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We give upper bounds on the size of the gap between the con-

stant term and the next nonzero Fourier coefficient of an entire

modular form of given weight for
L

0(2). Numerical evidence

indicates that a sharper bound holds for the weights h � 2

(mod 4). We derive upper bounds for the minimum positive

integer represented by level-two even positive-definite quad-

ratic forms. Our data suggest that, for certain meromorphic

modular forms and p = 2, 3, the p-order of the constant term

is related to the base-p expansion of the order of the pole at

infinity.

1. INTRODUCTIONCarl Ludwig Siegel [1969] showed that the constantterms of certain level-one negative-weight modularforms Th are nonvanishing (\Satz 2"), and thatthis implies an upper bound on the least positiveexponent of a nonzero Fourier coe�cient for anylevel-one entire modular form of weight h with anonzero constant term. Theta functions fall intothis category. Their Fourier coe�cients code uprepresentation numbers of quadratic forms. Conse-quently, for certain h, Siegel's result gives an upperbound on the least positive integer represented bya positive-de�nite even unimodular quadratic formin n = 2h variables. This bound is sharper thanMinkowski's for large n. (Mallows, Odlyzko andSloane have improved Siegel's bound in [Mallowset al. 1975].)John Hsia, in a private communication to GlennStevens, suggested that Siegel's approach is work-able for higher-level forms. Following this hint, weconstructed an analogue of Th for �0(2), which wedenote by T2;h. To prove Satz 2, Siegel controlledthe sign of the Fourier coe�cients in the principalpart of Th. Following Siegel, we �nd upper boundsfor the �rst positive exponent of a nonzero Fourier
c
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258 Experimental Mathematics, Vol. 7 (1998), No. 3coe�cient occuring in the expansion at in�nity ofan entire modular form with a nonzero constantterm for �0(2). The whole Siegel argument carriesover for weights h � 0 (mod 4). It is not clear thatSiegel's method forces the nonvanishing of the T2;hconstant terms when h � 2 (mod 4).In the latter case, we took two approaches. Weused a simple trick to derive a bound on the sizeof the gap after a nonzero constant term in thecase h � 2 (mod 4) from our h � 0 (mod 4) re-sult, avoiding the issue of the nonvanishing of theconstant term of T2;h, but at the cost of a weaker es-timate. Also (at the suggestion of Glenn Stevens),we searched for congruences that would imply thenonvanishing of the constant term of T2;h. Wefound numerical evidence that certain congruencesdictate the 2- and 3-orders, not only of the constantterms of the T2;h, but of a wider class of meromor-phic modular forms of level N � 3. These con-gruences imply the nonvanishing of the constantterm of T2;h for h � 2 (mod 4), but not for h � 0(mod 4).Denote the vector space of entire modular formsof weight h for �0(2) as M(2; h). In Section 2, weprove that the second nonzero Fourier coe�cientof an element of M(2; h) with nonzero constantterm must have exponent at most dimM(2; h) ifh � 0 (mod 4), or at most 2 dimM(2; h) if h � 2(mod 4). �We will see that, in fact, dimM(2; h) =1 + �h4 �:�In Section 3, we describe the numerical experi-ments that indicate the nonvanishing of the con-stant terms of T2;h. Speci�cally, the experimentssuggest that if a meromorphic modular form for�0(N), where 1 � N � 3, with a normalized inte-gral Fourier expansion at in�nity can be written asa quotient of two monomials in Eisenstein series,then for p = 2; 3, the p-order of the constant termis determined by the weight and the base-p expan-sion of the pole-order. (We are aware of severalpapers in which base-p expansions come up in an-alytical contexts, including discussions of the polesof coe�cients of Bernoulli polynomials: [Kimura1988; Adelberg 1992a; 1992b; 1996].)

In Section 4, we prove some of the congruences.In Section 5, we apply the results of Section 2 tothe problem of level-two quadratic minima. Westate some conjectures in Section 6.The calculation of Fourier coe�cients was usu-ally done by formal manipulation of power series.When we could decompose a form into an in�niteproduct (for example, the form ��s), we appliedthe recursive relation of [Apostol 1976, Theorem14.8], which is reproduced in Section 2.
2. BOUNDS FOR GAPS IN THE FOURIER EXPANSIONS

OF ENTIRE MODULAR FORMSSection 2A is introductory. We de�ne several mod-ular forms, some of which we will not need untilSection 3. In Section 2B, we compute the Fourierexpansions of some higher-level Eisenstein series.In Section 2C, we estimate the �rst positive ex-ponent of a nonzero Fourier coe�cient in the ex-pansion of an entire modular form for �0(2) witha nonzero constant term.
2A. Some Modular ObjectsThis section is a tour of the objects mentioned inthe article. The main building blocks are Eisen-stein series with known divisors and computableFourier expansions.As usual, we denote by �0(N) the congruencesubgroup�0(N) = ��ac bd� 2 SL(2;Z) : c � 0 (mod N)	and by �(N) the subgroup��ac bd� 2 SL(2;Z) : �ac bd� � � 10 01� (mod N)	 :By M(N;h) we denote the vector space of entiremodular forms of one variable in the upper half-plane H of weight h for �0(N) (\level N") andtrivial character. We have an inclusion lattice sat-isfyingM(L; h) �M(N;h) if and only if L jN:More particularly, any entire modular form for thegroup SL(2;Z) is also one for �0(2). The conductor



Brent: Quadratic Minima and Modular Forms 259of f is the least natural number N such that f 2M(N;h). The dimension of M(N;h) is denotedby r(N;h), or rh, or by r. We have the followingformulas for positive even h. If h 6� 2 (mod 12),then r(1; h) = � h12�+ 1:If h � 2 (mod 12), thenr(1; h) = � h12� :For any positive even h,r(2; h) = �h4�+ 1:(The level-one formulas are standard; see [Serre1973], for example. The level-two formula can bederived by similar methods.)The subspace of cusp forms in M(N;h) is de-noted by S(N;h). We use standard notation fordivisor sums: ��(n) = X0<d jn d�:For complex z satisfying Im(z) > 0, let q =q(z) = e 2�iz. For positive even h 6= 2, we de-note the level-one, weight-h Eisenstein series withFourier expansion at in�nity1 + �h 1Xn=1 �h�1(n) qnby Gh or Gh(z), where the numbers �h are givenas follows. (For h > 0, we follow [Serre 1973]; hisEk are our G2k.) The Bernoulli numbers Bk arede�ned by the expansionxex � 1 = 1� x2 + 1Xk=1(�1)k+1Bk x2k(2k)! :We set 
k = (�1)k 4k=Bk, and �h = 
h=2 for h > 0,while �0 = 0. We have �2 = �24, �4 = 240, �6 =�504, �8 = 480, �10 = �264, and �12 = 65520691 . Thevalue of �2 is included because, even though G2 isnot a modular form, we will mention it in some of

the observations. We write � for the weight-12,level-one cusp form with Fourier series� = 1Xn=1 �(n) q nand product expansion� = q 1Yn=1(1� qn)24:Here, � is the Ramanujan function. We denotethe Klein modular invariant G34=� by j, as usual.If (N�1) j 24, we essentially follow Apostol's nota-tion [1990], writing'N(z) = �(Nz)=�(z);� = 1=(N�1), and �N = '�N . The �N are univa-lent meromorphic modular functions for �0(N).We de�ne some weight-24, level-one cusp formsas follows. For positive integers n; d, putSn;d = ��ndG34 + �1� nd�G26� :We introduce the level-one functions Th, whichare elements in the construction of Siegel describedin Section 5A. They are de�ned by the relationTh = G12r�h+2��r:Here N = 1, so for even h > 2, if h � 2 (mod 12),then 12r � h+ 2 = 0, and otherwise 12r� h+ 2 =14 � (h mod 12), where a mod b = a � b �ab �,the least nonnegative integer A such that A � a(mod b). All poles of Th lie at in�nity, and it hasweight 2� h.We describe some level-two and level-three ob-jects using three special divisor sums:�odd(n) = X0<d jnd odd d; �altk (n) = X0<d jn(�1)ddk;and ��N;k(n) = X0<d jnN - (n=d) dk:



260 Experimental Mathematics, Vol. 7 (1998), No. 3Let E
;2 denote the unique normalized form in theone-dimensional space M(2; 2) (here \normalized"means the leading coe�cient in the Fourier expan-sion of the form is a 1). The Fourier series isE
;2 = 1 + 24 1Xn=1 �odd(n) q n: (2–1)E
;2 has a 12 -order zero at points of H that are�0(2)-equivalent to � 12 + 12 i = 
 (say). The vectorspace M(2; 4) is spanned by two forms E0;4 andE1;4, which vanish with order one at the �0(2) -inequivalent zero and in�nity cusps, respectively.They have Fourier expansionsE0;4 = 1 + 16 1Xn=1 �alt3 (n) q n (2–2)and E1;4 = 1Xn=1 ��2;3(n) q n: (2–3)More generally, for N = 2; 3 and even k > 2, thereis an Eisenstein series EN;1;k inM(N; k) that van-ishes at the in�nity cusp, but not at cusps �0(N)-equivalent to zero. (This exhausts the possibili-ties.) It has the Fourier expansionEN;1;k = 1Xn=1 ��N;k�1(n) q n: (2–4)(With this notation, E1;4 = E2;1;4.) We write�2 = E0;4E1;4:The singleton family f�2g is a basis for the spaceS(2; 8).We construct a level-two analogue of j (distinctfrom '�12 , which also plays this role):j2 = E2
;2E�11;4:The function j2 is analogous to j because it ismodular (weight zero) for �0(2), holomorphic onthe upper half-plane, has a simple pole at in�nity,generates the �eld of �0(2) -modular functions, and

de�nes a bijection of a �0(2) fundamental set withC . We show all this in Section 2C.Finally, we introduce analogues of the Th. Theyare used in our extension of Siegel's constructionto level two. For r = r(2; h), if h � 0 (mod 4), weset T2;h = E
;2E0;4E�r1;4:but if h � 2 (mod 4), we setT2;h = E2
;2E0;4E�1�r1;4 :
2B. The Fourier Expansions of the Higher Level

Eisenstein SeriesWe will prove equations (2{1) and (for N = 2)(2{4); equation (2{3) follows immediately. Ourtools are results in [Schoeneberg 1974]. The caseN = 3 of (2{4) can be proved the same way wehandle N = 2. This method also will give (2{2),but the calculations are longer. Equation (2{2) canalso be proved in the following way. For a nonzeromodular form in M(2; h), the number of zeros ina fundamental region is exactly h=4 [Schoeneberg1974, Theorem 8, p. 114]. We check that the ex-ponent of the �rst nonzero Fourier coe�cent , ifany, in the expansion of G4 � E0;4 � 256E1;4 ex-ceeds h=4 = 1. This exponent counts the numberof zeros at i1. HenceG4 = E0;4 + 256E1;4: (2–5)We deduce (2{2) from (2{3) and (2{5).
The modular form E
;2. Let � be the Riemann zetafunction. Following Schoeneberg, let G�2(z) be de-�ned for z 2 H byG�2(z) = 2�(2) + 2Xm�1Xn2Z(mz + n)�2:Then, by [Schoeneberg 1974, p. 63, equation (16)],G�2(z) = �23 � 8�2Xn�1 �(n) e2�izn:



Brent: Quadratic Minima and Modular Forms 261(Here � is the usual sum of divisors.) For integersN � 2, letE(z;N) = NG�2(Nz)�G�2(z):We have the Fourier expansionE(z;N) = N�13 �2+8�2Xn�1� Xd jn; d>0d6�0 (mod N) d�e2�inz:(2–6)(We remark that there is a mistake in [1974, p. 177],where the preceding formula is printed with a mi-nus sign before the term starting with 8�2.) Themodular form E(z;N) belongs to M(2; N); see[Schoeneberg 1974, pp. 177{178]. We get (2{1) bysetting N = 2 in (2{6) and noting that r(2; 2) = 1.
Higher-weight Eisenstein series. Let Ĉ be the Rie-mann sphere. Let N and k be integers with N �1; k � 3. Let m = �m1m2 � and a = �a1a2 � be ma-trices with entries in Z. Schoeneberg de�nes theinhomogenous Eisenstein series GN;k;a : H! Ĉ asGN;k;a(z) = Xm�a (mod N)m 6=0 (m1z +m2)�k:If N � 1 and k � 3, then GN;k;a has weight k for�(N) [Schoeneberg 1974, p. 155, Theorem 1]. Weput �(t;N; k) = Xdt�1 (mod N)d>0 �(d)dk :Here � is the M�obius function. We should note thatSchoeneberg uses the symbol G� in more than oneway (di�erentiated by the subscripts) as we persistin following his notation. He introduces reducedEisenstein series G�N;k;a for vectors a satisfyinggcd(a1; a2; N) = 1, requiring thatG�N;k;a = XtmodN �(t;N; k)GN;k;ta: (2–7)(This is equation (9), p. 159 of [Schoeneberg 1974],not his original de�nition.) Schoeneberg introducesseries indexed by level-N congruence subgroups �1

of SL(2;Z) as follows. Let �1 be the (�nite) sub-group index [�1 : �(N)], and let one coset decom-position of �1 be�1 = �1[�=1�(N)A� : (2–8)Then for gcd(a1; a2) = 1 he de�nes G��1;k;a asG��1;k;a = �1X�=1G�N;k;(tA�)a: (2–9)

Remark 2.1. Schoeneberg [1974, pp. 161{162], showsthat G��1;k;a is an entire weight-k level-N modularform for �1. He shows also (p. 163) that, up toa multiplicative constant, there is only one G��1;k;adi�ering from 0 at exactly those cusps that havethe form V ��a2a1� ; with V 2 �1:In view of (2{7){(2{9), to calculate the Fourier ex-pansion of G��1;k;a it is su�cient to know the Fou-rier expansions of the GN;k;a. They are as follows[Schoeneberg 1974, p. 157]. We write �N = e2�i=N ,�(x) = 1 if x 2 Z, �(x) = 0 otherwise. Then wemay writeGN;k;a(z) =X��0 ��(N; k;a)e2�iz�=N ; (2–10)where�0(N; k;a) = � �a1N � Xm2�a2 (mod N)m 6=0 m�k2 ; (2–11)and, for � � 1,��(N; k;a) = (�2�i)kNk(k � 1)!� Xm j �(�=m)� a1 (mod N)mk�1 sgnm�a2mN : (2–12)

