbital graphs corresponding to the two smallest subdegrees greater than 1,for the action of Fi024 on O�10(2). Suborbits are ordered in increasing order of length.
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Fi024(: 2) on 37:O7(3)(: 2)
Theorem 6.8. The permutation representation ofFi024 on the cosets of 37:O7(3) has the following sub-degrees: 1, 1120, 49140, 275562, 816480, 21228480,57316896, 62178597, 286584480, 429876720,2901667860; 5158520640; 6964002864; 91833004802,15475561920, 23213342880 and 52230021480.For the representation of Fi24 on the cosets of37:O7(3): 2, the suborbits of equal length are fused .Neither representation is distance-transitive.
Proof. A geometric argument in [Ivanov et al.] showsthat each of these representations has suborbits ofsizes 1120 and 49140. This argument makes use ofa certain rank 4 extended dual polar space G onwhich Fi024 acts ag-transitively, with \point" sta-bilizer 37:O7(3). We compute the remaining (non-trivial) subdegrees below. The subdegrees 1120and 49140 turn out to be the smallest nontrivialones. In [Ivanov et al. 1995] it is also shown, us-ing the geometry G, that neither Fi024 nor Fi24 actsdistance-transitively on the orbital graphs corre-sponding to these two smallest nontrivial subde-grees.To compute the remaining subdegrees, we onceagain consider the action of Fi024 on the class of306936 3-transpositions in Fi24. The �rst prob-lem is to construct permutations generating a sub-group H �= 37:O7(3). We do this in a somewhatroundabout manner. First we obtain elements tand s of Fi024 of classes 2B and 3E respectively.Searching at random through the conjugates of t(as described in [Linton and Wilson 1991]) we �ndsome conjugates which, together with s, generatesubgroups isomorphic to L2(7). In each of thesethere is an involution inverting s. Taking a num-ber of these involutions we obtain generators forNFi024(s) �= 32: 2� G2(3). The normal subgroup 32of this group contains an element r of class 3A,which can easily be computed. This element r, to-gether with s and one of the conjugates of t thatgenerates an L2(7) with s (of a particular class)generate the required subgroup H.

There are just three orbits of H on the 306936transpositions, of sizes 1134, 30240 and 275562.We let �1 be the smallest orbit and �2 the second-smallest. As above we let n1(g) = j�1 \ �g1j andn2(g) = j�2 \ �g1j. We now test a number ofrandom elements g of Fi024 and record the valuesof (n1(g); n2(g)) that arise: see Table 2. We alsorecord how many times each pair is encountered.We �nd 13 distinct pairs.i n1(gi) n2(gi) jH : S0ij #enc. #exp.1 120 0 275562 1 02 3 429 816480 3 13 18 198 21228480 49 334 30 60 57316896 80 915 42 0 62178597 96 996 9 165 286584480 470 4577 15 96 2901667860 5234 46368 1 140 5158520640 8217 82429 13 80 6964002864 11047 1112710 0 119 9183300480 29443 1467311 6 102 15475561920 24877 2472712 3 117 23213342880 36868 3709113 4 112 52230021480 83615 83455
