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We determine the totally real algebraic number field F' of de-
gree 6 with Galois group As and minimum discriminant, show-
ing that it is unique up to isomorphism and that it is generated
by a root of the polynomial

f(t) =5 —10t* + 7t + 15t — 14t + 3

over the rationals. We also list the fundamental units and class
number of F', as well as data for several other fields that arose
in our computations and that might be of interest.

1. INTRODUCTION

The computation of algebraic number fields hav-
ing given degree n, signature (ry,r2) and minimal
(absolute) discriminant has been extended up to
degrees 7 (all signatures) and 8 (r; = 0,8). Re-
cently there have been several results separating
the fields additionally with respect to their Galois
groups (with the Galois group being regarded as
a permutation group acting on the roots of a gen-
erating polynomial). The extensive tables of fields
of degree 4 by Ford, Buchmann and Pohst [Buch-
mann and Ford 1989; Buchmann et al. 1993; Ford
1991] contain, for each signature, fields with each
possible Galois group, and therefore also the cor-
responding fields of minimum discriminant. The
same holds for the tables of quintics by Schwarz,
Pohst and Diaz y Diaz [Schwarz et al.]. For de-
gree 6, the only extensive results (covering most of
the Galois groups) are due to Martinet and oth-
ers [Bergé et al. 1990; Olivier 1989, 1990, 1991a,
1991b], but they are almost exclusively concerned
with imprimitive fields. Martinet [1990] gives a
survey of existing results.

The computations of primitive fields of degree
6 and more turn out to be quite time-consuming.
(In [Martinet 1990], the author states that “... As
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and Ag extensions [of degree 6] are probably out
of our computational capabilities”.) Consequently,
we decided to refine existing methods for a special
search of totally real extension fields of degree 6
with alternating Galois group. In Sections 2 and 3
we develop the improved methods. Section 4 con-
tains a summary of the results of the search.

We note that only some of the refinements con-
cern the special type of the Galois group. Oth-
ers were developed to generate an extensive table
of primitive totally real sextics, which will be dis-
cussed in a forthcoming paper.

2. GENERATION OF POLYNOMIALS

Given a bound B € R>°, we want to construct a
set M of monic sixth-degree polynomials such that
each primitive totally real algebraic number field
F of degree 6 and discriminant dr < B contains a
generating element p € F'\ Q for which the minimal
polynomial m,(t) is contained in M. We proceed
by analogy with [Pohst 1982]. We choose p to be
an algebraic integer; hence,

m,(t) = t°+a1t® +ast* +ast® +agt® +ast+ag € Zt).

According to [Pohst 1982, Theorem 3], p can be
chosen in such a way that

Trp e {0,—1,-2,—3} (2.1)

and

1/5 ~
Trp* <3+ (4B)"" = B. (2.2)
As a consequence of the inequality between arith-
metic and geometric means, we get

1< IN(p) < (3Trp?)”. (2.3)

Hence, we have estimates for the coefficients a,, a,
and ag of m,(t). Bounds for the remaining coeffi-
cients will be determined below.

Remark. A lower bound for Tr p? is 9 [Siegel 1945].
If it is not clear how to choose B so that there
will be a field F' with the desired properties repre-
sented in M, one starts with Tr p? = 9,10, ... and
conditions (2.1) and (2.3) until such a field occurs
in the course of the computations, and adjusts B
thereafter appropriately.

As noted in [Pohst 1982], instead of calculating
bounds for as, a4, as directly, it is easier to deter-
mine bounds for the power sums

j=1

where i = 3,4,5,—1 and the p') are the zeros of
m,(t), and then to make use of Newton’s relations

k—1
oL+ Zaiak_i +ka,=0 forl1 <k<6. (24)
i=1
Since [Pohst 1982, Theorem 4] does not seem to
be sufficient for extensive calculations with sextics,
we choose the following refined approach. We con-
sider the functions

=3,

j=1

si(wy,... for i = 3,4,5,—1,

and determine extremal values for them with sub-
sidiary conditions

6
g ;=01 = —ay,
=1
6

2 2
g xj—az—a1—2a2,
Jj=1

6
| I ZTj = dg.
=1

For each fixed triple (a1, az,as) within the previ-
ously determined bounds, the procedure yields up-
per and lower bounds for o3, 04, 05 and o_;.

