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We give upper bounds on the size of the gap between the con-
stant term and the next nonzero Fourier coefficient of an entire
modular form of given weight for Io(2). Numerical evidence
indicates that a sharper bound holds for the weights h = 2
(mod 4). We derive upper bounds for the minimum positive
integer represented by level-two even positive-definite quad-
ratic forms. Our data suggest that, for certain meromorphic
modular forms and p = 2, 3, the p-order of the constant term
is related to the base-p expansion of the order of the pole at
infinity.

1. INTRODUCTION

Carl Ludwig Siegel [1969] showed that the constant
terms of certain level-one negative-weight modular
forms T}, are nonvanishing (“Satz 2”), and that
this implies an upper bound on the least positive
exponent of a nonzero Fourier coefficient for any
level-one entire modular form of weight h with a
nonzero constant term. Theta functions fall into
this category. Their Fourier coefficients code up
representation numbers of quadratic forms. Conse-
quently, for certain h, Siegel’s result gives an upper
bound on the least positive integer represented by
a positive-definite even unimodular quadratic form
in n = 2h variables. This bound is sharper than
Minkowski’s for large n. (Mallows, Odlyzko and
Sloane have improved Siegel’s bound in [Mallows
et al. 1975].)

John Hsia, in a private communication to Glenn
Stevens, suggested that Siegel’s approach is work-
able for higher-level forms. Following this hint, we
constructed an analogue of T}, for I'y(2), which we
denote by T3 ;. To prove Satz 2, Siegel controlled
the sign of the Fourier coefficients in the principal
part of T},. Following Siegel, we find upper bounds
for the first positive exponent of a nonzero Fourier
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coefficient occuring in the expansion at infinity of
an entire modular form with a nonzero constant
term for I'g(2). The whole Siegel argument carries
over for weights h = 0 (mod 4). It is not clear that
Siegel’s method forces the nonvanishing of the 715 ),
constant terms when h =2 (mod 4).

In the latter case, we took two approaches. We
used a simple trick to derive a bound on the size
of the gap after a nonzero constant term in the
case h = 2 (mod 4) from our h = 0 (mod 4) re-
sult, avoiding the issue of the nonvanishing of the
constant term of 75 ;,, but at the cost of a weaker es-
timate. Also (at the suggestion of Glenn Stevens),
we searched for congruences that would imply the
nonvanishing of the constant term of 75,. We
found numerical evidence that certain congruences
dictate the 2- and 3-orders, not only of the constant
terms of the 75 ;,, but of a wider class of meromor-
phic modular forms of level N < 3. These con-
gruences imply the nonvanishing of the constant
term of Ty, for h = 2 (mod 4), but not for h =0
(mod 4).

Denote the vector space of entire modular forms
of weight h for I'g(2) as M(2,h). In Section 2, we
prove that the second nonzero Fourier coefficient
of an element of M(2,h) with nonzero constant
term must have exponent at most dim M (2, h) if
h =0 (mod 4), or at most 2dim M(2,h) if h = 2
(mod 4). (We will see that, in fact, dim M (2, h) =
1+[4])

In Section 3, we describe the numerical experi-
ments that indicate the nonvanishing of the con-
stant terms of 75 ;. Specifically, the experiments
suggest that if a meromorphic modular form for
['o(N), where 1 < N < 3, with a normalized inte-
gral Fourier expansion at infinity can be written as
a quotient of two monomials in Eisenstein series,
then for p = 2, 3, the p-order of the constant term
is determined by the weight and the base-p expan-
sion of the pole-order. (We are aware of several
papers in which base-p expansions come up in an-
alytical contexts, including discussions of the poles
of coefficients of Bernoulli polynomials: [Kimura
1988; Adelberg 1992a; 1992b; 1996].)

In Section 4, we prove some of the congruences.
In Section 5, we apply the results of Section 2 to
the problem of level-two quadratic minima. We
state some conjectures in Section 6.

The calculation of Fourier coefficients was usu-
ally done by formal manipulation of power series.
When we could decompose a form into an infinite
product (for example, the form A~*), we applied
the recursive relation of [Apostol 1976, Theorem
14.8], which is reproduced in Section 2.

2. BOUNDS FOR GAPS IN THE FOURIER EXPANSIONS
OF ENTIRE MODULAR FORMS

Section 2A is introductory. We define several mod-
ular forms, some of which we will not need until
Section 3. In Section 2B, we compute the Fourier
expansions of some higher-level Eisenstein series.
In Section 2C, we estimate the first positive ex-
ponent of a nonzero Fourier coefficient in the ex-
pansion of an entire modular form for I'y(2) with
a nonzero constant term.

2A. Some Modular Objects

This section is a tour of the objects mentioned in
the article. The main building blocks are Eisen-
stein series with known divisors and computable
Fourier expansions.

As usual, we denote by I'y(NN) the congruence
subgroup

To(N) ={(“") €SL(2,Z) : ¢ =0 (mod N)}
and by I'(IV) the subgroup
{(¢*)esL2,z): (“°)=(}?) (mod N)}.

cd 01

By M(N,h) we denote the vector space of entire
modular forms of one variable in the upper half-
plane $ of weight h for I'o(INV) (“level N”) and
trivial character. We have an inclusion lattice sat-
isfying

M(L,h) C M(N,h) ifandonlyif L|N.

More particularly, any entire modular form for the
group SL(2,7Z) is also one for I'4(2). The conductor



of f is the least natural number N such that f €
M(N,h). The dimension of M(N,h) is denoted
by (N, h), or rp,, or by r. We have the following
formulas for positive even h. If h # 2 (mod 12),

then
=] B

If h =2 (mod 12), then

r(1,h) = “;J

For any positive even h,

r(2,h) = EJ +1.

(The level-one formulas are standard; see [Serre
1973], for example. The level-two formula can be
derived by similar methods.)

The subspace of cusp forms in M(N,h) is de-
noted by S(N,h). We use standard notation for

divisor sums:
=D &
0<d|n

For complex z satisfying Im(z) > 0, let ¢ =
q(z) = e?™*. TFor positive even h # 2, we de-
note the level-one, weight-h Eisenstein series with
Fourier expansion at infinity

14+ «ap Z on_1(n)q
n=1

by G} or G;(z), where the numbers «y, are given
as follows. (For h > 0, we follow [Serre 1973]; his
E;, are our Gy.) The Bernoulli numbers By, are
defined by the expansion

2k

z 1% S 1)+1B
e —1 2+; 2k)!°

We set vy, = (—1)* 4k /By, and ay, = )2 for h > 0,
while ag = 0. We have an, = —24, ay = 240, a5 =
—504, ag = 480, ayp = —264, and oy, = 2. The
value of a» is included because, even though G, is

not a modular form, we will mention it in some of

Brent: Quadratic Minima and Modular Forms 259

the observations. We write A for the weight-12,
level-one cusp form with Fourier series

and product expansion

A=q]a-qm™

n=1

Here, 7 is the Ramanujan function. We denote
the Klein modular invariant G3/A by j, as usual.
If (N—1) |24, we essentially follow Apostol’s nota-
tion [1990], writing

pn(2) = A(N2)/A(2),

a=1/(N-1), and &y = ¢%. The @y are univa-
lent meromorphic modular functions for I'y(V).

