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Periodic configurations, or oscillators, occur in many cellular
automata. In an oscillator, repeated applications of the au-
tomaton rules eventually restore the configuration to its initial
state. This paper considers oscillators in Conway’s Life; anal-
ogous techniques should apply to other rules. Three explicit
methods are presented to construct oscillators in Life while
guaranteeing certain complexity bounds, leading to the exis-
tence of

e an infinite sequence K, of oscillators of periods n = 58, 59,
60, ... and uniformly bounded population, and

e an infinite sequence D, of oscillators of periods n = 58,
59, 60, ... and diameter bounded by b+/logn, where b is

a uniform constant.

The proofs make use of the first explicit example of a stable
glider reflector in Life, solving a longstanding open question
about this cellular automaton.

1. INTRODUCTION

Periodic configurations, or oscillators, are a nat-
ural characteristic of many cellular automata. In
an oscillator, repeated applications of the rules of
the cellular automaton (CA) eventually restore the
configuration to its initial state either in the same
place, or in some cases shifted slightly. In the
latter case, the configuration will seem to propa-
gate across cellular space and is often referred to
as a spaceship [Berlekamp et al. 1982, Chapter 25;
Poundstone 1985]. In this paper, “oscillator” will
refer to a stationary periodic configuration unless
otherwise noted.

We define the period of an oscillator to be the
smallest number of rule applications needed to re-
store it to its initial state. It is quite common to
see the same small, low-period oscillators arising
repeatedly from random initial states. There is
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no obvious connection between the shapes of these
configurations and the underlying rules of the CA;
rather, these shapes must be viewed as an emer-
gent property of the system. Random experimen-
tation often turns up a wealth of such configura-
tions. There are usually other oscillators that are
unlikely to arise from random initial states. In
principle, the set of all oscillators can be enumer-
ated using such techniques as the de Bruijn dia-
gram [McIntosh 1991], or constraint satisfaction
[Bell and Hickerson 1994]. When applicable, these
techniques often yield remarkable results. How-
ever, they rapidly lead to combinatorial explosion,
and are thus feasible only for small, low-period os-
cillators.

In this paper, we focus on the CA known as Con-
way’s Life [Berlekamp et al. 1982, Chapter 25]. Our
results could not have been accomplished without
detailed knowledge of the behavior of this CA in
particular. Nevertheless, it is almost certain that
a variation of these techniques could be used to ar-
rive at analogous results for other CA rules. We
present a proof that for any n > 58, there is an os-
cillator of period n that operates under Life rules,
and give three explicit methods to construct such
oscillators. The first method, due to Buckingham
[1996], results in large oscillators for large values of
n, but is the only one that works for periods up to
several hundred. The second and third are used to
prove optimal asymptotic size bounds under two
distinct definitions of size.

Why Life?

Though called a game and often considered a topic
in recreational mathematics, Conway’s Life is an
important member of a very natural class of cellu-
lar automata. In such a CA, a cell has only two
states, 0 and 1, and its transition rule is based
on just its current state and the sum of the val-
ues of the eight cells surrounding it on the carte-
sian grid. (Specifically, in Life a cell with a state
of 1 keeps this state if the sum of its neighbors
is two or three. A cell with a state of 0 changes
to 1 if the sum of its neighbors is exactly three.

In all other cases, its next state is 0.) There are
2'8 guch CA rules possible, and of these, Life is
arguably the simplest one that achieves its char-
acteristic balance between rapid stabilization and
uncontrollable chaotic activity (this corresponds to
Class 4 of [Wolfram 1984]).

We believe there are no results of the type pre-
sented here for any other CA not designed with
these results in mind. In addition, we are unaware
of a simpler CA for which such claims are even
plausible. The components we present, though
simple to verify, often operate in a very counter-
intuitive, “chaotic” manner. They must, of course,
be combined in a more predictable and structured
manner.

Computers have been a useful tool in this re-
search, both for enumerating combinations of sub-
patterns and verifying the results. It should be em-
phasized, however, that significant advances have
all come from an informed judgment of what is
possible, based on computer-aided manual experi-
mentation. So far, computers have primarily been
used to speed up the design process and fill gaps
left by a manual search. Much potential remains
for increasing the level of automation, suggesting
that Life may merit more attention from the com-
puter search community.

Conventions

We usually assume that Life operates on an infinite
grid of cells whose state is 0 by default. A config-
uration, typically called a pattern in this context,
is considered finite if it contains a finite number of
cells with the value 1. The population is the to-
tal number of cells having state 1. The bounding
bozx area of the pattern is the area of the smallest
axis-parallel rectangle containing all cells having
state 1. The diameter of the pattern is the maxi-
mum value of the Manhattan distance between any
two cells having state 1. Life is often visualized as
a grid covered with a pattern of round markers. A
cell with a marker is considered to have a state of
1, an empty cell a state of 0. We will adhere to
this convention in our illustrations.
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2. RESULTS

We provide several methods to construct oscilla-
tors of all periods, with the consequence that os-
cillators of all periods 58 and above can be con-
structed. These methods can be used to produce
instances that are small enough to observe in op-
eration on any reasonable desktop workstation or
PC. We have actually built explicit examples using
every method, but for brevity we will omit many
details from our discussion of the method needed
to prove the second complexity bound.

We summarize our results as theorems. The
proof is deferred until later.

Theorem 1. There exists a constant a and a family
of oscillators Ksg, Ksg, Kgo,... functioning under
Life rules such that K, has period n and the pop-
ulation of K, never exceeds a.

Theorem 2. There exists a constant b and a famaly
of oscillators Dsg, Dsg, Deg, ... functioning under
Life rules such that D,, has period n and the diam-
eter of D,, never exceeds by/logn.