Solving this extremal value problem along the
lines of [Pohst 1982], we find that any local ex-
tremum necessarily has at most four different co-
ordinates x; of multiplicities n;, for 1 < ¢ < 4. The
possibilities for (ny, nq, n3,ny) are

(1717470)7 (172737())7 (2727270)7 (17 17 ]'73)7 (]‘727 172)'

For each of these possibilities we eliminate vari-
ables using the subsidiary conditions, thus obtain-
ing one-variable equations of degrees 6, 12, 6, 3 and
6, respectively. (Four different values for zy, ..., xg
occur only in connection with extremizing s4, and
in that case the sum over these different values
must be zero.)
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Example. Let x, y, z be (potentially) different val-
ues for xy,...,xs, with multiplicities (1,1,4). The
subsidiary conditions z +vy +4z+a; = 0, 2%+ 3%+
42% —a? +2ay = 0 and zyz* —ag = 0 are equivalent
to

z+y+4z+a, =0,
v+ (42 + ay)y + (102% + day 2 + aq) = 0,

102°% + 4a,2° + ay2* — ag = 0.

Computing real zeros and substituting back, we get
bounds for o3, 04, 05 and o_;. In view of (2.4) and
of the equation ago_; + a5 = 0, bounds for as, a4
and as follow.

We also employed several other bounds from [Pohst
1975] that yield necessary conditions for f(t) to
have six real zeros.

3. PROCESSING OF GENERATED POLYNOMIALS

Since the number of 6-tuples (ai,as, as, as,as, ag)
generated is quite large, it is essential to be eco-
nomic with all calculations in the innermost loop.
Therefore, we do not calculate the polynomial dis-
criminant d(f) as suggested in [Pohst 1982]. In-
stead we compute it as a polynomial in a5 with co-
efficients in Z[a,, az, as, a4, ag), using Maple [Char
et al. 1985]. Thus every polynomial discriminant
computation amounts to the evaluation by Horner’s
method of a polynomial of degree 6 in as.

We exclude from further consideration any poly-
nomial with nonsquare discriminant, since we are
only interested in fields with Galois group con-
tained in Ag. The comparatively very few poly-
nomials that remain are handled as follows.

e Apply Sturm’s rule to remove all polynomials
with fewer than six real zeros.

e Remove all reducible polynomials.

e Apply the Round 2 algorithm [Ford 1978; Pohst
and Zassenhaus 1989, pp. 291-297; Zassenhaus
1967, 1972; Zimmer 1972, pp. 25-27] to compute
an integral basis for each generated field.

e Order the remaining polynomials with respect
to their Galois group (computed using Maple),
and within each Galois-group type according to
the field discriminant.

e Omit isomorphic copies of the same field [Pohst
1987].

4. SUMMARY OF RESULTS

The bounds of Section 2 concern coefficients of
minimal polynomials of elements p that generate
primitive fields. Extensions with Galois group Ay,
S,/ V4 or G4 are not primitive, however. The oc-
currence of such a field in the course of our com-
putations has to be interpreted differently, as the
following examples illustrate.

e The polynomial
ft)=1t°—16t* + 8> + 8t — 6t + 1

has a root that generates a totally real algebraic
number field F of discrimininant 18322 = 3 356 224,
and has Galois group S;/Vy. This is known to
be the smallest discriminant for this Galois group
[Martinet 1990]. Similarly, we find all 12 fields
with Galois group S;/Vy and discriminant dp <
21000000, and about 100 fields with that Galois
group and larger discriminant.

e For totally real sextic number fields F' with Ga-
lois group G5, the minimum discriminant is known
to be 3°5*11% = 55130625 [Martinet 1990]. The
corresponding field F has Q(+/5) as its sole quad-
ratic subfield. An integer p of F'\ Q satisfying the
bounds (2.1)-(2.3) is 2(1++/5). However, a gener-
ating element for F' is obtained only if we consider
an integer p of F' such that Tr 5? is the third succes-
sive minimum of the quadratic form coming from
the trace bilinear form. From [Pohst 1982] we get

4-55130625\ /*
6. L5 ’

Tr,52§§(6+§)+<
2

and see that this is beyond the bounds found in

Section 2. We note that

ms(t) = t° — 21" — 11¢% + 99¢* + 33t — 121.

e We obtain seven fields with Galois group Ay,
with discriminants 6760%, 76882, 111632, 111912,
150592, 202162 and 265692. The minimum discrim-
inant for this Galois group is 5096% = 25969 216
[Martinet 1990].