TABLE 2. Pairs (n1(g); n2(g)) for the representa-tion of Fi024 on the cosets of 37:O7(3), the corre-sponding indices, and the number of times eachpair is encountered (�fth column). The last col-umn lists the \expected" number of encounters,200000 jH : S0ij=jFi024 : Hj.The known orbits, together with the ones in thetable, leave 9613177200 points unaccounted for,which is about 7% of the total. It seems most un-likely that our search (of 200000 elements) wouldhave missed orbits containing this many points, sowe can presume that we have failed to discriminatethem from some of the orbits that we have found.That is to say, some pairs (n1; n2) correspond totwo or more orbits. To form a conjecture as towhich pairs this might be we look at how ofteneach pair was encountered, compared to the size ofthe orbit known to correspond to it. If each paircorresponded to just one orbit we would expect to
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�nd pair i about 200000 jH : S0ij=jFi024 : Hj times.We tabulate these numbers in Table 2 as well.These numbers show clearly that pairs 7 and 10deserve further attention. In each case we generatea number (say 10) of elements g with the appro-priate (n1(g); n2(g)) and use backtrack methods tosee whether or not the corresponding sets �g1 actu-ally lie in the same orbits of H. We �nd two new

orbits by this method, accounting for 429876720(pair 7) and 918330048 (pair 10) points.This accounts for all remaining points, so thebounds we have are exact. The fusion of suborbitsof equal length in the case of Fi24 can be seen fromthe permutation character, or by observing thatthe corresponding 2-point stabilisers are subgroupsL2(13), which are conjugate in 37:O7(3): 2. �
0 1120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 39 351 0 729 0 0 0 0 0 0 0 0 0 0 0 00 8 32 0 216 864 0 0 0 0 0 0 0 0 0 0 00 0 0 0 80 0 0 0 1040 0 0 0 0 0 0 0 00 1 13 27 65 312 0 0 702 0 0 0 0 0 0 0 00 0 2 0 12 80 54 0 324 162 0 486 0 0 0 0 00 0 0 0 0 20 20 0 0 0 0 540 0 540 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1120 00 0 0 1 2 24 0 0 139 36 243 432 0 0 0 243 00 0 0 0 0 8 0 0 24 80 0 144 0 216 0 648 00 0 0 0 0 0 0 0 24 0 96 192 0 32 0 200 5760 0 0 0 0 2 6 0 24 12 108 176 0 90 0 216 4860 0 0 0 0 0 0 0 0 0 0 0 80 80 240 240 4800 0 0 0 0 0 2 0 0 6 6 30 36 272 216 120 4320 0 0 0 0 0 0 0 0 0 0 0 91 182 210 182 4550 0 0 0 0 0 0 3 3 12 25 48 72 80 144 301 4320 0 0 0 0 0 0 0 0 0 32 48 64 128 160 192 4960 0 49140 0 0 0 0 0 0 0 0 0 0 0 0 0 00 351 1404 0 9477 37908 0 0 0 0 0 0 0 0 0 0 01 32 534 729 1728 8208 5832 0 23328 8748 0 0 0 0 0 0 00 0 130 260 0 4160 0 0 8320 4680 31590 0 0 0 0 0 00 13 104 0 897 3900 0 0 14742 4212 0 25272 0 0 0 0 00 2 19 54 150 1152 432 0 4806 1944 6561 15066 0 5832 0 13122 00 0 5 0 0 160 240 0 1080 1350 5265 2700 2430 10800 0 3240 218700 0 0 0 0 0 0 280 0 1680 3500 0 10080 4480 0 8960 201600 0 4 8 42 356 216 0 2371 972 4860 9936 0 1944 0 10935 174960 0 1 3 8 96 180 243 648 882 2187 3312 3402 6264 3888 12960 150660 0 0 3 0 48 104 75 480 324 3362 3840 3312 4960 2880 8800 209520 0 0 0 4 62 30 0 552 276 2160 5052 972 4446 5184 9828 205740 0 0 0 0 0 20 90 0 210 1380 720 4770 6760 6240 8640 203100 0 0 0 0 8 40 18 36 174 930 1482 3042 7944 7560 7764 201420 0 0 0 0 0 0 0 0 91 455 1456 2366 6370 8918 8918 205660 0 0 0 0 12 8 24 135 240 1100 2184 2592 5176 7056 10381 202320 0 0 0 0 0 24 24 96 124 1164 2032 2708 5968 7232 8992 20776Collapsed adjacency matrices for the orbital graphs corresponding to the two smallest subdegrees greater than 1,for the action of Fi24 on 37:O7(3): 2. Suborbits are ordered in increasing order of length.
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