Our bounds are within a constant of the best possi-
ble. This is obvious in Theorem 1. To see that this
is true for Theorem 2, note that a period-n oscilla-
tor must have n distinct states, which is not pos-
sible unless it has a bounding box area of at least
[log, n]. Thus, its diameter must be Q(y/log,n ).
With this in mind, it may briefly seem puzzling
that a constant population bound is attainable.
There is no contradiction here: in this case, the di-
ameter of the oscillator grows linearly with n and
the period is determined by the length of the path
taken by a common type of 5-cell spaceship, called
a glider (Figure 1), as it travels between two pat-
terns that act as reflectors.

Gliders are an important component of many of
our constructions, and were one of the first phe-

FIGURE 1. The two shapes of a glider.

nomena ever observed in Life. After two iterations
of Life rules, a glider becomes identical to its reflec-
tion across a diagonal, shifted slightly. After two
more iterations, the glider becomes identical to its
original pattern but shifted by one diagonal cell.
Because this pattern consists of just five cells, it
occurs as a by-product of many other reactions. In
fact, other small patterns with special properties
often appear spontaneously, and all of our results
rely heavily on this ability to exploit phenomena
that might best be described as combinatorial co-
incidence.

Ad hoc constructions are known for many lower
periods (see [Hensel 1995]) and, as of this writ-
ing, the only gaps that remain under the definition
used here are periods 19, 23, 27, 31, 37, 38, 41, 43,
49, 53, and 57. Periods 33, 34, 39, and 51 have
only been realized as uninteresting combinations
of lower-period oscillators; these are ruled out ac-
cording to a stronger definition. The diagrams on
the next three pages show examples of oscillators
of all periods not covered by the constructions pre-
sented here. These ingenious designs are the work
of many different people, and have been compiled
by Dean Hickerson. (Credit for a particular oscil-
lator is available on request.)

For completeness, we note that there is a class of
oscillator-like patterns called glider guns that be-
come identical to their initial state after n turns,
with the exception that they leave an extra glider
behind. This glider moves away in time for the
next to appear, giving the pattern the effect of a
machine gun firing off a stream of gliders at a regu-
lar frequency. This pattern can be interpreted as a
simple oscillator if we consider it to be attached to
an infinite stream of gliders, though this interpre-
tation is not very useful for present purposes. A
glider gun is an important device for many other
constructions in Life, and we note here that both of
the above theorems can be rewritten as results on
glider guns. The only important change is that, for
technical reasons, some oscillators of period 61 and
below have not been modified to produce a stream
of gliders. Thus, we must begin with n = 62.



Experimental Mathematics, Vol. 7 (1998), No. 3

224

m o oo mo (1] ._NN ” ”
Coma T
m ".. [ 1) ” m ._H._”
SR TR :3,
: o0 9 nuun .o
, u. u. °° .u .o 14 m d

O AR

T 58 o3 o



o000 3..... g . os ge, :' ': 45 oS S,
EE. .:. :::o os . ::{.3 - HH 3.’5:3 3.3 .o. w .o. 3.3 46 o0

FIGURE 2. Oscillators realizing periods in the range not covered by our algorithm. (Continued on next page.) Box 1 shows twelve still
lifes in three rows; box 2 has four oscillators on the top row and two on the bottom row (the lower left one is symmetric and in two
pieces); box 3 shows the familiar pulsar at the bottom, and there are two oscillators side by side above it; box 4 has three on the top
row and and two on the bottom row; boxes 5 and 6 show two oscillators each, side by side; box 8 has two rows of two oscillators each.
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3. PREVIOUS RESULTS IN LIFE

There is a long history of constructive proofs to
show that Life exhibits certain properties. Initially,
it was not even clear that unbounded population
growth was possible in Life. While many similar
CA rules result in fast, explosive growth, small ran-
dom patterns in Life tend to stabilize eventually,
though they can remain active for a long time. The
question of unbounded growth was later answered
in the positive with the discovery of the glider gun,
discussed above, and several other patterns dis-
cussed elsewhere [Berlekamp et al. 1982, Chapter
25; Poundstone 1985].

Another early problem in Life concerned so-called
Garden of Eden patterns. These are patterns that
cannot be the result of applying the Life rule to
any previous pattern. A general proof by Moore
[1962] suffices to prove the existence of such a pat-
tern in Life, and indeed in many cellular automata
of interest. Nevertheless, the problem of finding a
reasonably small instance remained open for sev-
eral years until an explicit example was verified;
see [Berlekamp et al. 1982; Poundstone 1985], for
example.

Finally, with the accumulation of many versatile
interactions between gliders and other patterns, it
became clear that a universal computer could be
embedded in Life. This is hardly a surprising prop-
erty to find in a complex system, though it is not
necessarily an easy one to demonstrate. More sig-
nificantly, it was shown how to embed a universal
constructor in Life [Berlekamp et al. 1982], a pat-
tern that allows the self-replication of arbitrarily
complex computers. The idea of a universal con-
structor was introduced by von Neumann [1966]
who designed a very complex CA rule in order to
support such a configuration. One of Conway’s
original aims in developing the rules to Life was to
find a more elegant cellular model for which von
Neumann’s results would hold. With this result,
it became clear that Conway’s Life was one of the
simplest mathematical models of universal compu-
tation and self-replication.

