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We determine the totally real algebraic number field F of de-

gree 6 with Galois groupA5 and minimum discriminant, show-

ing that it is unique up to isomorphism and that it is generated

by a root of the polynomialf(t) = t6 � 10t4 + 7t3 + 15t2 � 14t+ 3
over the rationals. We also list the fundamental units and class

number of F , as well as data for several other fields that arose

in our computations and that might be of interest.

1. INTRODUCTIONThe computation of algebraic number �elds hav-ing given degree n, signature (r1; r2) and minimal(absolute) discriminant has been extended up todegrees 7 (all signatures) and 8 (r1 = 0; 8). Re-cently there have been several results separatingthe �elds additionally with respect to their Galoisgroups (with the Galois group being regarded asa permutation group acting on the roots of a gen-erating polynomial). The extensive tables of �eldsof degree 4 by Ford, Buchmann and Pohst [Buch-mann and Ford 1989; Buchmann et al. 1993; Ford1991] contain, for each signature, �elds with eachpossible Galois group, and therefore also the cor-responding �elds of minimum discriminant. Thesame holds for the tables of quintics by Schwarz,Pohst and Diaz y Diaz [Schwarz et al.]. For de-gree 6, the only extensive results (covering most ofthe Galois groups) are due to Martinet and oth-ers [Berg�e et al. 1990; Olivier 1989, 1990, 1991a,1991b], but they are almost exclusively concernedwith imprimitive �elds. Martinet [1990] gives asurvey of existing results.The computations of primitive �elds of degree6 and more turn out to be quite time-consuming.(In [Martinet 1990], the author states that \: : : A5
c
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and A6 extensions [of degree 6] are probably outof our computational capabilities".) Consequently,we decided to re�ne existing methods for a specialsearch of totally real extension �elds of degree 6with alternating Galois group. In Sections 2 and 3we develop the improved methods. Section 4 con-tains a summary of the results of the search.We note that only some of the re�nements con-cern the special type of the Galois group. Oth-ers were developed to generate an extensive tableof primitive totally real sextics, which will be dis-cussed in a forthcoming paper.
2. GENERATION OF POLYNOMIALSGiven a bound B 2 R>0, we want to construct asetM of monic sixth-degree polynomials such thateach primitive totally real algebraic number �eldF of degree 6 and discriminant dF � B contains agenerating element � 2 F nQ for which the minimalpolynomial m�(t) is contained in M. We proceedby analogy with [Pohst 1982]. We choose � to bean algebraic integer; hence,m�(t) = t6+a1t5+a2t4+a3t3+a4t2+a5t+a6 2 Z[t]:According to [Pohst 1982, Theorem 3], � can bechosen in such a way thatTr � 2 f0;�1;�2;�3g (2.1)and Tr �2 � 32 + � 43B�1=5 =: ~B: (2.2)As a consequence of the inequality between arith-metic and geometric means, we get1 � jN(�)j � � 16 Tr �2�3: (2.3)Hence, we have estimates for the coe�cients a1, a2and a6 of m�(t). Bounds for the remaining coe�-cients will be determined below.
Remark. A lower bound for Tr �2 is 9 [Siegel 1945].If it is not clear how to choose B so that therewill be a �eld F with the desired properties repre-sented in M, one starts with Tr �2 = 9; 10; : : : andconditions (2.1) and (2.3) until such a �eld occursin the course of the computations, and adjusts Bthereafter appropriately.

As noted in [Pohst 1982], instead of calculatingbounds for a3, a4, a5 directly, it is easier to deter-mine bounds for the power sums
�i := 6Xj=1��(j)�i;where i = 3; 4; 5;�1 and the �(j) are the zeros ofm�(t), and then to make use of Newton's relations