We define some weight-24, level-one cusp forms
as follows. For positive integers n, d, put

-5))

We introduce the level-one functions 7}, which
are elements in the construction of Siegel described
in Section 5A. They are defined by the relation

Spa=A (%Gj + (1

Ty = Grar—n2 A7

Here N =1, so for even h > 2, if h =2 (mod 12),
then 12r — h 4+ 2 = 0, and otherwise 12r —h +2 =
14 — (h mod 12), where @ mod b = a — b|%],
the least nonnegative integer A such that A = a
(mod b). All poles of T}, lie at infinity, and it has
weight 2 — h.

We describe some level-two and level-three ob-
jects using three special divisor sums:

odd Z d Uzlt(n) — Z (_1)ddk7

0<d|n 0<d|n
d odd

onk(n Z d.

0<d|n
Nt(n/d)

and
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Let E, » denote the unique normalized form in the
one-dimensional space M(2,2) (here “normalized”
means the leading coefficient in the Fourier expan-
sion of the form is a 1). The Fourier series is

E,,=1+24 Z UOdd(n) q". (2-1

n=1

E,, has a ;-order zero at points of §) that are
['(2)-equivalent to —3 + £i = (say). The vector
space M(2,4) is spanned by two forms Ej, and
E 4, which vanish with order one at the I'y(2) -
inequivalent zero and infinity cusps, respectively.
They have Fourier expansions

Eyy,=1+16 Z o (n)q" (2-2)
n=1
and
Eoy= Z 055(n)q". (2-3)
n=1

More generally, for N = 2,3 and even k > 2, there
is an Eisenstein series Ey o, in M (N, k) that van-
ishes at the infinity cusp, but not at cusps LI'y(NV)-
equivalent to zero. (This exhausts the possibili-
ties.) It has the Fourier expansion

Encor =Y 0np1(n)q" (2-4)
n=1

(With this notation, Ey 4 = Eso4.) We write
A2 = E0,4Eoo,4'

The singleton family {A,} is a basis for the space
S(2,8).

We construct a level-two analogue of j (distinct
from ¢, *, which also plays this role):

- 2 —1
J2 = E7,2Eoo,4'

The function j, is analogous to j because it is
modular (weight zero) for I'g(2), holomorphic on
the upper half-plane, has a simple pole at infinity,
generates the field of I'g(2) -modular functions, and

defines a bijection of a I'y(2) fundamental set with
C. We show all this in Section 2C.

Finally, we introduce analogues of the 7},. They
are used in our extension of Siegel’s construction
to level two. For r = r(2,h), if h =0 (mod 4), we
set

T =E, 2E0 4B,
but if h =2 (mod 4), we set

_ 2 —1—r
T27h - E7,2E074Eoo,4 :

2B. The Fourier Expansions of the Higher Level
Eisenstein Series

We will prove equations (2-1) and (for N = 2)
(2-4); equation (2-3) follows immediately. Our
tools are results in [Schoeneberg 1974]. The case
N = 3 of (2-4) can be proved the same way we
handle N = 2. This method also will give (2-2),
but the calculations are longer. Equation (2-2) can
also be proved in the following way. For a nonzero
modular form in M (2,h), the number of zeros in
a fundamental region is exactly h/4 [Schoeneberg
1974, Theorem 8, p. 114]. We check that the ex-
ponent of the first nonzero Fourier coefficent , if
any, in the expansion of Gy — Ey 4 — 256 4 ex-
ceeds h/4 = 1. This exponent counts the number
of zeros at ¢0co. Hence

G4 == E074 + 256EOO74 (2—5)
We deduce (2-2) from (2-3) and (2-5).

The modular form E ;. Let ¢ be the Riemann zeta
function. Following Schoeneberg, let G5(z) be de-
fined for z € § by

Gi(2) =2¢(2) +2> > (mz+n)>.

m>1nez

Then, by [Schoeneberg 1974, p. 63, equation (16)],

7.[.2

G5(z) = 5 8’ Z o(n)e*™",

n>1



(Here o is the usual sum of divisors.) For integers
N > 2, let

E(z,N) = NG5(Nz) — G5(2).

We have the Fourier expansion

N-1 .
BN = ﬂ2+87r2z< 3 d)
d|n, d>0

n>1

d#0 (mod N) (2-6)

(We remark that there is a mistake in [1974, p. 177],
where the preceding formula is printed with a mi-
nus sign before the term starting with 872.) The
modular form E(z, N) belongs to M(2,N); see
[Schoeneberg 1974, pp. 177-178]. We get (2-1) by
setting NV = 2 in (2-6) and noting that r(2,2) = 1.

Higher-weight Eisenstein series. Let C be the Rie-
mann sphere. Let N and k be integers with N >
1,k > 3. Let m = (21) and a = (Zl) be ma-
trices with entries in Z. Schoeneberg defines the
inhomogenous Eisenstein series Gy o @ H — C as

GN,k,a(Z) = Z

m=a (mod N)
m#0

If N >1and k > 3, then Gy, has weight k for
I'(N) [Schoeneberg 1974, p. 155, Theorem 1]. We

put
Z p(d)
dk -
dt=1 (mod N)
d>0

(myz +msy) ™",

£(t7 N7 k) =

Here p is the Mobius function. We should note that
Schoeneberg uses the symbol G* in more than one
way (differentiated by the subscripts) as we persist
in following his notation. He introduces reduced
Eisenstein series Gy, for vectors a satisfying
ged(ay, az, N) = 1, requiring that

Giia= D, EENK)Grjta  27)

tmodN

(This is equation (9), p. 159 of [Schoeneberg 1974],
not his original definition.) Schoeneberg introduces
series indexed by level-N congruence subgroups I'y
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of SL(2,Z) as follows. Let p; be the (finite) sub-
group index [['; : ['(/V)], and let one coset decom-
position of I'; be

M1
T, = U D(N)A,. (2-8)
v=1

Then for ged(ay,az) = 1 he defines G} , as

M1
C Z G Nkt Ay)a (2-9)
v=1

Remark 2.1. Schoeneberg [1974, pp. 161-162], shows
that G} o is an entire weight-k level-N modular
form for T';. He shows also (p. 163) that, up to
a multiplicative constant, there is only one G}, ; ,
differing from 0 at exactly those cusps that have
the form

1% (—@> . with V € T}.
ax

In view of (2-7)—(2-9), to calculate the Fourier ex-
pansion of G}, , , it is sufficient to know the Fou-
rier expansions of the Gy 4 o. They are as follows
[Schoeneberg 1974, p. 157]. We write (y = e>™/N
d(z) =1if x € Z, 6(z) = 0 otherwise. Then we
may write

GN,k,a(z) = Z O[V(N, k’ a)e27rizu/N’ (2-10)
v>0
where
a o
wV,ka) =5 (%) Y mt, e
ma=a2 (mod N)
m#0
and, for v > 1,
(—2mi)*
(N, k,a) = ——"—
o, ( a) Nk = 1)1
x Y mFlsgnm (. (2-12)

m|v
(v/m)=a1 (mod N)

The modular form E; o . Set w = (;) and let w
be the leading Fourier coefficient in the expansion
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of Gy, )k where N = 2 or 3. By Remark 2.1,
Gro (V) hu (zoo) =0, so

1

Encop = — (2-13)
w

Do(N)
is a normalized modular form in M (N, k) that van-
ishes at infinity but not at zero.