Since that time, a large body of unpublished
work has refined and extended these results. Many
of the new results are more specialized and concern,
for example, the design of patterns with unusual
growth rates such as ©(n logn), or linear but whose
growth coefficient has an irrational limit (compiled
in [Callahan 1997; Hensel 1995]). Certain special-
purpose computers have been embedded: for ex-
ample, a pattern by Hickerson outputs spaceships
at prime-numbered intervals [Hensel 1995]. This
uses an implementation of the sieve method based
on the geometry and dynamics of the cellular space.
Besides these large constructions, a collection of
small, “natural” oscillators and spaceships has been
accumulated by applying intuition and a variety of
automated search techniques [Hensel 1995].

It is not clear that much is to be gained by hav-
ing a collection of computational devices that work
under Life rules. However, the general design tech-
niques should carry over to other systems. With in-
creasing miniaturization, we must eventually reach
the point at which the device we are able to manu-
facture is determined by the laws of physics rather
than the wishes of the designer. While this point
may be far in the future, it suggests at least one in-
stance in which it may be of practical importance
to find small embeddings of computational devices
in complex systems whose rules we cannot modify.

4. THE OSCILLATOR PROBLEM

The results of this paper differ from past results
in the “time grain” of the embedding we exhibit.
That is, in all past instances, a single time step
in the system to be embedded could only be sim-
ulated by a sequence of several time steps in the
embedding, typically at least 30, which is the pe-
riod of the simplest known glider gun. Conse-
quently, most known constructions that are useful
for general computation cannot be used to embed
arbitrary-period oscillators. While it has long been
known how to build any oscillator of period 30n,
it has been clear that the techniques used do not
extend to arbitrary periods.
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Alternative Possibilities

To see that the present result is noteworthy, we
consider alternatives. At one extreme, we might
have a CA that usually settles down into a dis-
joint collection of small oscillators of “natural” pe-
riods. In this case, a plausible conjecture is that
there are a finite number of such natural periods
and that the highest attainable oscillator period is
their least common multiple, the result of consider-
ing the disjoint collection to be a single oscillator.
This may be the case for some cellular automata.
Early observations in Life, however, suggested a
more interesting possibility.

The pentadecathlon is a well known period-15 os-
cillator that was found very early by hand. It was
observed that a glider hitting this along a particu-
lar diagonal at a particular phase will be reflected
180°, as shown in Figure 3; the reflected glider is
indicated by hollow markers. This reflection can
be repeated in the other direction. Thus a single
glider can be sent on a loop between these patterns,
forming an oscillator, the period of which depends
on the total trip time. Because the reflecting de-
vice has period 15, the trip time for a glider is re-
stricted to be a multiple of 15. Other restrictions
are related to the speed of the glider, which takes
four steps to move one diagonal. As a result, the
oscillators that we can construct all have periods
of the form 60 4+ 120k. This is sufficient to refute
the pessimistic conjecture considered above, but it
is a long way from obtaining all periods. Thus,
a second plausible conjecture is that given enough
reflector mechanisms, all multiples of the minimum
reflector periods can be obtained.

Stable Reflectors

The above observation leads naturally to the stable
reflector problem, namely, to find a stable pattern
that, when hit by a glider along some path, reflects
one or more gliders, after which its original state is
restored allowing it to be reused. (A stable pattern
is a period-one oscillator, also known by Conway’s
punning term “still life.” We use “stable pattern”

O] (o @
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FIGURE 3. A pentadecathlon reflects a glider.

here because this notion can be generalized to other
CA rules.)

The existence of such a pattern was known to
follow from the existence of a universal construc-
tor, but for many years, its explicit construction
appeared beyond the scope of known techniques.
In this paper, we provide an explicit example of a
stable reflector, and use it for our second method of
constructing oscillators. It is not hard to see that
stable reflectors satisfying some additional proper-
ties can be used to realize any desired oscillator
period by adjusting glider trip times. We defer the
discussion of these properties until Section 6.

Though a stable reflector is a very desirable con-
struction, there is a reason why the first reflectors
found tended to be of higher periods. A reflector
has to interact with a glider without being itself af-
fected by the interaction — or if it is, it must some-
how repair any damage. Many higher-period oscil-
lators produce sparks, or collections of cells that
appear at every cycle but can be removed with-
out changing the future of the remaining cells in
the pattern. Left alone, these sparks vanish harm-
lessly. Sometimes, however, there is a way to col-
lide a glider with sparks such that the product is a
glider in another direction. The result is a reflec-
tor.

A stable pattern obviously produces no sparks.
Thus, a stable reflector must be damaged by the
glider that hits +t. It must then produce a new
glider, as well as repair the damage caused by the
old one. In fact, there are small stable patterns
that exhibit limited capacity for self-repair. This
occurs, as usual, by coincidence and not deliberate
design. Best known among these is the so-called
eater, a T-cell pattern that can destroy a glider
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FIGURE 4. Left: a glider on the path to being eaten.
Right: the boat bit reaction (boat shown with hol-
low markers).

without itself being destroyed. Less well known,
but very useful, is the boat-bit reaction, in which a
glider is converted by a 6-cell stable object called a
snake into a 5-cell stable object called a boat. An-
other glider along the same path deletes the boat
cleanly, and this combination can be used to build
a toggle memory. These reactions are shown in
Figure 4. No similar reaction has been found that
produces a new glider as a result, and a fairly com-
plicated mechanism for self-repair was ultimately
required to produce a stable reflector, as we will
later discuss.

An existence proof has already been mentioned
for a stable reflector, based on the existence of a
universal constructor. (This reasoning was prob-
ably arrived at independently by several people,
so appropriate attribution of the proof is difficult.)
The idea is that a certain field of stable objects
can be triggered by a glider in a chain reaction, to
convert it into any desired collision of gliders. This
collision, in turn, can be one that synthesizes a uni-
versal constructor. In particular, it must synthe-
size one that is programmed to (a) rebuild the field
of stable objects, (b) output the reflected glider,
and (c) annihilate itself cleanly with a hail of glid-
ers on carefully chosen paths. While this scenario
carries an undeniable Alice in Wonderland appeal,
the fact remains that a universal constructor has
never been built explicitly. Furthermore, any pat-
tern based on it would certainly be too large to
view in operation on a reasonable machine at a
reasonable pixel resolution. Thus, for those seek-
ing concrete verification of such theoretical claims,
a more parsimonious mechanism is required.