The modular form E2,1,k. Set u = �10� and let !be the leading Fourier coe�cient in the expansion



262 Experimental Mathematics, Vol. 7 (1998), No. 3of G��0(N);k;u, where N = 2 or 3. By Remark 2.1,G��0(N);k;u(i1) = 0, soEN;1;k = 1! G��0(N);k;u (2–13)is a normalized modular form inM(N; k) that van-ishes at in�nity but not at zero.
Proposition 2.2. The Fourier expansion at in�nity ofE2;1;k is E2;1;k = 1Xn=1 ��2;k�1(n) q n:
Proof. We choose �1 = �0(2) and specialize (2{7){(2{12) to this setting. The coset decomposition(2{8) is determined as follows. For �1 = �0(2) wehave �1 = 2 because [�0(N) : �(N)] = N'(N),where ' is Euler's function [Schoeneberg 1974, p.79]. The matrices � 10 01� and �10 11� are inequivalentmodulo �(2), so we have�0(2) = �(2)� 10 01� [ �(2)� 10 11�: (2–14)We omit the remainder of the routine calculation.�
The product expansion of E1;4.

Proposition 2.3. The modular form E1;4 2 M(2; 4)has the following product decomposition in the vari-able q = exp(2�iz):E1;4(z) = q Y0<n22Z(1� qn)8 Y0<n2Zn2Z(1� qn)�8 :
(2–15)

Proof. We begin by showing that, for Im(z) > 0,E1;4(z) = �(2z)16�(z)�8: (2–16)For now, denote �(2z)16�(z)�8 by F (z). The func-tion F is holomorphic on H because � is nonvan-ishing on H. F has the product expansionF (z) = q Y0<n22Z(1� qn)8 Y0<n2Zn2Z(1� qn)�8 :
(2–17)

This follows from the product expansion of �. Itshows that F has a simple zero at in�nity. Thenumber of zeros in a �0(2) fundamental set in Hfor a level-2, weight-4 modular form is one. If weshowed that F has weight 4 for �0(2), it wouldfollow that the divisors of E1;4 and F are both 1 �i1. The expansion (2{17) shows that the Fourierseries of F is monic. So is that of E1;4. Thus Fand E1;4 would be monic modular forms with thesame weight, level and divisor, hence identical. So,we only need to check the weight-4 modularity ofF on a set of generators for �0(2). One such set isfT; V g, where T = �10 11� and V = ��12 �11� [Apostol1990, Theorem 4.3].We calculate F (T (z))=F (z) using the identity�(z + b) = e�ib=12�(z): (2–18)We haveF (T (z))F (z) = F (z+1)F (z) = �16�2(z+1)��8(z+1) �8(z)�16(2z)= e�i2=12�(2z)16e�i=12�(z)8 �8(z)�16(2z) = 1 = (0z+1)4;which is what we needed.To check modularity for V , we use Dedekind'sfunctional equation. This implies that�(V (z)) = (�i� 2iz)1=2�(z): (2–19)Equation (2{18) and Dedekind's equation also im-ply that�(2V (z)) = �� �12z+1 � 1� = e��i=12�� �12z+1�= e��i=12(�i(2z + 1))1=2�(2z + 1)= e��i=12(�i(2z + 1))1=2e�i=12�(2z)= (�i� 2iz)1=2�(2z): (2–20)By (2{19) and (2{20),F (V (z)) = �16(2V (z))��8(V (z))= �(�i� 2z)1=2�(2z)�16�(�i� 2z)1=2�(z)�8= (2z + 1)4F (z):



Brent: Quadratic Minima and Modular Forms 263This veri�es the weight-4 modularity for V andcompletes the proof. �
2C. Bounds for Gaps in Fourier Expansions of Level Two

Entire FormsAt the step that Siegel called Satz 2, his argumentand our extension of it depend on separate, fortu-itous sign properties of particular modular forms.These lucky accidents probably bear further study.
Siegel’s argument at level one. Denote the coe�-cient of qn in the Fourier expansion of f at in-�nity by cn[f ]. Suppose that f 2 M(1; h) andc0[f ] 6= 0. Siegel showed that cn[f ] 6= 0 for somepositive n � dimM(1; h) = r (say). We sketch hisargument. Siegel setsW =W (f) = (Gh�12r+12)�1�1�rf:W (f) turns out to be a polynomial in j.The normalized meromorphic form Th has a Fou-rier series of the formTh = Ch;�rq�r + � � �+ Ch;0 + � � � ;with Ch;�r = 1. Siegel proves his Satz 1, c0[Thf ] =0, by showing thatThf = (2�i)�1W (f) djdz :(Since the right member of this equation is thederivative of a polynomial in j, the constant termof its Fourier series is zero.)Siegel then proves his Satz 2, Ch;0 6= 0. To illus-trate his approach, we present his argument spe-cialized to weights h � 0 (mod 12). Siegel employsthe operator dd log q ;which we will abbreviate as D. At level one, forweights h � 0 (mod 12), we haveTh = ��1�rDj :

Also, j� = G34. So�Th = �1�rDj = D(�1�rj)�jD(�1�r)= D(�1�rj)�j(1�r)��rD(�)= D(�1�rj)+(r�1)j��r��1r�1+rD(��r)�= D(�1�rj)+ 1�rr j�D(��r)= D(�1�rj)+ 1�rr G34D(��r):The termD(�1�rj) is the derivative of a Fourier se-ries, so it contributes nothing to the constant termof Th. The Fourier series of G34 has positive coef-�cients. The Fourier coe�cients in the principalpart of D(��r) are negative, and it has no con-stant term, so the constant term of G34D(��r) isnegative. For r > 1 (the nontrivial case) it followsthat Ch;0 < 0.Siegel completes his argument as follows. Letthe Fourier expansion of f bef = A0 +A1q +A2q2 + � � � ;A0 6= 0. Then by Satz 1,0 = c0[Thf ] = Ch;0A0 + � � � +Ch;�rAr:By hypothesis, A0 6= 0, and by Satz 2,A0 = �(Ch;0)�1(Ch;�1A1 + � � �+ Ch;�rAr):It follows that one of the An, for n = 1; : : : ; r, isnonzero.
Function theory at level two. We collect some famil-iar or easily veri�ed facts. The point at in�nity isdenoted by i1 and the extended upper half-planeby H�. The set of equivalence classes modulo �0(2)in H� we write as H�=�0(2). This set has the struc-ture of a genus-zero Riemann surface [Schoeneberg1974, pp. 91{93, 103]. A set of representatives forH�=�0(2) is called a fundamental set for �0(2), anda set F in H� containing a fundamental set, suchthat distinct �0(2)-equivalent points in F must lieon its boundary, is called a fundamental region for