Proposition 2.2. The Fourier expansion at infinity of
E2,oo,k 18

o0
Es oo = Z 03 5-1(1) q
n=1

Proof. We choose I'y = I'y(2) and specialize (2-7)—
(2-12) to this setting. The coset decomposition
(2-8) is determined as follows. For I'; = I'y(2) we
have u; = 2 because [I'((N) : I'(N)] = Ng(N),
where ¢ is Euler’s function [Schoeneberg 1974, p.
79]. The matrices (10) and (Oi) are inequivalent

01
modulo I'(2), so we have

D ULE)(p1)-

We omit the remainder of the routine calculation.
O

Lo(2) =T(2)(, (2-14)

The product expansion of E 4.

Proposition 2.3. The modular form E 4 € M(2,4)
has the following product decomposition in the vari-
able ¢ = exp(2miz):

@ =a¢ ]

0<nEe2Z

(1—q")7".

(2-15)

(1—4q") H

0<neZ\2%

Proof. We begin by showing that, for Im(z) > 0,

Ew4(z) = n(22)"n(2)7".

For now, denote 7(22)**n(z)~® by F(z). The func-
tion F' is holomorphic on $ because 7 is nonvan-
ishing on $. F' has the product expansion

y=q J[ a=¢* JI -9

0<ne2Z 0<NEL\2Z
(2-17)

(2-16)

This follows from the product expansion of 7. It
shows that F' has a simple zero at infinity. The
number of zeros in a I'y(2) fundamental set in $
for a level-2, weight-4 modular form is one. If we
showed that F' has weight 4 for ['y(2), it would
follow that the divisors of E,, 4 and F' are both 1 -
i 00. The expansion (2-17) shows that the Fourier
series of F' is monic. So is that of E, 4. Thus F
and F, 4 would be monic modular forms with the
same weight, level and divisor, hence identical. So,
we only need to check the weight-4 modularity of
F on a set of generators for T'y(2). One such set is
{T,V}, where T'= (;1) and V = (7, 7}) [Apostol
1990, Theorem 4.3].
We calculate F'(T'(z))/F(z) using the identity

n(z +b) = ™1 2(2). (2-18)
We have
PT() _ Fe+1) _ n°(2(E+1) 7P()
F(z) F(z) *(z+1)  7*%(22)
B em’2/12n(zz)16 78 (2) .
= ey g T O

which is what we needed.
To check modularity for V, we use Dedekind’s
functional equation. This implies that

n(V(2)) = (=i — 2iz)!y(2).

Equation (2-18) and Dedekind’s equation also im-

(2-19)

ply that
-1 , -1
9 — —1) = —7i/12
n(2V(2)) 77(2z—i—1 ) ¢ n(Zz—I—l)
=e "1 (—i(22 + 1)) (22 + 1)

e M (—i(22 + 1)) 2™ 2p(22)
= (=i —2i2)Y?n(22). (2-20)
By (2-19) and (2-20),
F(V(z)) =n' (2V( )~ (V(2))
_ ((=i—22)"2n(22
((—Z —22)!/%n(z
= (22 + 1)*F(2).




This verifies the weight-4 modularity for V and
completes the proof. O

2C. Bounds for Gaps in Fourier Expansions of Level Two
Entire Forms

At the step that Siegel called Satz 2, his argument
and our extension of it depend on separate, fortu-
itous sign properties of particular modular forms.
These lucky accidents probably bear further study.

Siegel’s argument at level one. Denote the coeffi-
cient of ¢" in the Fourier expansion of f at in-
finity by ¢,[f]. Suppose that f € M(1,h) and
co[f] # 0. Siegel showed that ¢,[f] # 0 for some
positive n < dim M (1,h) = r (say). We sketch his
argument. Siegel sets

W =W(f) = (Gh—12r+12)71A17Tf-

W (f) turns out to be a polynomial in j.
The normalized meromorphic form 7}, has a Fou-
rier series of the form

Ty =Chrq "+ +Chot+--,

with C), _, = 1. Siegel proves his Satz 1, ¢[T}, f] =
0, by showing that
1hf = (2xi) W () L
z
(Since the right member of this equation is the
derivative of a polynomial in j, the constant term
of its Fourier series is zero.)

Siegel then proves his Satz 2, C}, o # 0. To illus-
trate his approach, we present his argument spe-
cialized to weights h = 0 (mod 12). Siegel employs
the operator

d
dlogq’

which we will abbreviate as D. At level one, for
weights h =0 (mod 12), we have

Th — —AliTDj.
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Also, jJA = G3. So

—T, = A" "Dj = D(A""j)—jD(A"T)
= D(A"T))—j(1-r)A T D(A)
= D7)+ (r— 1A (~ - A D(AT))
1—
-

= DAY )+ —L jAD(A™)

. r .
= D(A""j) + — GED(A™).

The term D(A'""j) is the derivative of a Fourier se-
ries, so it contributes nothing to the constant term
of T},. The Fourier series of G3 has positive coef-
ficients. The Fourier coefficients in the principal
part of D(A™") are negative, and it has no con-
stant term, so the constant term of GiD(A™") is
negative. For r > 1 (the nontrivial case) it follows
that C), 0 < 0.

Siegel completes his argument as follows. Let
the Fourier expansion of f be

f=Ac+Aig+ A+,
Ag # 0. Then by Satz 1,
0=co[Tnf] =Cholo+ - +Ch A,
By hypothesis, Ag # 0, and by Satz 2,
Ay =—(Cho) N (Ch 1AL+ -+ Ch A

It follows that one of the A, forn = 1,...,r, is
nonzero.

Function theory at level two. We collect some famil-
iar or easily verified facts. The point at infinity is
denoted by ‘0o and the extended upper half-plane
by $3*. The set of equivalence classes modulo 'y (2)
in $* we write as $*/I'(2). This set has the struc-
ture of a genus-zero Riemann surface [Schoeneberg
1974, pp. 91-93, 103]. A set of representatives for
$*/To(2) is called a fundamental set for I'y(2), and
a set F in $* containing a fundamental set, such
that distinct T'o(2)-equivalent points in F' must lie
on its boundary, is called a fundamental region for
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I'g(2). Let S and T be the linear fractional trans-
formations S: z+— —1/zand T': z — z+ 1. Let

R={ze9H:|z|>1, |Rez| < i}.