5. HERSCHEL-LOOP OSCILLATORS

The first explicit method of building oscillators of
any period was discovered very recently by Buck-
ingham [1996]. This method does not use the sta-
ble reflector. However, some of the same compo-
nents are required to build a functioning stable re-
flector. In addition, the current fastest stable re-
flector requires 623 steps to restore its state and
accept another glider, limiting its use to oscillators
of period 623 and above. Buckingham’s method is
the only uniform construction of an infinite family
of all oscillators of period 58 and above.

FIGURE 5. The Herschel.

Like the stable reflector, Buckingham’s construc-
tion uses the idea of self-repairing stable compo-
nents. Instead of redirecting the path of a glider,
his components reposition a 7-cell active pattern
called a Herschel (Figure 5) that by itself does
not even function as a spaceship. Rather, it pro-
ceeds chaotically, emitting two gliders and eventu-
ally leaving behind a small amount of stable de-
bris. Careful observation suggested that the Her-
schel was one of the most likely candidates to tame
with an arrangement of self-repairing stable pat-
terns. Several such arrangements cause it to re-
produce itself cleanly at a new position and orien-
tation, producing gliders as a by-product.

Buckingham conceived of the above notion in
1973 (see [Buckingham 1996]), but was unable to
fit all the pieces together until over twenty years
later, after collecting many interactions that came
close to satisfying this goal. Callahan was able to
extend the set of conduits using a more automated
approach, though in principle all of the known com-
ponents could have eventually been found using
a computer-aided manual search within a feasible
time frame.

The Herschel is the product of a better known
pattern called the B-heptomino, which often arises
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FIGURE 6. 112-step right turn Herschel conduit.

spontaneously in random configurations. The lat-
ter pattern evolves into a Herschel and a block,
which is a 2 x 2 stable arrangement of live cells ap-
pearing very commonly in debris. Most Herschel
synthesis techniques work by first producing a B-
heptomino and then eliminating the extra block
one way or another. The B-heptomino can itself
be synthesized from the well known R-pentomino.
All of these pathways are significant in the develop-
ment of new devices. For brevity, however, we will
restrict our discussion to the Herschel, and view
the stable Herschel-moving patterns (Herschel con-
duits) as black boxes.

One such Herschel conduit (fourteen are now
known) is shown in Figure 6. The Herschel is
shown here in the standard orientation that we use
for reporting the transformations realized by each
conduit. The position of a Herschel is taken to be
the position of its center cell (i.e., the cell whose
removal leaves two disconnected sets of three cells
each). In the figure, the original pattern is su-
perimposed with the position of the Herschel af-
ter 112 time steps. The objects other than the
Herschel (four eaters and two blocks) look exactly
as they do initially at this point, while the origi-
nal Herschel is eliminated and replaced by another
Herschel, shown with hollow markers. In addition,

a glider is emitted, traveling north-east from the
original position of the Herschel. All the Herschel
conduits function in a similar fashion. The emitted
gliders can be suppressed with additional eaters,
but often they are useful in other constructions.

The list of known Herschel conduits is summa-
rized in Table 1. Using this table, we can compute
the effect of composing Herschel conduits in se-
quence. Not all sequences are possible, of course.
Some lead to self-intersection, others to more sub-
tle forms of interference. However, with so many
degrees of freedom, we can generally find a way
to move a Herschel along a path—if sometimes
a complicated one—to a position and orientation
that we need for a particular construction.

For Buckingham’s oscillator-building method, we
are mainly interested in moving the Herschel back
to its original position and orientation. The num-
ber of steps it takes to accomplish this will be the
sum, n, of the delay values for all the components
in the path. We refer to such a path as a Herschel
loop. After n steps, the Herschel will be in a po-
sition to repeat the same trip, and will continue
this circuit forever. By suppressing all the emitted
gliders, we obtain a period-n oscillator. The sim-
plest instances of Herschel loops are obtained by
composing four 64-step left turns for a period-256
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Transformation Shift Delay Found by
left turn ( 9,11) 64 DJB
z flip ( —8,25) 7 DJB
right turn (—33,12) 112 DJB
identity ( 1,32) 116 PBC
identity ( —6,40) 117 DJB
x flip ( 14,20) 119 DJB
x flip ( —4,48) 153 PBC
right turn (—41,17) 156 DJB
identity ( 3,49) 166 PBC
z flip ( =5,27) 158 DJB
z flip ( 0,45) 176 PBC
left turn ( 16,24) 190 DJB
NE diagonal flip  ( 40,17) 200 PBC

NW diagonal flip ( 32, 7) 202 DJB
TABLE 1. Known Herschel conduits.

oscillator, or four 112-step right turns for a period-
448 oscillator.

Infinitely many paths can be constructed that
translate the Herschel by some amount and rotate
it 90° left or right of its original orientation. These
compound right and left turns can be replicated
four-fold in the same manner as atomic turns, giv-
ing us a Herschel loop whose period is four times
the number of steps through one of these paths.
Two issues remain to be resolved if we wish to at-
tain an oscillator period as low as 58. First, it is
clear that the time around a Herschel loop is al-
ways much greater than 58 steps. Second, if a loop
is composed of four identical turns, then the time
around it once must be a multiple of four.