264 Experimental Mathematics, Vol. 7 (1998), No. 3�0(2). Let S and T be the linear fractional trans-formations S : z 7! �1=z and T : z 7! z + 1. LetR = �z 2 H : jzj > 1; jRe zj < 12	 :Let V be the closure of R [ S(R) [ ST (R) in theusual topology on Z, and put F2 = V [ fi1g.Then F2 is a fundamental region for �0(2). It hastwo �0(2)-inequivalent cusps: zero and i1. Theonly noncusp in F2 �xed by a map in �0(2) is 
 =� 12 + 12 i.Modular forms for �0(2) are not functions onH�=�0(2), but the orders of their zeros and polesare well-de�ned. We write ordz(f) for the order ofa zero or pole of a modular form f at z. (This no-tation supresses the dependence on the subgroup�1 in SL(2;Z) for which f is modular.) In nontriv-ial cases (that is, cases of even weight), ordz(f) ata point z �xed by an element of �0(2) lies in 12Z,13Z, or Z, depending upon whether z is SL(2;Z)-equivalent to i, to � = e2�i=3, or otherwise. (The�xed point 
 is SL(2;Z)-equivalent to i.) If f andg are meromorphic modular forms for a subgroup�1 of �nite index in SL(2;Z), thenordz(f) + ordz(g) = ordz(fg):The number of zeros in a fundamental set of anonzero function in M(2; h) is h4 . To represent thedivisor of a modular form for �0(2), we choose afundamental set V2 and write a formal sumdiv(f) = X�2V2 ord�(f)[�]:If f and g are meromorphic modular forms for�0(2) of equal weight such that div(f) = div(g),then f = �g for some constant �. We recall thatdimM(N;h) is denoted as r(N;h) and that thesubspace of cusp forms in M(N;h) is denoted asS(N;h).
Proposition 2.4. If h is an even nonnegative number ,then r(2; h) = �h4 �+ 1.
Sektch of the proof. First we note that multiplicationby �2 = E0;4E1;4 2 S(2; 8) is a vector space iso-morphism between M(2; h) and S(2; h+8). Under

the usual de�nitions (see, for example, [Ogg 1969,p. III-5]), evaluation of a modular form at a cuspis a linear functional. Therefore the map� :M(2; h) ! Z� Zgiven by �(f) = (f(0); f(i1)) is linear, with ker-nel S(2; h). For h � 4, let h = 4n + 2m, wherem = 0 or 1. Since E1;4(0) 6= 0, E0;4(i1) 6= 0,E1;4(i1) = 0, E0;4(0) = 0, and E
;2 vanishes atneither cusp, the values of �(aEm
;2En1;4+bEm
;2En0;4)cover Z�Z as a; b range over Z. Thus, � is surjec-tive. Hence dimM(2; h) = 2 + dimS(2; h). Thisfact allows an induction argument. One checksthe initial cases by hand. For example, a form inM(2; h) has precisely one zero (with order 12) at apoint �0(2)-equivalent to 
 in a fundamental set.This �xes the divisor, so r(2; 2) = 1. �Next, we show that j2 = E2
;2E�11;4 has propertiesanalogous to those of j.
Proposition 2.5. The function j2 is a modular func-tion (weight-zero modular form) for �0(2). It isholomorphic on H with a simple pole at in�nity . Itde�nes a bijection of H=�0(2) onto Z by passage tothe quotient .
Proof. The �rst two claims are obvious. To establishthe last claim, let f� = E2
;2 � �E1;4 for � 2 Z.Then f� 2 M(2; 4). The sum of its zero orders ina fundamental set is 1. If f� has multiple zeros ina fundamental set, there must be exactly two ofthem at the equivalence class of 
, or exactly threeat that of �. �
Proposition 2.6. If f is meromorphic on H�, the fol-lowing statements are equivalent :(i) f is a modular function for �0(2).(ii) f is a quotient of two modular forms for �0(2)of equal weight .(iii) f is a rational function of j2.
Proof. Clearly (iii) =) (ii) =) (i). For z 2 H�, let[z] be the equivalence class of z in H=�0(2). By anabuse of the notation, we may take f as in (i) as afunction from H�=�0(2) to Ĉ . The function j2, also



Brent: Quadratic Minima and Modular Forms 265regarded in this fashion, is invertible. Let ~f : Ĉ ! Ĉsatisfy ~f = f � j�12 . Then ~f is meromorphic on Ĉ ,so it is rational. If z 2 Ĉ , let u= j�12 (z)2H�=�0(2).Then f(u) = f(j�12 (z)) = ~f(z) = ~f(j2(u)). Thus fis a rational function in j2. �Next, we di�erentiate j2.
Proposition 2.7. For z 2 H,ddz j2(z) = �2�iE
;2(z)E0;4(z)E1;4(z)�1:
Proof. It follows from the functional equation thatthe derivative of a modular function (weight-zeromodular form) has weight two. Therefore, both ex-pressions represent weight-two meromorphic mod-ular forms for �2(0). The only poles of either func-tion lie at in�nity. On each side, the principal partof the Fourier expansion at in�nity consists only ofthe term �2�iq�1. Therefore the formddz j2(z) + 2�iE
;2(z)E0;4(z)E1;4(z)�1is holomorphic, weight two. We �nd that it iszero in the same way that we established equation(2{5). �
Extension of Siegel’s argument to level two. We in-troduce an analogue of Siegel's W map. For h � 0(mod 4) and f 2M(2; h), letW2(f) = fE�h=41;4 :For h � 2 (mod 4), letW2(f) = fE
;2E�(h+2)=41;4 :
Proposition 2.8. If h is positive, the restriction ofW2 to M(2; h) is a vector space isomorphism ontothe space of polynomials in j2 of degree less thanr = r(2; h) (h � 0 (mod 4)) or of degree between 1and r inclusive (h � 2 (mod 4)).
Proof. Suppose h � 0 (mod 4) and f 2M(2; h). Inview of Proposition 2.4,W2(f) = fE1�r1;4 :

For d = 0; 1; : : : ; r�1, the products jd2Er�11;4 belongto M(2; h). We haveW2(jd2Er�11;4) = jd2 :Let Q be the subspace ofM(2; h) generated by themodular forms jd2Er�11;4 , for d = 0; 1; : : : ; r�1, andlet R be the space of polynomials in j2 of degree atmost r � 1. W2 carries Q isomorphically onto R.Therefore, dimQ = r. Hence Q = M(2; h). Thisproves the �rst claim.Now let h � 2 (mod 4). ThenW2(f) = fE
;2E�r1;4:For d = 0; 1; : : : ; r�1, the products jd2E
;2Er�11;4 be-long to M(2; h). We haveW2(jd2E
;2Er�11;4) = jd+12 :W2 carries E
;2Q isomorphically onto j2R. There-fore, dimE
;2Q = r. Hence E
;2Q =M(2; h). �
Proposition 2.9. For even nonnegative h and f 2M(2; h), the constant term in the Fourier expan-sion at in�nity of fT2;h is zero.
Proof. Suppose h � 0 (mod 4). ThenW2(f) ddz j2 = �fE1�r1;42�iE
;2E0;4E�11;4= �2�ifT2;h:If h � 2 (mod 4), we get the same result by asimilar calculation. Thus, fT2;h is the derivativeof a polynomial in j2, so it can be expressed ina neighborhood of in�nity as the derivative withrespect to z of a power series in the variable q =exp(2�iz). This derivative is a power series in qwith vanishing constant term. �
Proposition 2.10. For positive h � 0 (mod 4), theconstant term in the Fourier expansion at in�nityof T2;h is nonzero.
Proof. Let u = 2�iz = log q. We retain the notationD for the operator d=du, which has the propertythat D(qn) = nqn. Let m2 = j2�64. Arguing as in