Let V' be the closure of RU S(R) U ST(R) in the
usual topology on Z, and put F» = V U {ico}.
Then F, is a fundamental region for I'y(2). It has
two T'(2)-inequivalent cusps: zero and ico. The
only noncusp in F; fixed by a map in I'y(2) is v =
—5 + 5i.

Modular forms for I'y(2) are not functions on
$*/T6(2), but the orders of their zeros and poles
are well-defined. We write ord, (f) for the order of
a zero or pole of a modular form f at z. (This no-
tation supresses the dependence on the subgroup
I'; in SL(2,Z) for which f is modular.) In nontriv-
ial cases (that is, cases of even weight), ord,(f) at
a point z fixed by an element of I'y(2) lies in $Z,
7, or Z, depending upon whether z is SL(2,Z)-
equivalent to i, to p = €?™/3, or otherwise. (The
fixed point 7 is SL(2, Z)-equivalent to i.) If f and
g are meromorphic modular forms for a subgroup
['; of finite index in SL(2,7Z), then

ord, (f) 4+ ord.(g) = ord.(fg).

The number of zeros in a fundamental set of a
nonzero function in M(2,h) is 2. To represent the
divisor of a modular form for I'y(2), we choose a
fundamental set V, and write a formal sum

div(f) = Y orda(f)[al.

acVz

If f and g are meromorphic modular forms for
['h(2) of equal weight such that div(f) = div(g),
then f = Ag for some constant A. We recall that
dim M (N, h) is denoted as r(N,h) and that the
subspace of cusp forms in M (N, h) is denoted as
S(N,h).

Proposition 2.4. If h 1s an even nonnegative number,
then r(2,h) = | 2] + 1.

Sektch of the proof. First we note that multiplication
by Ay = Eg4E 4 € S(2,8) is a vector space iso-
morphism between M (2, h) and S(2,h+8). Under

the usual definitions (see, for example, [Ogg 1969,
p. I11-5]), evaluation of a modular form at a cusp
is a linear functional. Therefore the map

§:M2,h) 57 x 7

given by £(f) = (f(0), f(ico)) is linear, with ker-
nel S(2,h). For h > 4, let h = 4n + 2m, where
m = 0 or 1. Since E, 4(0) # 0, Ey4(ico) # 0,
Eo4(ico) =0, Ep4(0) = 0, and E, 5 vanishes at
neither cusp, the values of {(aE!', B, ,+bE!', Ef' )
cover Z X Z as a,b range over Z. Thus, £ is surjec-
tive. Hence dim M(2,h) = 2 + dim S(2,h). This
fact allows an induction argument. One checks
the initial cases by hand. For example, a form in
M (2, h) has precisely one zero (with order $) at a
point I'g(2)-equivalent to 7 in a fundamental set.

This fixes the divisor, so r(2,2) = 1. O

Next, we show that j» = Efyyon_oly4 has properties
analogous to those of j.

Proposition 2.5. The function j, is a modular func-
tion (weight-zero modular form) for I'y(2). It is
holomorphic on $ with a simple pole at infinity. It
defines a bijection of $/14(2) onto Z by passage to
the quotient.

Proof. The first two claims are obvious. To establish
the last claim, let f\ = E?, — AEy 4 for A € Z.
Then f\, € M(2,4). The sum of its zero orders in
a fundamental set is 1. If f\ has multiple zeros in
a fundamental set, there must be exactly two of
them at the equivalence class of v, or exactly three
at that of p. O

Proposition 2.6. If f is meromorphic on $H*, the fol-
lowing statements are equivalent:

(i) f is a modular function for T'y(2).

(ii) f is a quotient of two modular forms for T'y(2)
of equal weight.

(iii) f 4s a rational function of js.

Proof. Clearly (iii) = (ii) = (i). For z € $*, let
[2] be the equivalence class of z in §)/I'3(2). By an
abuse of the notation, we may take f as in (i) as a
function from §*/Ty(2) to C. The function js, also



regarded in this fashion, is invertible. Let f :C—C
satisfy f = foj,". Then f is meromorphic on C,
so it is rational. If z € C, let u=7j; *(2) € 9"/ (2).
Then f(u) = f(j; " (2)) = f(2) = f(j2(u)). Thus f

is a rational function in j,. O
Next, we differentiate j,.

Proposition 2.7. For z € 9,

dizjz(z) = —2miE, 5(2)Eo4(2)Eaa(2)".

Proof. It follows from the functional equation that
the derivative of a modular function (weight-zero
modular form) has weight two. Therefore, both ex-
pressions represent weight-two meromorphic mod-
ular forms for I';(0). The only poles of either func-
tion lie at infinity. On each side, the principal part
of the Fourier expansion at infinity consists only of
the term —2mig~'. Therefore the form

d . . _
E ]Q(Z) + 27TZE%2(Z)E074(Z)EOO74(Z) !

is holomorphic, weight two. We find that it is
zero in the same way that we established equation
(2-5). g

Extension of Siegel’s argument to level two. We in-

troduce an analogue of Siegel’s W map. For h =0
(mod 4) and f € M(2,h), let

Wa(f) = FE.

00,4

For h =2 (mod 4), let
Wa(f) = FE, B0

Proposition 2.8. If h s positive, the restriction of
Wy to M(2,h) is a vector space isomorphism onto
the space of polynomials in j» of degree less than
r=r(2,h) (h=0 (mod 4)) or of degree between 1
and r inclusive (h = 2 (mod 4)).

Proof. Suppose h = 0 (mod 4) and f € M(2,h). In
view of Proposition 2.4,

Wa(f) = fES]-
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For d =0,1,...,r—1, the products j§E’_ ; belong

to M(2,h). We have
Wa(js BLa) = Gt

Let @ be the subspace of M (2, h) generated by the
modular forms ng;o_,i, ford =0,1,...,r—1, and
let R be the space of polynomials in j; of degree at
most r — 1. W carries @) isomorphically onto R.
Therefore, dim@ = r. Hence @ = M (2,h). This
proves the first claim.

Now let h =2 (mod 4). Then

Wa(f) = T Ey 2Bl

For d =0,1,...,r—1, the products j{E, ,E. | be-
long to M(2,h). We have

Wiz By 2B y) = 53

W, carries E, »() isomorphically onto joR. There-
fore, dim E., ,Q = r. Hence E, ,Q = M(2,h). O

Proposition 2.9. For even nonnegative h and f €
M(2,h), the constant term in the Fourier expan-
ston at infinity of f15 ) is zero.

Proof. Suppose h = 0 (mod 4). Then

d . e _
Wa(f) 532 = _fEl ,427”E%2E0,4Eool,4

o0

== —27TifT27h.