The key to resolving these issues is the notion
of period dividing, an idea we will use again when
we discuss the next type of oscillator. Period di-
viding works as follows. If the time around a Her-
schel loop is an integer kn, then, provided some
spacing conditions are met, we can divide its pe-
riod by k simply by replacing the single Herschel
with & Herschels spaced n steps apart. (Spacing
conditions must not be overlooked. For example,
it is not possible to divide the period-256 oscil-
lator by 4, because its turn elements require in-
coming Herschels to be spaced at least 153 steps
apart. Nevertheless, a period-64 oscillator can be

constructed using other conduits that allow closer
packing.) Then, after n steps, any given Herschel
is replaced by its predecessor in the sequence of
duplicates, and overall the pattern is identical to
the one we started with and is therefore a period-n
oscillator.

The problem of building a period-n oscillator can
be reduced in this way to the problem of finding a
Herschel loop such that the total time around the
loop is some multiple of n. This problem in turn
can be solved by applying the following lemma.

Lemma 1. For any integer n > 1, there exists a k
such that a functioning Herschel path can be built
that translates the Herschel by some amount and
rotates it by 90° in kn steps. Moreover, this path
can be composed with three copies of itself to form
a 4kn-step Herschel loop.

Idea of the proof. A fully detailed proof would re-
quire an analysis of the Herschel conduits them-
selves. The basic idea, however, is analogous to
the fact that given any two relatively prime in-
tegers a and b, we can find, for any n, a multi-
ple of n that has the form ai + b5 where ¢ and
j are nonnegative integers. It is relatively easy
to build a non-self-intersecting Herschel path that
translates without turning. Two such compound
translations can be built whose delays are rela-
tively prime. These can be used in combination,
along with one of the turns, to build a compound
turn such that the time through this turn is a mul-
tiple of n. O

This gives us a mechanical method of obtaining a
Herschel-loop oscillator of any sufficiently large pe-
riod n that we desire. We simply find a turn that
is a multiple of n, self-compose it into a Herschel
loop, and populate the loop with enough Herschels
to reduce the total period to n. We must still be
careful about close packing. Buckingham observed
that Herschels could be packed as close as 58 steps
from each other in the 77-step and 112-step con-
duits. All other conduits require greater spacing.
Such close packing is only possible if we suppress
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FIGURE 7. A 937-step Herschel loop.

gliders in these stages as soon as possible. Orig-
inally, Buckingham [1978] used a pattern called
eater-2 to allow packing as close as 61. He later
reduced this using a new eater found very recently
by Hickerson [1997].

No glider gun of period less than 62 has been
constructed using this method. However, the 77-
step and 112-step conduits are sufficient to build
oscillators of all periods 58 and up. The size of the
period-61 oscillator can be reduced somewhat if we
use the 153-step conduit as well, and much smaller
period-58 and period-60 oscillators have been con-
structed using other techniques. Period 60 is par-
ticularly easy to realize, for example, using two
pentadecathlons to reflect a glider, as noted earlier,
or using one of a number of interactions between
period-30 glider guns. Buckingham gave explicit
examples of glider guns of period 62 through 69
that can easily be turned into oscillators. We sum-
marize these results as follows.

Lemma 2. For any n > 58, a Herschel loop can be
constructed and populated with Herschels to realize
a period-n oscillator. O

Herschel loops allow the construction of the lowest
period oscillators of all our methods. However, it is
clear that the size of such a loop is ©(n) measured
by population and at least Q(\/ﬁ) measured by
diameter. Thus, while this is a useful method, and
can often be used to build the smallest known oscil-
lators of certain periods, it is not the best method
asymptotically.

It is worth observing that the above construction
always gives a Herschel loop whose time around is
a multiple of four. There is no reason why odd-
period — or, for that matter, prime-period loops —
should not exist; however, they must necessarily
be asymmetric and more difficult to find for that
reason. One can enumerate all possible loops up
to a few thousand steps using exhaustive search.
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In this way, it was possible to find a Herschel loop
with a total trip time of 937 steps (see Figure 7).
The result is a fairly small prime-period oscillator
(or alternatively, a glider gun) that contains just
one Herschel.

6. STABLE-REFLECTOR OSCILLATORS

Compared to the design of an appropriate Herschel
path, it is a relatively simple matter to build an os-
cillator out of a stable glider reflector. The prob-
lem, of course, is building such a reflector in the
first place. We consider the simpler problem first
and then return to the design of a stable reflector.

Suppose we have a stable reflector such that its
reflected glider is turned 180° from the incoming
glider, and there is enough clearance between the
paths of these gliders that another incoming glider
along the same path as the first will not interact
with its reflected glider. This is the simplest kind of
reflector that can be used to build arbitrary-period
oscillators. Without the condition of clearance, we
could only send one glider at a time between re-
flectors, making it impossible to apply the method
of period dividing and obtain all periods above a
certain value. A stable reflector that realized a 90°
turn would also work, since it is possible to build
a 180° reflector by composing two of them. We
consider the 180° reflector here because it leads to
the simplest construction.

The above conditions place no constraint on the
phase of the reflected glider, which turns out to
be quite important. We define the phase shift of
a 180° reflector as follows. Let g be the original
glider as it is approaching the reflector and let ¢’ be
its reflected glider. Apply the Life rules 4m times
to the pattern containing both glider and reflector,
where m is large enough that ¢’ has appeared. Now
apply the Life rules again either 0, 1, 2, or 3 times
until ¢’ is identical to the original shape of g but
rotated 180°. That number, between 0 and 3, is
the phase shift of the reflector. To simplify our
analysis, we assume the stable reflector in question
has a phase shift of 0.