266 Experimental Mathematics, Vol. 7 (1998), No. 3the proof of (2{5), we see that E2
;2 = E0;4+64E1;4,so m2 = E0;4E�11;4. Thusddz m2 = ddz j2 = �2�iE
;2E0;4E�11;4;so that D(m2) = �E
;2E0;4E�11;4. It follows thatT2;h = �E1�r1;4D(m2):HenceE1�r1;4D(m2)= D(E1�r1;4m2)�m2D(E1�r1;4)= D(E1�r1;4m2)�m2(1�r)E�r1;4D(E1;4)= D(E1�r1;4m2)+(r�1)m2E�r1;4��1rE1+r1;4D(E�r1;4)�= D(E1�r1;4m2)+ 1�rr m2E1;4D(E�r1;4)= D(E1�r1;4m2)+ 1�rr E0;4D(E�r1;4):The termD(E1�r1;4m2) makes no contribution to theconstant term. Therefore the constant term of T2;his the same as that of r�1r E0;4D(E�r1;4). We nowexamine the principal part of D(E�r1;4).An absolutely convergent monic power series canbe written as an in�nite product. The techniquewas used by Euler to prove the Pentagonal NumberTheorem. It has been codi�ed as follows [Apostol1976, Theorem 14.8]:
Lemma 2.11. For a given set A and a given arith-metical function f , the numbers pA;f (n) de�ned bythe equationYn2A(1� xn)�f(n)=n = 1 + 1Xn=1 pA;f (n)xnsatisfy the recursion formulanpA;f(n) = nXk=1 fA(k)pA;f (n� k);

where pA;f (0) = 1 andfA(k) = Xd j kd2A f(d):Proposition 2.3 and this lemma imply that, for�xed s, E�s1;4 = q�s 1Xn=0R(n)qn; (2–21)where R(0) = 1 and n > 0 implies thatR(n) = 8sn nXa=1 �alt1 (a)R(n� a): (2–22)Because �alt1 (a) alternates sign, the alternation ofthe sign of R(n) follows by an easy induction argu-ment from (2{22). To be speci�c, R(n) = Un(�1)nfor some Un > 0. Thus we may writeE�r1;4 = U0(�1)0q�r + U1(�1)1q1�r+ � � �+ Ur�1(�1)r�1q�1 + Ur(�1)r + � � � ;hence D(E�r1;4) equals�rU0(�1)0q�r + (1� r)U1(�1)1q1�r+ � � �+ (�1)Ur�1(�1)r�1q�1 + 0 + � � � ;which in turn equalsVr(�1)1q�r + Vr�1(�1)2q1�r+ � � �+ V1(�1)rq�1 + 0 + � � �for positive Vn.On the other hand, the Fourier coe�cient of qn,for n � 0, in the expansion of E0;4 is Wn(�1)n forpositive Wn, by (2{2). Thus the constant term ofE0;4D(E�r1;4) isrXn=1 Vn(�1)r+1�nWn(�1)n = (�1)r+1 rXn=1 VnWn ;and that of T2;h is the numberr � 1r (�1)r+1 rXn=1 VnWn :For weights h � 4, r > 1. �



Brent: Quadratic Minima and Modular Forms 267The signs of the Fourier coe�cients are not as co-operative in the case h � 2 (mod 4), and so farwe do not have a result corresponding to Proposi-tion 2.10 in this situation.
Theorem 2.12. Suppose f 2 M(2; h) with Fourierexpansion at in�nityf(z) = 1Xn=0Anqn; with A0 6= 0:If h � 0 (mod 4), then some An 6= 0, for 1 � n �r(2; h). If h � 2 (mod 4), then some An 6= 0, for1 � n � 2r(2; h).
Proof. First suppose that h � 0 (mod 4). The ar-gument tracks Siegel's in the level-one case. Westill denote the coe�cient of qn in the Fourier ex-pansion of f at in�nity as cn[f ]. The normalizedmeromorphic form T2;h has a Fourier series of theform T2;h = Ch;�rq�r + � � �+ Ch;0 + � � � ;with Ch;�r = 1. By Proposition 2.9,0 = c0[T2;hf ] = Ch;0A0 + � � �+ Ch;�rAr:By hypothesis, A0 6= 0. By Proposition 2.10, Ch;0is nonzero, soA0 = �(Ch;0)�1(Ch;�1A1 + � � �+ Ch;�rAr):It follows that one of the An is nonzero.Now suppose h � 2 (mod 4), say h = 4k + 2,and f 2 M(2; h). For some monic q-series F andsome nonzero constant Ct, f = 1 + Ct qtF . Letg = f 2 2M(2; 2h). Theng = 1 + 2Ct qtF + C2t q2tF 2:Since 2h � 0 (mod 4), we have t � r(2; 2h) = 1 +b(2h=4)c = 1+b(8k+4)=4c = 2k+2. On the otherhand, r(2; h) = r(2; 4k + 2) = 1 + b(4k + 2)=4c =1 + k. �The only obstacle to obtaining the bound r + 1instead of 2r in the second case is the lack of a ver-sion of Proposition 2.10 for weights h � 2 (mod 4).

In Section 3, we present experimental evidence for,among other things, an extended Proposition 2.10.While it is possible that the level-two result ex-tends to the other levels N at which �0(N) hasgenus zero, namely N = 1, . . . , 10, 12, 13, 16, 25,Glenn Stevens has raised the question whether, be-cause of the absence of an analogue for j, highergenus is an obstruction to this sort of argument.
3. OBSERVATIONSThe divisor of a meromorphic modular form f , nor-malized so that the leading Fourier coe�cient is 1,determines the Fourier expansions of f , becausethe divisor determines f . This suggests the prob-lem of �nding e�ective rules governing the mapfrom divisors to Fourier series. Some results in thisdirection are known. For example, Fourier expan-sions of Eisenstein series with prescribed behaviorat the cusps are stated in [Schoeneberg 1974].Here we study rules by which the divisor gov-erns congruences for the Fourier expansion. Thetheory of congruences among holomorphic modu-lar forms is signi�cant in number theory, so it isnatural to scrutinize any new congruences amongmodular forms. Regularities among the constantterms suggest an empirical basis for such a theoryin the meromorphic setting.In Sections 3A and 3B, we discuss three rules(for conductors N = 1; 2; 3) governing the constantterm of the Fourier expansion at in�nity. We de-scribe numerical evidence for congruences obeyedby certain meromorphic modular forms. The con-gruences relate geometric and arithmetic data: thedivisor, and the 2-order or 3-order of the constantterms. This connection is expressed in terms of theweight and the sum of the digits in the base two orbase three expansion of the pole order.These rules are described for modular forms oflevel N � 3. They do not apply to all the objectswe surveyed, and we don't know how to sort thedeviant from nondeviant forms, except by inspec-tion. The deviations are systematic in the sensethat the constant terms at a given level still obey