If h = 2 (mod 4), we get the same result by a
similar calculation. Thus, fT,, is the derivative
of a polynomial in j,, so it can be expressed in
a neighborhood of infinity as the derivative with
respect to z of a power series in the variable ¢ =
exp(2miz). This derivative is a power series in ¢
with vanishing constant term. O

Proposition 2.10. For positive h = 0 (mod 4), the
constant term in the Fourier expansion at infinity
of T» 5, 1is nonzero.

Proof. Let u = 2miz = log q. We retain the notation
D for the operator d/du, which has the property
that D(¢™) = nqg™. Let my = j,—64. Arguing as in
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the proof of (2-5), we see that EZ , = Ey 4+64E 4,

SO MMy = E074E;o174. Thus

d
Em2 27TZE,Y 2E0 4E

00,4

_4d._
_dz'72_

so that D(m,) = —EWEOAE;A. It follows that

T2,h == —E;;ZD(W@)
Hence
EI—TD( M )
= D(E jmy) —maD(EL ;)
= D(E imy) —my(1—r)E D(E 4)

— D(E5ms) + (r—1)my B ( —EYID(EY ))

D(El 4m2)

0074D(Eo_o7:4)

D(El 4m2)

(E)-

The term D(E, ;m.) makes no contribution to the
constant term. Therefore the constant term of 15 ,
is the same as that of “LE,,D(E,). We now
examine the principal part of D(E] 4)

An absolutely convergent monic power series can
be written as an infinite product. The technique
was used by Euler to prove the Pentagonal Number
Theorem. It has been codified as follows [Apostol
1976, Theorem 14.8]:

Lemma 2.11. For a given set A and a given arith-
metical function f, the numbers pa s(n) defined by
the equation

H(l _ xn)ff(n)/

neA

=1+ ZPA7f(TL)I
n=1
satisfy the recursion formula

ZfA )pa.r(n—k),

npa, f

where pa ¢(0) =1 and

=" f(d)

d|k
deA

Proposition 2.3 and this lemma imply that, for
fixed s,

By =q Y R(n)g (2-21)
n=0
where R(0) =1 and n > 0 implies that
88 Z O'ﬂt R(n —a). (2-22)

Because 0¥(a) alternates sign, the alternation of
the sign of R(n) follows by an easy induction argu-
ment from (2-22). To be specific, R(n) = U,(—1)"
for some U,, > 0. Thus we may write

B, =Uo(-1)"¢ "+ Ui (-1)'¢""

+o A U (1) 7T+ U (1) 45
hence D(E,) equals
—rUp(=1)°¢ "+ (L =) Ui (=1)'¢" "

+oe A (=D)U 1 (—1)"" Yt 04---,
which in turn equals

‘/;(_1)1 7T+‘/T 1( )qufr

+o V(=D 0+

for positive V,,.

On the other hand, the Fourier coefficient of ¢,
for n > 0, in the expansion of Ey 4 is W, (—1)" for
positive W,,, by (2-2). Thus the constant term of
EouD(E,) is

>_Va(=1)
n=1
and that of T} j, is the number

T_]‘ r+1ZVW

r+1 nW ( —

T“ZV W,

For weights h > 4, r > 1. 0



The signs of the Fourier coefficients are not as co-
operative in the case h = 2 (mod 4), and so far
we do not have a result corresponding to Proposi-
tion 2.10 in this situation.

Theorem 2.12. Suppose f € M(2,h) with Fourier
expansion at infinity

F(z) =) Ang",  with Ay #0.
n=0
If h =0 (mod 4), then some A, # 0, for 1 <n <
r(2,h). If h =2 (mod 4), then some A, # 0, for
1 <n<2r(2,h).

Proof. First suppose that h = 0 (mod 4). The ar-
gument tracks Siegel’s in the level-one case. We
still denote the coefficient of ¢™ in the Fourier ex-
pansion of f at infinity as ¢,[f]. The normalized
meromorphic form T, has a Fourier series of the
form

Lp=Chrqg "+ +Cho+-,
with C), _, = 1. By Proposition 2.9,
0=co[Tonf] =Chodo+---+Ch_,A,.

By hypothesis, Ay # 0. By Proposition 2.10, C}, o
is nonzero, so

Ay = —(Cho) " (Ch—1Ar + - + O, A,).

It follows that one of the A, is nonzero.

Now suppose h = 2 (mod 4), say h = 4k + 2,
and f € M(2,h). For some monic g-series F' and
some nonzero constant Cy, f = 1+ C,¢'F. Let
g = f?€ M(2,2h). Then

g=1+2C,¢'F + C}¢"'F”.

Since 2h = 0 (mod 4), we have t < r(2,2h) =1+
[(2h/4)] =1+ |(8k+4)/4] = 2k+2. On the other
hand, r(2,h) = r(2,4k +2) = 1+ |(4k + 2)/4] =
1+k. O
The only obstacle to obtaining the bound r + 1

instead of 27 in the second case is the lack of a ver-
sion of Proposition 2.10 for weights h = 2 (mod 4).
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In Section 3, we present experimental evidence for,
among other things, an extended Proposition 2.10.
While it is possible that the level-two result ex-
tends to the other levels N at which I';(/V) has
genus zero, namely N =1, ..., 10, 12, 13, 16, 25,
Glenn Stevens has raised the question whether, be-
cause of the absence of an analogue for j, higher
genus is an obstruction to this sort of argument.

3. OBSERVATIONS

The divisor of a meromorphic modular form f, nor-
malized so that the leading Fourier coefficient is 1,
determines the Fourier expansions of f , because
the divisor determines f. This suggests the prob-
lem of finding effective rules governing the map
from divisors to Fourier series. Some results in this
direction are known. For example, Fourier expan-
sions of Eisenstein series with prescribed behavior
at the cusps are stated in [Schoeneberg 1974].

Here we study rules by which the divisor gov-
erns congruences for the Fourier expansion. The
theory of congruences among holomorphic modu-
lar forms is significant in number theory, so it is
natural to scrutinize any new congruences among
modular forms. Regularities among the constant
terms suggest an empirical basis for such a theory
in the meromorphic setting.

In Sections 3A and 3B, we discuss three rules
(for conductors N = 1,2, 3) governing the constant
term of the Fourier expansion at infinity. We de-
scribe numerical evidence for congruences obeyed
by certain meromorphic modular forms. The con-
gruences relate geometric and arithmetic data: the
divisor, and the 2-order or 3-order of the constant
terms. This connection is expressed in terms of the
weight and the sum of the digits in the base two or
base three expansion of the pole order.

These rules are described for modular forms of
level N < 3. They do not apply to all the objects
we surveyed, and we don’t know how to sort the
deviant from nondeviant forms, except by inspec-
tion. The deviations are systematic in the sense
that the constant terms at a given level still obey
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simple rules. We can also manufacture linear com-
binations of nondeviant forms that depart from the
congruence rules in a stronger sense: the 2-order
and the 3-order of the constant terms are arbitrary.
This means that the constant terms of some of the
deviant forms are controlled by invariants of the
divisor other than the weight and the order of the
pole at infinity.