Lemma 3. Suppose we have a stable 180° reflector
with a phase shift of 0. For aoll sufficiently large n,
we can build a period-8n oscillator by reflecting a
glider between two copies of this reflector.

Proof. Counsider the closest spacing of the reflectors
in such a pattern. After 4m turns, for some m, the
glider g will be replaced by another glider ¢', iden-
tical but rotated 180°. So, after an additional 4m
turns, by symmetry, the glider g will be restored
to its original position and orientation. Thus, this
pattern is a period-8m oscillator. Now if we sep-
arate these reflectors by just one additional cell
diagonally, the time of the total trip taken by the
glider back to its starting position will be increased
by 8 steps (4 steps for the increased distance each
way), giving us a period-8(m + 1) oscillator. More
generally, if we increase the separation by k diago-
nal cells, we obtain a period-8(m + k) oscillator. [

The preceding lemma shows that we can build an
oscillator of any sufficiently large period that is a
multiple of 8. Now we need only apply the method
of period dividing, as in the previous section. In-
stead of using multiple Herschels, in this case we
use multiple gliders. Thus, we generalize the above
lemma as follows.

Lemma 4. Suppose we have a stable 180° reflector
with a phase shift of 0 and sufficient clearance to
allow passing of incoming and reflected gliders. For
all sufficiently large n, we can build o period-n os-
cillator by reflecting 1, 2, 4, or 8 gliders between
two copies of this reflector. Moreover, there is a
constant k such that the population of each such
oscillator is k or less.

Proof. We use the preceding lemma and a straight-
forward application of period dividing. The size
bound follows from the fact that the oscillator con-
sists of a constant number of gliders and two reflec-
tors. O

Explicit Construction of a Stable Reflector

Recall that a stable reflector is inevitably going to
be damaged by the glider that hits it. It must
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repair this damage and also output a glider. Our
strategy for constructing such a pattern is to limit
the amount of damage to something we can re-
alistically expect to repair, but at the same time
produce an initial reaction of sufficient duration to
produce a new object (at least one new glider).

This balance is very difficult to obtain. Many
stable objects will produce a long-lived reaction
when hit by a glider, but they are destroyed in the
process. Some other patterns can stop a glider in
its path, either by destroying it as in the case of the
eater or even leaving a stable object in its place,
as in the case of the boat bit. These patterns are
not destroyed in the process, but the reaction they
produce is very rapid and an unlikely candidate for
producing a glider.

The most likely scenario is that the glider would
have to destroy at least one simple stable object
in order to “borrow” enough activity to produce a
new glider. The explosive reaction caused by this
collision could then be amplified and controlled by
surrounding stable objects, eventually producing
the means to “pay back” the loan by reconstruct-
ing the stable object and cleaning up any debris.
Assuming this is possible at all, there should be
little difficulty in emitting one or more new gliders
in the process. In fact, this idea is similar in flavor
to the proof that assumes a universal constructor.
The difference is that we would like to minimize
the initial damage so it is reparable by a small,
special-purpose device.

In practice, “minimize the initial damage” means
“first collide the glider with a block.” This was ob-
served by others working on the problem [Schroep-
pel 1994] and independently by Callahan. The
block is the most common stable object found in
random residue, and seems the most likely candi-
date to restore at a particular position and orienta-
tion, the latter guaranteed by the block’s eightfold
symimetry.

There are several ways to collide a glider with
a block. The most promising way to begin with
seemed to be one that produces the pi heptomino,
a symmetric pattern that expands rapidly for over

150 steps before stabilizing into a symmetric ar-
rangement of stable and period-2 objects. We be-
gan with this collision and sought ways of inter-
acting it nondestructively with surrounding stable
objects, primarily eaters and blocks, both known
for their limited self-repair mechanisms. This is
known as perturbing a reaction. The goal was to
find such an interaction that at least restored the
block in its original location. This event is so un-
likely that any search is bound to produce a small
enough list of candidates to examine by hand.

The Block-Repair Mechanism

Figure 8 shows the most promising block-repair
mechanism obtained so far. Callahan found this
early in the process of developing an effective com-
puterized method of enumerating perturbations by
multiple objects. Only the upper block and lower
eater are needed to restore the collision block, how-
ever, placing it well within the range of computer-
aided manual search. In fact, this arrangement had
been considered previously by Buckingham, but at
the time there was no way to eliminate a major
difficulty, discussed below.

The glider is shown at the last step before the
collision. In the figure, the pattern is superimposed
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FIGURE 8. Initial stage of the stable reflector.
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with its product 104 steps later, shown with hol-
low markers. At this step, the two eaters and block
surrounding the collision have perturbed the explo-
sion, resulting in

e the restoration of the block involved in the col-
lision,

e a glider traveling in the opposite direction,

e a small, chaotic pattern to the lower right of the
block, and

e a 6-cell stable object known as a beehive, adja-
cent to the block and obstructing the path of a
glider sent on the same path as the original one.

Only the last of these products is undesirable. Most
of our later effort will be spent eliminating it. The
chaotic pattern is not useful as such, but can be
perturbed into something useful; we have restored
the block, so anything we can obtain from this pat-
tern is effectively obtained for free. The reflected
glider is one of the things we were hoping to obtain
in the first place, though it is of limited use since
it has a phase shift of 1.

The beehive appears at first a fatal error. Its
position is deep in the interior of the active region,
though this may not be obvious from the picture.
Thus, there seems to be no way to place a stable
object to suppress this beehive without interfering
with earlier steps. We could eliminate the bee-
hive cleanly with certain glider collisions originat-
ing from outside the active region, but this leaves
the problem of producing such a glider.