268 Experimental Mathematics, Vol. 7 (1998), No. 3simple rules. We can also manufacture linear com-binations of nondeviant forms that depart from thecongruence rules in a stronger sense: the 2-orderand the 3-order of the constant terms are arbitrary.This means that the constant terms of some of thedeviant forms are controlled by invariants of thedivisor other than the weight and the order of thepole at in�nity.In our surveys, a meromorphic modular form fthat obeys the congruences always has a normal-ized rational Fourier expansion and a pole at in-�nity. The Th and T2;h were the �rst examples.We looked for other instances of this behavior andfound it exhibited by some standard objects. Wethen conducted a more or less systematic survey ofsimilar objects.We describe two sets of data. The �rst surveysuggests rules regarding the 2-order or 3-order ofconstant terms of a family of level-N objects, with1 � N � 3. The second survey looks at nega-tive powers of the functions EN;1;k, with N = 2; 3.These examples form families of their own, andwithin these families the behavior of the constantterm is again predictable.Congruences for constant terms seem to have im-plications for the whole Fourier expansion of re-lated meromorphic forms. In Section 3C, we re-port observations on the Fourier expansion of jthat support this idea.
3A. Observations on the Constant Terms: First SurveyWe list several thousand forms obeying rules gov-erning their constant terms. Let db(n) be the sumof the digits in the base-b expansion of the posi-tive integer n and cn[f ] be the coe�cient cn in theFourier series f =Xn cn q n:Let p be prime. If an integer n can be factored asn = pam, with (p;m) = 1, we writeordp(n) = a:

In addition we write ordp(0) = 1. If a rationalnumber x can be written nd as a quotient of inte-gers, we set ordp(x) = ordp(n)� ordp(d).We write C2 for the set of level-two meromor-phic modular forms f of any weight with rationalFourier expansion at in�nity, leading coe�cient 1,and a pole at in�nity of order s = s(f) > 0 suchthat ord2(c0[f ]) = 3d2(s) :The set of level-three meromorphic modular formsf of any weight with rational Fourier expansion atin�nity, leading coe�cient 1, and a pole at in�nityof order s = s(f) > 0 such thatord3(c0[f ]) = d3(s)will be denoted C3.For a function f with a pole of order s = s(f) atin�nity, let � = d2(s) and 
 = d3(s). Membershipin C2 is a congruence relation, sinceord2(n) = a () n � 2a (mod 2a+1);but membership in C3 means a choice of two con-gruences:ord3(n) = a () n � �3a (mod 3a+1):We de�ne two subsets of C3, the members of whichmake this choice systematically:D3 = �f 2 C3 : c0[f ] � (�1)s3
 (mod 3
+1)	and E3 = �f 2 C3 : c0[f ] � 3
 (mod 3
+1)	 :If f is a meromorphic modular form, let w = w(f)be the weight of f . As above, let s = s(f) be theorder of the pole of f at in�nity. Finally, we willwrite L = L(f) for the largest digit in the base-3expansion of s(f).In this survey, the constant terms of the mero-morphic forms we studied have three modes of be-havior, depending upon the conductor.
(1) The meromorphic forms f for SL(2;Z) (conduc-tor one forms) obey the following rule.
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(a) If w � 0 (mod 4), then f 2 C2.
(b) If w � 2 (mod 4), then 24� j c0[f ].
(c) If w � 0 (mod 3), then f 2 D3.
(d) If w � 1 (mod 3) and L = 1, then f 2 E3.
(e) If w � 1 (mod 3) and L = 2, then 3
+1 jc0[f ].
(f) If w � 2 (mod 3), then 3
+1 j c0[f ].

(2) Forms with conductor 2 obey (a){(b), but not,in general, (c){(f).
(3) Forms with conductor 3 obey (c){(f), but not,in general (a){(b).
Conductor one. What follows is a list of objectsobeying rule (1) above. (The function G2 isn'tmodular in the ordinary sense, but we assigned itweight 2 to see what would happen.)��a for 1 � a � 140ja for 1 � a � 50j��a for 1 � a � 100ja��b for 1 � a; b � 50Ga6��b for 1 � a; b � 50(If we set a = 1, these are the functions Th, withh � 8 (mod 12), 8 � h � 596.)Ga4Gb6��c for 1 � a; c � 50; 0 � b � 11Ga10��b for 1 � a; b � 50Ga14��b for 1 � a; b � 50G2a��b for 1 � a � 7; 1 � b � 140(If we set a = 2, these are the functions Th, withh � 10 (mod 12), 10 � h � 1678, and if we set a =4, they are the functions Th, with h � 6 (mod 12),6 � h � 1674:)G2a��b for 8 � a � 24; 1 � b � 50;G�12a��b for 1 � a � 18; 1 � b � 50;S�an;d for 1 � a � 50; 1 � d � 4; 1 � n � d;Ga10S�b1;2 for 1 � a; b � 50;Ga14S�b1;2 for 1 � a; b � 50;Ga4Gb6S�c1;2 for 1 � a; c � 50; 1 � b � 5:In an earlier survey, we found that ��s 2 C2\C3for 1 � s � 3525. We also found that js 2 C2 \C3

for 1 � s � 200, and that jk��m 2 C2 \ C3 for1 � k;m � 100. The computing power we ex-ploited at the time (with Roger Frye's assistance)was not available when we were conducting the ex-periments described here, so we do not have dataon membership in D3 for the additional functions.
Conductor two. This is a list of objects obeying rule(2) above. The �rst two items are the �rst fewfunctions T2;h. Evidently, rule (2) does not forcethe vanishing of the constant terms of the functionsE
;2E0;4E�a1;4 = T2;h for h � 0 (mod 4), but wouldimply a level-2 Satz 2 for h � 2 (mod 4) if it heldfor all E 2
;2E0;4E�a1;4; a positive.E
;2E0;4E�a1;4 for 1 � a � 100E2
;2E0;4E�a1;4 for 1 � a � 100ja2 for 1 � a � 100'�a2 for 1 � a � 100G2aE�b1;4 for 0 � a � 24; 1 � b � 50G�12aE�b1;4 for 1 � a � 11; 1 � b � 50Ga4E�b1;4 for 1 � a; b � 50Ga6E�b1;4 for 1 � a; b � 50Ga4G6E�b1;4 for 1 � a; b � 50Ga10E�b1;4 for 1 � a; b � 50Ea
;2E�b1;4 for 1 � a; b � 50Ea
;2��b for 1 � a; b � 50Ea0;4E�b1;4 for 1 � a; b � 50��a2 for 1 � a � 100
Conductor three. This is a brief list of objects obey-ing rule (3) above. It should be noted that '�13 hasa double pole at in�nity. More objects obeying (3)are listed in the next section.'�a3 for 1 � a � 100G�a10 '�b3 for 1 � a; b � 50��a3 for 1 � a � 50G2a��b3 for 1 � a � 24; 1 � b � 50Ga4��b3 for 1 � a; b � 50Ga10��b3 for 1 � a; b � 50
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3B. Second Survey, with Deviations from Rules (1)–(3)Given a pair of objects of the same conductor, poleorder and weight obeying rules (1){(3), one can�nd a linear combination that violates the rules.For example, let r(N; k) > 1 and let f; g be dis-tinct normalized forms inM(N; k), for 1 � N � 3.Let s be a positive integer. Then ' = f��s and
 = g��s are normalized, and they have equalpole order, weight and conductor. Suppose theyare subject to one of the above rules that dictatesfor p = 2 or 3 that ordp(c0[']) = ordp(c0[
 ]) = "(say). Further, let the constant terms of ' and 
be p"(a=b) and p"(c=d) (with none of a; b; c; d di-visible by p). Let x = (p� � ad)=(bc � ad) for anarbitrary number � 6= 0. Then the meromorphicmodular form � = (1 � x)' + x
 is also normal-ized with the same weight and pole order as ' and
. It may have lower conductor if N 6= 1, butwhichever rule dictated the values of ordp(c0['])and ordp(c0[
 ]) is also part of rule (1). Yet it fails,because c0[�] = p"+�=bd. This shows that featuresof the divisor other than the weight and the orderof the pole at in�nity in
uence the arithmetic ofthe constant term.This fact led us to search for other deviants. Wefound systematic deviations from rules (1){(3), butfor these examples, the 2- and 3-orders of the con-stant terms were still determined by the weight andthe order of the pole at in�nity.The following functions obey rule (2):E�a1;4 for 1 � a � 51E�a2;1;k for 1 � a � 51;6 � k � 22; k � 2 (mod 4)E�a2;1;k for 2 � a � 50; a even;8 � k � 24; k � 0 (mod 4)The following functions obey rule (3):E�a3;1;6 for 1 � a � 98E�a3;1;k for 3 � a � 48; a � 0 (mod 3);12 � k � 24; k � 0 (mod 6)E�a3;1;k for 2 � a � 98; a � 0 or 2 (mod 3);8 � k � 20; k � 2 (mod 6)