�k + k�1Xi=1 ai�k�i + kak = 0 for 1 � k � 6: (2.4)
Since [Pohst 1982, Theorem 4] does not seem tobe su�cient for extensive calculations with sextics,we choose the following re�ned approach. We con-sider the functionssi(x1; : : : ; x6) := 6Xj=1 xij for i = 3; 4; 5;�1;

and determine extremal values for them with sub-sidiary conditions6Xj=1 xj = �1 = �a1;6Xj=1 x2j = �2 = a21 � 2a2;6Yj=1 xj = a6:
For each �xed triple (a1; a2; a6) within the previ-ously determined bounds, the procedure yields up-per and lower bounds for �3, �4, �5 and ��1.Solving this extremal value problem along thelines of [Pohst 1982], we �nd that any local ex-tremum necessarily has at most four di�erent co-ordinates xi of multiplicities ni, for 1 � i � 4. Thepossibilities for (n1; n2; n3; n4) are(1; 1; 4; 0), (1; 2; 3; 0), (2; 2; 2; 0), (1; 1; 1; 3), (1; 2; 1; 2).For each of these possibilities we eliminate vari-ables using the subsidiary conditions, thus obtain-ing one-variable equations of degrees 6, 12, 6, 3 and6, respectively. (Four di�erent values for x1; : : : ; x6occur only in connection with extremizing s4, andin that case the sum over these di�erent valuesmust be zero.)
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Example. Let x, y, z be (potentially) di�erent val-ues for x1; : : : ; x6, with multiplicities (1; 1; 4). Thesubsidiary conditions x+y+4z+a1 = 0, x2+y2+4z2�a21+2a2 = 0 and xyz4�a6 = 0 are equivalentto x+ y + 4z + a1 = 0;y2 + (4z + a1)y + (10z2 + 4a1z + a2) = 0;10z6 + 4a1z5 + a2z4 � a6 = 0:Computing real zeros and substituting back, we getbounds for �3, �4, �5 and ��1. In view of (2.4) andof the equation a6��1 + a5 = 0, bounds for a3, a4and a5 follow.We also employed several other bounds from [Pohst1975] that yield necessary conditions for f(t) tohave six real zeros.
3. PROCESSING OF GENERATED POLYNOMIALSSince the number of 6-tuples (a1; a2; a3; a4; a5; a6)generated is quite large, it is essential to be eco-nomic with all calculations in the innermost loop.Therefore, we do not calculate the polynomial dis-criminant d(f) as suggested in [Pohst 1982]. In-stead we compute it as a polynomial in a5 with co-e�cients in Z[a1; a2; a3; a4; a6], using Maple [Charet al. 1985]. Thus every polynomial discriminantcomputation amounts to the evaluation by Horner'smethod of a polynomial of degree 6 in a5.We exclude from further consideration any poly-nomial with nonsquare discriminant, since we areonly interested in �elds with Galois group con-tained in A6. The comparatively very few poly-nomials that remain are handled as follows.� Apply Sturm's rule to remove all polynomialswith fewer than six real zeros.� Remove all reducible polynomials.� Apply the Round 2 algorithm [Ford 1978; Pohstand Zassenhaus 1989, pp. 291{297; Zassenhaus1967, 1972; Zimmer 1972, pp. 25{27] to computean integral basis for each generated �eld.� Order the remaining polynomials with respectto their Galois group (computed using Maple),and within each Galois-group type according tothe �eld discriminant.� Omit isomorphic copies of the same �eld [Pohst1987].