Hence, in the cases of the Galois groups A4, S4/V,
and G4, the investigation of relative extensions is
certainly superior, and we recovered only part of
the tables of [Olivier 1989, 1990, 1991a].

The search for an As; extension was performed
as explained in the Remark in Section 2. In the
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course of the computations, we quickly obtained
fields of Galois group As. Each time a field with
Galois group As and a smaller discriminant oc-
curred, we adjusted the bound B of (2.2) corre-
spondingly. Thus we proved the following theorem,
using B = 34.

Theorem. The smallest possible discriminant for a
totally real As extension of degree 6 is d = 5567% =
30991489. There is, up to isomorphy, exactly one
field F' with that discriminant. It is generated by
a root p of the polynomial

f(t) =% —10t* + 7¢° 4 15¢* — 14t + 3.

The class number of F is 1, and F' has a power
integral basis in terms of powers of p. A system of
fundamental units for F is

g1 =5—8p—Tp*> +2p° + p?,

£y = =23+ 50p + 10p* — 30p° + p* + 3p°,

€3 = —25 4 64p + 9p* — 39p® + 2p* + 4p°,

g4 = —62 + 131p + 26p> — 79p° + 3p* + 8p°,

€5 = —94 + 244p + 36p> — 147p% + 7p* + 15p°.
Defining polynomials and field discriminants for
other Ay extensions with small discriminants are

listed in the following table. For each discriminant,
there is only one field up to isomorphy.

6 — 9t + 213 +20t2 — 8t — 1 70962
15 4+ 3t° — 5t* — 14¢3 + 512 + 15t + 4 83112
16 +¢> — 15t — 272 + 2312 + 59t + 19 104632
10 45 — 13t* — 73 + 52t + Tt — 53 106872
16 — 13t* + 2t3 4 342 — 30t + 7 109042
% + 2t° — 12t* — 213 + 384% + 53t — 10 109312
104265 — 7t —12t3 + 1082 + 17t + 4 116992
16+ 2t° — 13t* — 16t + 24> + 37t + 12 135712
16 — 13t* + 73 4 44¢* — 40t — 9 136132
6 — 13t* + 442 4 3612 — 3t — 22 166212
0 + 3t° — 11¢* — 2443 + 36t + 18t — 9 178592
6 — 12t + 613 +27Tt2 -9t — 7 182792
16 — 13t* + 83 + 20t* + 3t — 2 212272
6 — 13t* + 2t 4+ 41¢* — 10t — 13 245242

16+ 25 — 13t* — 24¢3 + 28t + 44t + 13 248082

16 +2t5 — 10t — 1683 + 19t + 18t + 1 265912
10 4+ 215 —13t* — 2713 + 1812 + 28t — 5 268432
6 4+ 5 — 13t* — 16¢% + 36t% 4 34t — 27 300672
16+ 5 — 15¢% — 173 + 412 + 27t — 11 301192

The generation of polynomials took about 342
CPU-hours on a network of Digital MicroVax II

and MicroVax III computers in the Department of
Computer Science at Concordia University. The
class number and fundamental unit computations
were done with KANT [Schmettow 1991] at Diissel-
dorf.

Finally, we should mention that several Ag-ex-
tensions occurred. The smallest discriminant value
was 13041% = 170067 681. (This extension, as well
as the As extension with minimum discriminant,
was known to Olivier [1992], but with no proof of
minimality.) A verification that this value is indeed
minimal requires a bound of B = 48 in (2.2). From
computations now in progress we estimate that this
will take about 33 times as much CPU time as

B = 34 in the case of As.
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