E�a3;1;k for 1 � a � 97; a � 1 (mod 3);8 � k � 20; k � 2 (mod 6); L = 2E�a3;1;k for 1 � a � 98;4 � k � 22; k � 4 (mod 6)The following functions deviate from rule (2):E�a2;1;k; for 1 � a � 51; a odd;8 � k � 24; k � 0 (mod 4)Rule (2) predicts that ord2�c0[E�a2;1;k]� = 3d2(a)in this situation. Instead the constant terms obeythe ruleord2(c) = 3d2(a) + ord2(a+ 1) + k � 5: (3–1)The following functions deviate from rule (3):E�a3;1;k; for 1 � a � 49; a � 1 (mod 3);12 � k � 24; k � 0 (mod 6)The weights of these functions are divisible by 3,so rule (3) predicts thatc0[E�a3;1;k] � (�1)a3d3(a) (mod 3d3(a)+1):Instead,c0[E�a3;1;k] � (�1)a+13d3(a) (mod 3d3(a)+1): (3–2)The functionsE�a3;1;k; for 2 � a � 47; a � 2 (mod 3);12 � k � 24; k � 0 (mod 6)also depart from rule (3). In this situation, it is nottrue that ord3(c0[E�a3;1;k ]) = d3(a), as predicted byrule (3). Insteadord3(c0[E�a3;1;k ]) = d3(a) + ord3(a+ 1) = � (say):
(3–3)We have not yet understood how these functionschoose between the congruencesc0[E�a3;1;k] � �3� (mod 3�+1);except that our data indicate that it depends onlyon the value of a.



Brent: Quadratic Minima and Modular Forms 271The last set of functions in this survey deviatingfrom rule (3) isE�a3;1;k; for 1 � a � 94; a � 1 (mod 3);8 � k � 20; k � 2 (mod 6); L = 1:Here w � 1 (mod 3), so rule (3) predicts thatc0[E�a3;1;k ] � 3d3(a) (mod 3d3(a)+1):Actually for this set we havec0[E�a3;1;k ] � �3d3(a) (mod 3d3(a)+1): (3–4)

3C. Divisibility Properties of the Fourier Coefficients of

j, � and Their ReciprocalsWe observed a pattern of connections between cor-responding Fourier coe�cients (not the constantterms) of 1=� and j, and between correspondingFourier coe�cients (not the constant terms) of �and 1=j. These experiments were motivated by thefollowing considerations. Membership of f s in C2or C3 for integers s with 1 � s � B, for somebound B, imposes conditions modulo powers of 2or 3 on the Fourier coe�cients of f with exponentat most B � 1. It is easy to check, for example,that if f has a simple pole at in�nity and f s 2 C2for 1 � s � 4, thenc0[f ] � 8 (mod 16);c1[f ] � 4 (mod 8);c2[f ] � 0 (mod 128);c3[f ] � 2 (mod 4):It is possible to extend these calculations indef-initely. They suggest that there is a systematicrelationship between the 2- and 3-orders of corre-sponding coe�cients of any two functions satisfy-ing the above requirements on f . This led us tocompare these orders in the expansions of j and1=�.

Denote ordp(cn[j]) � ordp(cn[1=�]) by �p;n. For�1 � n � 2470 (n 6= 0), we found thatn � 0 (mod 2) =) �2;n = 3ord2(n) + 1;n � 0 (mod 3) =) �3;n = 2ord3(n);n � 1 (mod 3) =) �3;n = �1;It is interesting to compare these rules with thecongruences of Lehner (see [Lehner 1949] or [Apos-tol 1990, p. 91]), which arec2�n[j] � 0 (mod 23�+8);c3�n[j] � 0 (mod 32�+3);c5�n[j] � 0 (mod 5�+1);c7�n[j] � 0 (mod 7�):There are tantalizing hints of similar relations. Forexample, if 5 � n � 2470 with n � 0 (mod 5) andn 6= 2245, then �5;n = ord5(n); but �5;2245 = 2.On general principles, we also compared � with1=j, and found that ordp(cn[1=j]) = ordp(cn[�])for p = 2; 3 and 1 � n � 4096. This also holdsfor p = 5, if n 6� 3 or 4 (mod 5) and 1 � n �1225. These observations have some independentinterest, because cn[�] = �(n), the Ramanujan taufunction. For example, one may imagine a proofof Lehmer's conjecture that the Ramanujan taufunction is nonvanishing, consisting of two parts:a proof of the above relations for all positive n,and a proof that cn[1=j] is nonvanishing.
4. CONGRUENCESThe following scenario plays out only when we arelucky. Given the power series of a modular formf(x) = 1+P1n=1 a(n)xn, one uses M�obius inversionand Lemma 2.11 to �nd the �rst few factors in theproduct expansion. One then guesses the wholeproduct expansion. The product expansion thenis used to guess how to write the form as a mono-mial in Dedekind's � function, and this relation isproved with the analytic theory of modular forms.Then one derives the product expansion from thatof �, and the recursion among the Fourier coe�-cients using Lemma 2.11. Finally, the recursion is