4. SUMMARY OF RESULTSThe bounds of Section 2 concern coe�cients ofminimal polynomials of elements � that generateprimitive �elds. Extensions with Galois group A4,S4=V4 or G+36 are not primitive, however. The oc-currence of such a �eld in the course of our com-putations has to be interpreted di�erently, as thefollowing examples illustrate.� The polynomialf(t) = t6 � 16t4 + 8t3 + 8t2 � 6t+ 1has a root that generates a totally real algebraicnumber �eld F of discrimininant 18322 = 3356 224,and has Galois group S4=V4. This is known tobe the smallest discriminant for this Galois group[Martinet 1990]. Similarly, we �nd all 12 �eldswith Galois group S4=V4 and discriminant dF �21 000 000, and about 100 �elds with that Galoisgroup and larger discriminant.� For totally real sextic number �elds F with Ga-lois group G+36, the minimum discriminant is knownto be 3654112 = 55 130 625 [Martinet 1990]. Thecorresponding �eld F has Q(p5) as its sole quad-ratic sub�eld. An integer � of F nQ satisfying thebounds (2.1){(2.3) is 12(1+p5). However, a gener-ating element for F is obtained only if we consideran integer ~� of F such that Tr ~�2 is the third succes-sive minimum of the quadratic form coming fromthe trace bilinear form. From [Pohst 1982] we getTr ~�2 � 14 �6 + 152 �+ �4 � 55 130 6256 � 152 �1=4;and see that this is beyond the bounds found inSection 2. We note thatm~�(t) = t6 � 21t4 � 11t3 + 99t2 + 33t� 121:� We obtain seven �elds with Galois group A4,with discriminants 67602, 76882, 111632, 111912,150592, 202162 and 265692. The minimum discrim-inant for this Galois group is 50962 = 25 969 216[Martinet 1990].Hence, in the cases of the Galois groups A4, S4=V4and G+36, the investigation of relative extensions iscertainly superior, and we recovered only part ofthe tables of [Olivier 1989, 1990, 1991a].The search for an A5 extension was performedas explained in the Remark in Section 2. In the
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course of the computations, we quickly obtained�elds of Galois group A5. Each time a �eld withGalois group A5 and a smaller discriminant oc-curred, we adjusted the bound ~B of (2.2) corre-spondingly. Thus we proved the following theorem,using ~B = 34.
Theorem. The smallest possible discriminant for atotally real A5 extension of degree 6 is d = 55672 =30 991 489. There is, up to isomorphy , exactly one�eld F with that discriminant . It is generated bya root � of the polynomialf(t) = t6 � 10t4 + 7t3 + 15t2 � 14t+ 3:The class number of F is 1, and F has a powerintegral basis in terms of powers of �. A system offundamental units for F is"1 = 5� 8�� 7�2 + 2�3 + �4;"2 = �23 + 50�+ 10�2 � 30�3 + �4 + 3�5;"3 = �25 + 64�+ 9�2 � 39�3 + 2�4 + 4�5;"4 = �62 + 131�+ 26�2 � 79�3 + 3�4 + 8�5;"5 = �94 + 244�+ 36�2 � 147�3 + 7�4 + 15�5:De�ning polynomials and �eld discriminants forother A5 extensions with small discriminants arelisted in the following table. For each discriminant,there is only one �eld up to isomorphy.t6 � 9t4 + 2t3 + 20t2 � 8t� 1 70962t6 + 3t5 � 5t4 � 14t3 + 5t2 + 15t+ 4 83112t6 + t5 � 15t4 � 27t3 + 23t2 + 59t+ 19 104632t6 + t5 � 13t4 � 7t3 + 52t2 + 7t� 53 106872t6 � 13t4 + 2t3 + 34t2 � 30t+ 7 109042t6 + 2t5 � 12t4 � 21t3 + 38t2 + 53t� 10 109312t6 + 2t5 � 7t4 � 12t3 + 10t2 + 17t+ 4 116992t6 + 2t5 � 13t4 � 16t3 + 24t2 + 37t+ 12 135712t6 � 13t4 + 7t3 + 44t2 � 40t� 9 136132t6 � 13t4 + 4t3 + 36t2 � 3t� 22 166212t6 + 3t5 � 11t4 � 24t3 + 36t2 + 18t� 9 178592t6 � 12t4 + 6t3 + 27t2 � 9t� 7 182792t6 � 13t4 + 8t3 + 20t2 + 3t� 2 212272t6 � 13t4 + 2t3 + 41t2 � 10t� 13 245242t6 + 2t5 � 13t4 � 24t3 + 28t2 + 44t+ 13 248082t6 + 2t5 � 10t4 � 16t3 + 19t2 + 18t+ 1 265912t6 + 2t5 � 13t4 � 27t3 + 18t2 + 28t� 5 268432t6 + t5 � 13t4 � 16t3 + 36t2 + 34t� 27 300672t6 + t5 � 15t4 � 17t3 + 41t2 + 27t� 11 301192The generation of polynomials took about 342CPU-hours on a network of Digital MicroVax II

and MicroVax III computers in the Department ofComputer Science at Concordia University. Theclass number and fundamental unit computationswere done with KANT [Schmettow 1991] at D�ussel-dorf.Finally, we should mention that several A6-ex-tensions occurred. The smallest discriminant valuewas 130412 = 170 067 681. (This extension, as wellas the A5 extension with minimum discriminant,was known to Olivier [1992], but with no proof ofminimality.) A veri�cation that this value is indeedminimal requires a bound of ~B = 48 in (2.2). Fromcomputations now in progress we estimate that thiswill take about 33 times as much CPU time as~B = 34 in the case of A5.
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