The solution appeared in the form of Bucking-
ham’s announcement of Herschel conduits. Using
a computer enumeration, Callahan found a pair of
blocks that convert the chaotic reaction product
into the R-pentomino. The latter is also chaotic
but can be perturbed into a Herschel using sev-
eral patterns found by Buckingham, exactly one of
which works in this context. Using Herschel con-
duits, a Herschel can be used to generate many new
gliders, and the paths of these gliders can be ad-
justed as desired using an appropriate sequence of
conduits. The solution, then, was simply to send
the Herschel along to an appropriate diagonal at

which it could emit a glider to eliminate the bee-
hive. While this scheme may appear somewhat
cumbersome, one must admit it compares favor-
ably to the solution that requires a universal con-
structor.

Construction of an appropriate Herschel path
turned out to be relatively straightforward. In this
way we constructed the first explicit stable reflec-
tor to operate under Life rules. In the original
solution, it took several thousand steps to elimi-
nate the beehive, limiting the packing of incoming
gliders. Callahan later refined this to a reflector
that reflects gliders as close as 894 steps apart. In
this construction, the final Herschel can be cleanly
eliminated or else used to emit as many additional
gliders as desired. Hickerson [1997] designed a re-
flector using the block repair mechanism (see Fig-
ure 9) which works in 747 steps. It terminates
with a special-purpose perturbation that destroys
the Herschel in the process of converting it into a
glider along a path that would take longer to reach
using standard conduits. In either case, the use
of the Herschel leaves us with a reflector that pro-
duces more than one reflected glider, resulting in
an interesting form of glider gun in which we re-
circulate one glider on a closed path, producing an
unbounded number of gliders as a product.

Buckingham designed an even faster (672-step)
stable reflector using Herschel conduits without the
block-repair mechanism.! This relies on the fact
that a Herschel can be moved to nearly any desired
position with conduits, and converted directly into
a variety of simple, stable objects, several of which
are quite readily converted into a Herschel after a
collison with a glider. The new reflector is based
on a collision with the 5-cell object called a boat.

The block-repair mechanism remains useful in
constructions in which we need to convert a glider
into a Herschel that is not destroyed when repairing
the collision damage. Such constructions are used
in the next section.

IThe record holder as of this writing, at 623 steps, was designed
by Stephen Silver [1997] using the block-repair mechanism and a
new R-pentomino-to-Herschel conduit.
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FIGURE 9. 747-step stable reflector.

Proof of Theorem 1. Hickerson’s reflector produces
several gliders reflected 90° with an even phase
shift. Thus two such reflectors can be combined
into a 180° reflector with a phase shift of 0 and
sufficient path clearance to satisfy the conditions
of Lemma 4. Combining this with Lemma 2 we
have, finally, a proof of Theorem 1. O

7. LOW-DIAMETER OSCILLATORS

While the stable-reflector oscillator is optimal in
terms of cell population, its diameter grows lin-
early with period. There is no reason why this
must be the case in general. In fact, there are con-
structions that achieve very high periods and very
low diameters. These have been known for many
years, though they can only be used to obtain a
limited set of periods. A useful component for such
a device is a toggle memory that is triggered by a
glider and that reflects a new glider on 1-0 tran-
sitions. Such devices can be chained together into
a ripple counter, a well known element of digital
design [Wakerly 1994].

Thus, the first idea for obtaining a high period is
to send a stream of gliders into a chained sequence
of such toggle memories. If the input period is
n, the first toggle will have output period 2n, the
next 4n, etc. By eliminating the final gliders, we
obtain an oscillator of period 2*n using a chain of
k toggles. Assuming a compact layout technique,
such as adding reflectors at intervals to snake the
path into a more compact form, this can all be
placed in a pattern with diameter O(\/E )

Something like this can be built entirely of de-
vices that have been known for years. Until re-
cently, these periods had to be multiples of some
known set of base periods n. More significantly,
this construction seems to limit us to multiples of
large powers of two. In this section, we show how
to get around these problems. This requires a more
complex design than either of our previous oscilla-
tor construction methods, so we present our results
at a higher level of abstraction. We have built a
working example of an oscillator using this tech-
nique that is compact enough (fitting in a 467 x 429
box) to view on any PC.
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Glider-Triggered Glider Gun

The first new component we need is a glider gun
that can lie dormant indefinitely as a collection of
stable objects, but when triggered by a single glider
becomes active, producing a sequence of gliders at
a regular period until stopped (for example by col-
liding another glider with it). When stopped it
returns to its original state, ready to be activated
by the next glider.

Herschel-Based Ripple Counters

Hickerson [1997] was the first to consider and im-
plement a bit toggle based on a Herschel conduit.
The idea is that the first Herschel travels through
the conduit, leaving behind a small piece of stable
debris. The next Herschel interacts destructively
with the debris, cleanly annihilating both in the
process. This gives us a conduit through which ev-
ery second Herschel emerges. Chaining k of these
together, we obtain a multi-stage conduit through
which every 2¥-th Herschel emerges. The state as

o 8 5 each Herschel enters is determined by the subset of
Ie) stages containing destructive debris.
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We will skip the low-level details, but such a de- i

vice can easily be built along the same lines as a
stable reflector. The only additional property it
must have is that it reflects a glider back into itself
along the same path as the glider that triggered it,
thus repeating the triggering process indefinitely.
This requires some care, because most Herschel
conduits do not leave any clearance behind the
emitted gliders. An exception is the 119-step z-
flip, shown in Figure 10. Using this device one can
obtain the effect of capturing an entering glider
and recirculating it around the same loop indefi-
nitely. The loop is composed partially of Herschel
conduits. Thus, it is a simple matter to output an
additional glider each cycle, resulting in a glider
gun. Moreover, one can stop the gun simply by
blocking the path of the recirculating glider.