In our surveys, a meromorphic modular form f
that obeys the congruences always has a normal-
ized rational Fourier expansion and a pole at in-
finity. The T}, and T, were the first examples.
We looked for other instances of this behavior and
found it exhibited by some standard objects. We
then conducted a more or less systematic survey of
similar objects.

We describe two sets of data. The first survey
suggests rules regarding the 2-order or 3-order of
constant terms of a family of level-IV objects, with
1 < N < 3. The second survey looks at nega-
tive powers of the functions Ey o 5, with N = 2, 3.
These examples form families of their own, and
within these families the behavior of the constant
term is again predictable.

Congruences for constant terms seem to have im-
plications for the whole Fourier expansion of re-
lated meromorphic forms. In Section 3C, we re-
port observations on the Fourier expansion of j
that support this idea.

3A. Observations on the Constant Terms: First Survey

We list several thousand forms obeying rules gov-
erning their constant terms. Let dy(n) be the sum
of the digits in the base-b expansion of the posi-
tive integer n and c¢,[f] be the coefficient ¢, in the

Fourier series
_ n
f= E cnq".
n

Let p be prime. If an integer n can be factored as
n = p*m, with (p,m) = 1, we write

ord,(n) = a.

In addition we write ord,(0) = oco. If a rational

number z can be written £ as a quotient of inte-
gers, we set ord,(x) = ord,(n) — ord,(d).

We write C, for the set of level-two meromor-
phic modular forms f of any weight with rational
Fourier expansion at infinity, leading coefficient 1,
and a pole at infinity of order s = s(f) > 0 such

that
ordy (co[f]) = 3da(s).

The set of level-three meromorphic modular forms
f of any weight with rational Fourier expansion at
infinity, leading coefficient 1, and a pole at infinity
of order s = s(f) > 0 such that

ordz(co[f]) = ds(s)

will be denoted Cj.

For a function f with a pole of order s = s(f) at
infinity, let 8 = ds(s) and v = d3(s). Membership
in Cs is a congruence relation, since

ord,(n) =a < n=2* (mod 2°™),

but membership in C5 means a choice of two con-
gruences:

ords(n) =a < n=43* (mod 3*™).

We define two subsets of C'5, the members of which
make this choice systematically:

Dy ={f€Cs:c[f] = (-1)*3 (mod 3"}
and
E;={f€Cs:c[f]|=3 (mod 37"} .

If f is a meromorphic modular form, let w = w(f)
be the weight of f. As above, let s = s(f) be the
order of the pole of f at infinity. Finally, we will
write L = L(f) for the largest digit in the base-3
expansion of s(f).

In this survey, the constant terms of the mero-
morphic forms we studied have three modes of be-
havior, depending upon the conductor.

(1) The meromorphic forms f for SL(2,Z) (conduc-
tor one forms) obey the following rule.



@ If w=0 (mod 4), then f € C.

(b) If w =2 (mod 4), then 247 | ¢o[f].

() If w=0 (mod 3), then f € Ds.

(d)If w=1 (mod 3) and L =1, then f € Ej.

e Ifw=1 (mod 3) and L = 2, then 3" |¢[f].
(f) If w =2 (mod 3), then 37 | ¢o[f].

(2) Forms with conductor 2 obey (a)-(b), but not,
in general, (c)—(f).

(3) Forms with conductor 3 obey (c)-(f), but not,
in general (a)—(b).

Conductor one. What follows is a list of objects
obeying rule (1) above. (The function G5 isn’t
modular in the ordinary sense, but we assigned it
weight 2 to see what would happen.)

A for 1 <a <140
J¢ for 1 <a <50

JAT for 1 <a <100
AP for 1 <a,b <50
GiA™  for 1 <a,b<50

(If we set a = 1, these are the functions T}, with
h=8 (mod 12), 8 < h < 596.)

GiGiA= for 1 <a,c <50, 0<b< 11

Gi A" for 1 <a,b<50
G$,A™"  for 1 <a,b<50
Gy A7 for 1<a<T7,1<b< 140

(If we set a = 2, these are the functions 7}, with
h =10 (mod 12), 10 < h < 1678, and if we set a =
4, they are the functions 7}, with h = 6 (mod 12),
6 < h<1674.)

Gy A for 8 <a <24, 1 <b<50,

GolA™" for 1 <a <18, 1 <b<50,

S for 1 <a<50,1<d<4,1<n<d,
G4, S1s  for 1 <a,b < 50,

G$4Sr5  for 1 <a,b < 50,

G4GLSTS for 1 <a,c <50, 1 <b<5.

In an earlier survey, we found that A~ € CoNCs
for 1 < s < 3525. We also found that j° € Cy N Cs
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for 1 < s < 200, and that j*A~™ € C, N C; for
1 < k,m < 100. The computing power we ex-
ploited at the time (with Roger Frye’s assistance)
was not available when we were conducting the ex-
periments described here, so we do not have data
on membership in D; for the additional functions.

Conductor two. This is a list of objects obeying rule
(2) above. The first two items are the first few
functions 75 ;. Evidently, rule (2) does not force
the vanishing of the constant terms of the functions
E, By B =T, for h=0 (mod 4), but would
imply a level-2 Satz 2 for h = 2 (mod 4) if it held
for all E2,E,4EX!y, a positive.

00,47

E,,E, B for 1<a<100
B2, By, B, for 1 <a <100

Js for 1 <a <100
w5 ° for 1 <a <100
G2 B, for 0 <a<24, 1<b<50
Gy B, for 1<a<11, 1 <b<50
GYEY, for 1 < a,b <50
GeEY, for 1 < a,b <50
GiGsE, for 1 < a,b <50
GYHEL, for 1 < a,b <50
E!,E, for 1 < a,b <50
thA_b for 1 <a,b <50
E¢LEL, for 1 < a,b <50
Ay for 1 <a <100

Conductor three. This is a brief list of objects obey-
ing rule (3) above. It should be noted that ;' has
a double pole at infinity. More objects obeying (3)
are listed in the next section.

w3 * for 1 <a <100

Gidps" for 1 <a,b <50

M for 1 <a<50

G ®3° for 1 <a<24, 1<b<50
Gad;" for 1 <a,b <50

G, ®5° for 1 < a,b <50
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3B. Second Survey, with Deviations from Rules (1)-(3)

Given a pair of objects of the same conductor, pole
order and weight obeying rules (1)—(3), one can
find a linear combination that violates the rules.
For example, let r(N,k) > 1 and let f,g be dis-
tinct normalized forms in M (N, k), for 1 < N < 3.
Let s be a positive integer. Then p = fA™® and
v = gA~® are normalized, and they have equal
pole order, weight and conductor. Suppose they
are subject to one of the above rules that dictates
for p = 2 or 3 that ord,(co[p]) = ord,(co[y]) = €
(say). Further, let the constant terms of ¢ and
be p®(a/b) and p°(c/d) (with none of a,b,c,d di-
visible by p). Let z = (p” — ad)/(bc — ad) for an
arbitrary number o # 0. Then the meromorphic
modular form ¢ = (1 — z)p + 2y is also normal-
ized with the same weight and pole order as p and
~v. It may have lower conductor if N # 1, but
whichever rule dictated the values of ord,(co[¢])
and ord,(co[v]) is also part of rule (1). Yet it fails,
because ¢y[¢] = p*?/bd. This shows that features
of the divisor other than the weight and the order
of the pole at infinity influence the arithmetic of
the constant term.