272 Experimental Mathematics, Vol. 7 (1998), No. 3used to prove a special case of rules (1){(3) frompage 268.To illustrate, we will prove the �rst of the fol-lowing theorems, which is an example of rule (2):
Theorem 4.1. If s = 2x, with x 2 N , thenord2 �c0[E�s1;4]� = 3:
Theorem 4.2. If s = 2xD, with x 2 N and D = 1; 3or 5, then ��s lies in C2.The proof of Theorem 4.2 is similar, and the readercan reproduce it by imitating part of the proofof Theorem 4.1 The proof of Theorem 4.2 is infact simpler, because there is no need to derive theproduct expansions, but as D increases it becomesmessy. It seems that this process can be continued,but we have no reason to believe that it will workfor every odd D. We would be surprised if similarveri�cations of rule (1) could not also be writtenfor ord3 (c 0 [��s]).
Proof of Theorem 4.1. The Fourier series of E1;4 ismonic integral, and therefore so are those of itsintegral powers. Thus the terms R(n � a) on theright side of (2{22) are integral. If s = 2x, then0 < n < s implies that ord2(n) < x. So (2{22)implies that R(n) � 0 (mod 16). Also, by (2{22),R(s) = 8 sXa=1 �alt1 (a)R(s� a): (4–1)All the terms in the sum on the right side of(4{1), except the one corresponding to a = s, arecongruent to zero modulo 16. Therefore,R(s) � 8�alt1 (s)R(0)� 8(2x + 2x�1 + � � �+ 2� 1) � 1� 8 (mod 16):Thus, ord2(R(s)) = 3. But R(s) = c 0[E�s1;4]. �For the project of improving the bound in Theorem2.12 in the case h � 2 (mod 4), the nonvanishingof the constant terms of the Fourier expansions ofthe T2;h forms is the key to our approach. We statesome partial results in this direction for T -series of

both levels. The arguments follow the approachused above and appear in [Brent 1994, Chapter 5].
Theorem 4.3. (i) If h � 8 (mod 12) and r(1; h) =2x, with x � 1, then c0[Th] � 16 (mod 32).(ii) If h � 2 (mod 12) and r(1; h) = 2x, with x � 1,then c0[Th] � 8 (mod 32).(iii) If h = 2x � 6 > 0, then c0[T2;h] � 8 (mod 16).(iv) If h = 2x�4 > 0, then c0[T2;h] � 16 (mod 32).
5. APPLICATIONS TO THE THEORY OF QUADRATIC

FORMS

5A. Quadratic Forms and Modular FormsWe tell how certain quadratic forms give rise tolevel-two modular forms. For even v, set x =t(x1; : : : ; xv), so that x is a column vector. LetA be a v�v square symmetric matrix with integerentries, even entries on the diagonal, and positiveeigenvalues. Then QA(x) = txAx is a homoge-nous second-degree polynomial in the xi. We referto QA as the even positive-de�nite quadratic formassociated to A. If x 2 Zv, then QA(x) is a non-negative even number, and vanishes only if x is thezero vector. The level of QA is the smallest positiveinteger N such that NA�1 also has integer entriesand even entries on the diagonal. Let #Q�1A (n) de-note the cardinality of the inverse image in Zv ofan integer n under the quadratic form QA.
Proposition 5.1. Suppose that QA is a level-two quad-ratic form. Then the function �A : H ! Z satis-fying �A(z) = 1Xn=0#Q�1A (2n)qnlies in M(2; v=2).
Proof. We use machinery from [Miyake 1989]. Let� : Z ! Z be a Dirichlet character mod N , andlet � 2 �0(N) be the matrix �ac bd�. By abuse ofnotation we also let � denote the character � :�0(N) ! Z that acts by the map � 7! �(d). Wehave the stroke operator f jh de�ned by(f jh �)(z) = (cz + d)�hf(�z); for z 2 H:



Brent: Quadratic Minima and Modular Forms 273Denote byM(h;�0(N); �) the vector space of func-tions f holomorphic on H� such that f jh� = �(�)ffor all � 2 �0(N). ThusM(h;�0(2); �) andM(2; h)coincide for trivial �. The space M(h;�0(N); �)is itself trivial if �(�1) 6= (�1)h [Miyake 1989,Lemma 4.3.2, p. 115] Thus the only nontrivial spaceM(h;�0(2); �) is M(2; h).Let (n j m) be the Kronecker symbol. Let A�1 =(bij). We put A(m) = ((�1)v=2 detA j m)and �A = X1�i;j�v bij @2@xi @xj :A spherical function of degree � with respect to A isa complex homogenous polynomial P (x1; : : : ; xv)=P (m) (say) of degree � annihilated by �A. Forz 2 H, let�A;P (z) = Xm2Zv P (m) exp�2�iQA(m)2 z� :Then �A;P 2M(v=2 + �; �0(2);  A) [Miyake 1989,eq. (3), p. 192]. Evidently,�A = �A;1 2M (v=2; �0(2);  A) :In particular, M(v=2; �0(2);  A) is nontrivial, soit must be M(2; v=2). �Since M(2; h) is nontrivial only for even h, it alsofollows that 4 j v.
5B. Quadratic MinimaIn this section we apply Theorem 2.12 to the prob-lem of quadratic minima. It is possible to improvethe result slightly by an application of Theorem 4.3to the sparse family of weights h � 2 (mod 4) men-tioned there. It would be substantially improvedby a proof that the constant term of T2;h is nonzerofor all h � 2 (mod 4), since this would improveTheorem 2.12.
Theorem 5.2. If Q is an even positive-de�nite quad-ratic form of level two in v variables, with 8 j v,then Q represents a positive integer 2n � 2 + v=4.

If v � 4 (mod 8), then Q represents a positive in-teger 2n � 2 + v=2.
Proof. Let A be the matrix associated to Q, so thatQ = QA. Suppose v = 8u. Then �A 2M(2; 4u) byProposition 5.1. By Theorem 2.12, #Q�1A (2n) 6= 0for some n in the range 1 � n � r(2; 4u) = 1 + u.That is, Q represents an integer 2n � 2(1+u) = 2+v=4. On the other hand, suppose v = 8u+4. Then�A 2M(2; 4u+ 2), and #Q�1A (2n) 6= 0 for some nin the range 1 � n � 2r(2; 4u+2) = 2(1+u). ThusQ represents an integer 2n � 4 + 4u = 2 + v=2. �
6. CONCLUSIONWe don't know how to frame natural descriptionsof the families obeying the rules (1){(3) from Sec-tion 3 (page 3A). We will only remark that some ofour experiments indicate that the arithmetic of theconstant terms comes from the modularity of theunderlying functions, but not from the propertiesof formal power series as they relate to Ramanu-jan's congruences for the Ramanujan � function.At the suggestion of Glenn Stevens, we formednonmodular series obeying the Ramanujan congru-ences and checked the constant terms of their neg-ative powers without turning up examples of rules(1){(3). It seems to be the modularity of �, forexample, but not in a direct way its obedience tothe Ramanujan congruences, that causes it to obeyrule (1).On the basis of the observations reported in Sec-tion 3, we could make many narrow conjectures.Several seem to be worth stating.
Conjecture 6.1. (i) The constant terms of the T2;hfollow rule (2) on page 268.(ii) The forms ��s and js, for s a positive integer ,follow rule (1).(iii) The forms � and j�1 satisfy the relations be-tween them stated in Section 3C for all integersn � 1, and the reciprocal forms ��1 and j sat-isfy the relations between them stated in Section3C for all nonzero integers n � �1.



274 Experimental Mathematics, Vol. 7 (1998), No. 3Part (i) of this conjecture would have the followingconsequence:
Conjecture 6.2. Suppose f 2 M(2; h) with Fourierexpansion at in�nityf(z) = 1Xn=0Anqn; with A0 6= 0:If h � 2 (mod 4), then some An 6= 0, for 1 � n �1 + r(2; h).This in turn would imply:
Conjecture 6.3. If Q is a level-two even positive-de�nite quadratic form in v variables, where v � 4(mod 8), then Q represents a positive integer 2n �3 + v=4.
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