This fact led us to search for other deviants. We
found systematic deviations from rules (1)—(3), but
for these examples, the 2- and 3-orders of the con-
stant terms were still determined by the weight and
the order of the pole at infinity.

The following functions obey rule (2):

E, for 1<a <51
E, 5, for1<a<5l,
6 <k<22 k=2 (mod4)
E, % for 2<a <50, aeven,
8<k<24, k=0 (mod 4)

The following functions obey rule (3):

Eyd s for 1<a <98

Bis , for 3<a <48, a=0 (mod 3),
12<k <24, k=0 (mod 6)

Eil, for2<a <98, a=0or2 (mod 3),
8 <k <20, k=2 (mod 6)

E; o, for 1<a<97, a
8 < k<20, k

E; o, for 1 <a<98,
4<k<22, k=4 (mod 6)

1 (mod 3),
2 (mod 6), L =2

The following functions deviate from rule (2):

E, on for 1 <a <51, aodd,
8< k<24, k=0 (mod 4)

Rule (2) predicts that ord, (co[E5 % ,]) = 3dy(a)
in this situation. Instead the constant terms obey
the rule

ords(c) = 3dy(a) +orde(a+ 1) +k—5.  (3-1)
The following functions deviate from rule (3):

Bl for1<a<49, a=1 (mod 3),
12 <k <24, k=0 (mod 6)

The weights of these functions are divisible by 3,
so rule (3) predicts that

Col B oo ) = (=1)23%(®  (mod 3% (@+1),

Instead,

colBy % p] = (-1)"H3%@ (mod 3% (3-2)

The functions

E for 2<a<47,a

3,00,k

=2 (mod 3),
12<k <24, k=0 (mod 6)

also depart from rule (3). In this situation, it is not
true that ords(co[Ey S, , 1) = ds(a), as predicted by
rule (3). Instead

ords(co[E5 5, 1 ]) = ds(a) +ords(a+1) =46 (say).
(3-3)
We have not yet understood how these functions

choose between the congruences
B2 ] =+£3° (mod 3°HH),

except that our data indicate that it depends only
on the value of a.



The last set of functions in this survey deviating
from rule (3) is

Byt for 1<a<94, a=1 (mod 3),
8 <k <20, k=2 (mod 6), L =1.

Here w =1 (mod 3), so rule (3) predicts that
colB5 % x 1= 3% (mod 3%(®H),
Actually for this set we have
colBs % x 1= —3%  (mod 3%+ (3-4)

3C. Divisibility Properties of the Fourier Coefficients of
j» A and Their Reciprocals

We observed a pattern of connections between cor-
responding Fourier coefficients (not the constant
terms) of 1/A and j, and between corresponding
Fourier coefficients (not the constant terms) of A
and 1/j. These experiments were motivated by the
following considerations. Membership of f° in C
or C3 for integers s with 1 < s < B, for some
bound B, imposes conditions modulo powers of 2
or 3 on the Fourier coefficients of f with exponent
at most B — 1. It is easy to check, for example,
that if f has a simple pole at infinity and f* € Cs
for 1 <s <4, then

colf] =8 (mod 16),
ci[f] =4 (mod 8),

e [f] =0 (mod 128),
cs[f] =2 (mod 4)

It is possible to extend these calculations indef-
initely. They suggest that there is a systematic
relationship between the 2- and 3-orders of corre-
sponding coefficients of any two functions satisfy-
ing the above requirements on f. This led us to
compare these orders in the expansions of j and
1/A.
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Denote ord,(c,[j]) — ord,(c,[1/A]) by 6,,. For
—1 <n <2470 (n #0), we found that

n =0 (mod 2) = 6., = 3ords(n) + 1,
n=0 (mod 3) = d3, = 2ords(n),
n=1 (mod3) = 6§, =-1,

It is interesting to compare these rules with the
congruences of Lehner (see [Lehner 1949] or [Apos-
tol 1990, p. 91]), which are

(mod 2%%%),
(mod 32%73),

0
0

Csan[j] =0 (mod 5**),
0

There are tantalizing hints of similar relations. For
example, if 5 <n < 2470 with n =0 (mod 5) and
n # 2245, then 05, = ords(n); but 05 2245 = 2.

On general principles, we also compared A with
1/j, and found that ord,(c,[1/j]) = ord,(c,[A])
for p = 2,3 and 1 < n < 4096. This also holds
for p =5, ifn Z 3 or4 (modb) and 1 < n <
1225. These observations have some independent
interest, because ¢,[A] = 7(n), the Ramanujan tau
function. For example, one may imagine a proof
of Lehmer’s conjecture that the Ramanujan tau
function is nonvanishing, consisting of two parts:
a proof of the above relations for all positive n,
and a proof that ¢,[1/;] is nonvanishing.

4. CONGRUENCES

The following scenario plays out only when we are
lucky. Given the power series of a modular form
f(z) =147 a(n)z", one uses Mobius inversion
and Lemma 2.11 to find the first few factors in the
product expansion. One then guesses the whole
product expansion. The product expansion then
is used to guess how to write the form as a mono-
mial in Dedekind’s n function, and this relation is
proved with the analytic theory of modular forms.
Then one derives the product expansion from that
of n, and the recursion among the Fourier coeffi-
cients using Lemma 2.11. Finally, the recursion is
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used to prove a special case of rules (1)-(3) from
page 268.

To illustrate, we will prove the first of the fol-
lowing theorems, which is an example of rule (2):

Theorem 4.1. If s = 2%, with x € N, then
Ord2 (CO[EO_O‘fﬁl]) = 3.

Theorem 4.2. If s = 2* D, with x € N and D = 1,3
or 5, then A~* lies in C,.

The proof of Theorem 4.2 is similar, and the reader
can reproduce it by imitating part of the proof
of Theorem 4.1 The proof of Theorem 4.2 is in
fact simpler, because there is no need to derive the
product expansions, but as D increases it becomes
messy. It seems that this process can be continued,
but we have no reason to believe that it will work
for every odd D. We would be surprised if similar
verifications of rule (1) could not also be written
for ord; (co [A7?]).

Proof of Theorem 4.1. The Fourier series of E, 4 is
monic integral, and therefore so are those of its
integral powers. Thus the terms R(n — a) on the
right side of (2-22) are integral. If s = 2%, then
0 < n < s implies that ordy(n) < z. So (2-22)
implies that R(n) =0 (mod 16). Also, by (2-22),

R(s) =8 zsj o™ (a)R(s — a). (4-1)

All the terms in the sum on the right side of
(4-1), except the one corresponding to a = s, are
congruent to zero modulo 16. Therefore,

R(s) = 80" (s)R(0)
=8(2°+2 4+ +2-1)-1
=8 (mod 16).
Thus, ord,(R(s)) = 3. But R(s) = co[E.,]. O

For the project of improving the bound in Theorem
2.12 in the case h = 2 (mod 4), the nonvanishing
of the constant terms of the Fourier expansions of
the T, ; forms is the key to our approach. We state
some partial results in this direction for 7T-series of

both levels. The arguments follow the approach
used above and appear in [Brent 1994, Chapter 5].

Theorem 4.3. (i) If h = 8 (mod 12) and r(1,h) =
2%, with x > 1, then ¢[T;] = 16 (mod 32).

(ii) If h = 2 (mod 12) and r(1,h) = 2%, withx > 1,
then ¢o[T;] = 8 (mod 32).

(iii) If h =2 — 6 > 0, then ¢y[T> 4] = 8 (mod 16).

(iv) If h = 2" —4 > 0, then co[T3,,] = 16 (mod 32).

5. APPLICATIONS TO THE THEORY OF QUADRATIC
FORMS

5A. Quadratic Forms and Modular Forms

We tell how certain quadratic forms give rise to
level-two modular forms. For even v, set © =
Yxy,...,2,), so that & is a column vector. Let
A be a v x v square symmetric matrix with integer
entries, even entries on the diagonal, and positive
eigenvalues. Then Q4(x) = ‘wAx is a homoge-
nous second-degree polynomial in the z;. We refer
to Q4 as the even positive-definite quadratic form
associated to A. If & € Z", then Q4(x) is a non-
negative even number, and vanishes only if « is the
zero vector. The level of @ 4 is the smallest positive
integer N such that NA~! also has integer entries
and even entries on the diagonal. Let #Q7%"(n) de-
note the cardinality of the inverse image in Z" of
an integer n under the quadratic form @) 4.

Proposition 5.1. Suppose that Q) 4 is a level-two quad-
ratic form. Then the function © 4 : H — Z satis-

fying
Oa(z) =Y _ #Qz'(2n)q"

lies in M (2, v/2).

Proof. We use machinery from [Miyake 1989]. Let
X : Z — 7Z be a Dirichlet character mod N, and
let v € [y(IN) be the matrix (*"). By abuse of
notation we also let x denote the character y :
['o(N) — Z that acts by the map a — x(d). We

have the stroke operator f|, defined by

(flna)(2) = (cz +d) "f(az), forze€ H.



Denote by M (h,'y(N), x) the vector space of func-
tions f holomorphic on $* such that f|,a = x(a)f
forall @ € I'y (V). Thus M (h,T'¢(2), x) and M (2, h)
coincide for trivial x. The space M (h,Io(N), x)
is itself trivial if y(—1) # (—1)" [Miyake 1989,
Lemma 4.3.2, p. 115] Thus the only nontrivial space
M (h,Ty(2),x) is M(2,h).

Let (n | m) be the Kronecker symbol. Let A~! =
(bij). We put

Ya(m) = ((=1)"/* det A | m)

and

82
B = Z b dx; Ox;
1<4,5<v
A spherical function of degree v with respect to A is
a complex homogenous polynomial P(z,,...,z,)=
P(m) (say) of degree v annihilated by A4. For
z €9, let

Qa(m
Oap(z) = Z P(m)exp (2%2%,2) .
mezZv
Then 04 p € M(v/2+v, I'h(2), ¥4) [Miyake 1989,
eq. (3), p. 192]. Evidently,

Oa =041 € M(v/2,0(2), a).

In particular, M(v/2, I'4(2), 14) is nontrivial, so
it must be M (2, v/2). O

Since M (2, h) is nontrivial only for even h, it also
follows that 4 |v.

5B. Quadratic Minima

In this section we apply Theorem 2.12 to the prob-
lem of quadratic minima. It is possible to improve
the result slightly by an application of Theorem 4.3
to the sparse family of weights A = 2 (mod 4) men-
tioned there. It would be substantially improved
by a proof that the constant term of 75 j is nonzero
for all h = 2 (mod 4), since this would improve
Theorem 2.12.

Theorem 5.2. If ) is an even positive-definite quad-
ratic form of level two in v variables, with 8|v,
then Q represents a positive integer 2n < 2 + v /4.

Brent: Quadratic Minima and Modular Forms 273

If v =4 (mod 8), then Q represents a positive in-
teger 2n < 2 +v/2.

Proof. Let A be the matrix associated to (), so that
@ = Q4. Suppose v = 8u. Then © 4 € M (2,4u) by
Proposition 5.1. By Theorem 2.12, #Q,"(2n) # 0
for some n in the range 1 <n < r(2,4u) =1+ u.
That is, @ represents an integer 2n < 2(14+u) = 2+
v/4. On the other hand, suppose v = 8u+4. Then
O4 € M(2,4u +2), and #Q73'(2n) # 0 for some n
in the range 1 <n < 2r(2,4u+2) = 2(1+wu). Thus
(@ represents an integer 2n <4 +4u=2+v/2. O

6. CONCLUSION

We don’t know how to frame natural descriptions
of the families obeying the rules (1)-(3) from Sec-
tion 3 (page 3A). We will only remark that some of
our experiments indicate that the arithmetic of the
constant terms comes from the modularity of the
underlying functions, but not from the properties
of formal power series as they relate to Ramanu-
jan’s congruences for the Ramanujan 7 function.
At the suggestion of Glenn Stevens, we formed
nonmodular series obeying the Ramanujan congru-
ences and checked the constant terms of their neg-
ative powers without turning up examples of rules
(1)-(3). It seems to be the modularity of A, for
example, but not in a direct way its obedience to
the Ramanujan congruences, that causes it to obey
rule (1).

On the basis of the observations reported in Sec-
tion 3, we could make many narrow conjectures.
Several seem to be worth stating.

Conjecture 6.1. (i) The constant terms of the Ty
follow rule (2) on page 268.

(ii) The forms A™* and j*°, for s a positive integer,
follow rule (1).

(iii) The forms A and j—' satisfy the relations be-
tween them stated in Section 3C for all integers
n > 1, and the reciprocal forms A™' and j sat-
isfy the relations between them stated in Section
3C for all nonzero integers n > —1.
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Part (i) of this conjecture would have the following
consequence:

Conjecture 6.2. Suppose f € M(2,h) with Fourier
expansion at infinity

f(z) = ZAnq”, with Ay # 0.
n=0

If h =2 (mod 4), then some A, # 0, for 1 <n <
1L+7(2,h).

This in turn would imply:

Conjecture 6.3. If QQ is a level-two even positive-
definite quadratic form in v variables, where v =4
(mod 8), then Q represents a positive integer 2n <
3+v/4.
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