FIGURE 11. A quaternary counter stage.

Hickerson looked for a single conduit-like con-
struction that accomplished this task, but was un-
able to find one. Instead, he composed a sequence
of stages in such a way that the last stage emitted
a glider that used the boat-bit reaction to leave
debris in the first stage. This is an effective solu-
tion, but results in a rather large pattern. Unfor-
tunately, a single-stage Herschel toggle seems to be
a rarer object than intuition would suggest: after
some trial and error using a computer to enumerate
perturbations, we were unable to find one. (Dieter
Leithner [1997] constructed such a device shortly
after we completed the initial draft of this paper.)
Callahan, however, found a single-stage quaternary
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counter based on the 112-step turn stage. This is
shown in Figure 11.

The quaternary counter is like the bit toggle, but
only allows every fourth Herschel to pass through.
This is actually preferable for current purposes,
since we would like to store a counter state as
compactly as possible. The debris consists of a
block in each case, and this block can be in one of
three positions. When the block is absent, a Her-
schel passes through, leaving a block in the position
marked 0 in the figure. When the next Herschel
reaches the stage, it reacts with the block destruc-
tively, leaving only a new block, now in the position
marked 1. Similarly, the next Herschel moves this
to the position marked 2. At this last position,
an ancestor of the Herschel entering from certain
stages cleanly annihilates the block and vanishes in
the process. This clears the counter stage so that
the next Herschel can pass.

Lemma 5. For any k we can build a stable pattern
with diameter O(\/E) that emats one Herschel for
every 4* Herschels that it absorbs.

Proof. We need to build a Herschel path contain-
ing k quaternary counters. When these allow a
Herschel to pass, they operate equivalently to 112-
step turns, so the geometry is identical to building
a conventional Herschel path. It is straightforward
to build such a path in a snaking pattern such that
its length grows asymptotically with the square of
its diameter. 0

Burst Reflectors

We can combine such a 4% counter with a trigger-
able glider gun to obtain a 4*-burst reflector. This
absorbs one glider and emits a stream consisting
of exactly 4* gliders in succession. Such a device
works as follows. We assume we have a trigger-
able glider gun that leaves its Herschel intact after
recycling a glider into its input. We send this Her-
schel through a 4* counter. The Herschel emitted
by this counter eventually is further sent on such
a path as to interfere with the recirculating glider
and de-activate the gun. Thus the gun will output

exactly 4% gliders before emitting the Herschel to
de-activate itself. Clearly, a lot of details are left to
be resolved in practice. It was straightforward to
construct a 16-burst reflector explicitly using two
quaternary stages, and there does not seem to be
any difficulty in extending this method.

It should be kept in mind that the delay through
the counter stages grows at least linearly with k.
A conservative analysis would require the period of
gliders in a burst to increase linearly with k. Hick-
erson [1997] has observed that this is unnecessary.
To see this, assume that the counter counts from
0 to 4* — 1, emitting a Herschel to de-activate the
gun when its state changes to 0. By the time the
gun is de-activated, it has inserted some number
1 of additional Herschels into the counter. Hence,
the counter stabilizes at state ¢ rather than 0. Re-
gardless of the value of i, the burst reflector based
on it (initialized to state i) must output exactly
one glider for every state transition from ¢ back to
i again. This is exactly 4% gliders.

In any such construction, we must be careful
about timing the de-activation of the gun. We can
eliminate most timing constraints by using the final
Herschel to create a block to suppress the recircu-
lating glider. We have to insure that a glider is not
present when the block is being formed, but this
can be accomplished using a sequence of conduits
to realize an appropriate delay. Clearly, there are
also lower limits on the period of a burst reflector,
based on Herschel packing and the lowest attain-
able period for a triggerable glider gun. Combining
all of the above, we have:

Lemma 6. For sufficiently large q and for all k >
0 there is a 4*-burst reflector of diameter O(\/E)
that absorbs one glider and emits a period-q burst
of 4% gliders. O

Programmable Delay Reflector

The burst reflector is useful as a sort of system
clock, but suffers from its dependence on powers
of 4. Tt is still not clear how to use it to build
an arbitrary-period oscillator. We now consider
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the component that allows us to adjust the period
more or less arbitrarily up to a coarse approxima-
tion that we will later refine. The component is
actually considerably simpler than the burst reflec-
tor, and also uses a ripple counter:

Lemma 7. There is a constant ¢ such that for any
k > 0, and any 4*-burst reflector, there exists an
integer p < ck such that for any m between 1 and
4k there is a stable pattern that absorbs a burst of
4k gliders from the reflector, emits a single glider p
steps after absorbing the m-th glider in the burst,
and returns to its initial state after receiving the
last glider in the burst.

Proof. The pattern converts each incoming glider
into a Herschel and sends it through k quaternary
counter stages. The initial state of this counter is
set to adjust the step at which the glider is emitted.
Because the burst consists of 4F gliders, the state
is reset to its initial value obliviously after the last
glider is absorbed. U

Pairing this component with a burst reflector, we
can now build a small-diameter device that reflects
a glider 180° after an adjustable delay. In other
words:

Lemma 8. There is a constant ¢ such that, for suffi-
ciently large q and for all k > 0, there exists p < ck
such that for any m between 1 and 4%, there is a

180° stable glider reflector of diameter O(\/E) that
emits its reflected glider at step p + myq. O

We combine two of these reflectors to form an os-
cillator in the usual manner. However, we need to
remember that regardless of the step at which a re-
flector emits its glider, it must still spend over 4*q
steps resetting the state of the adjustable compo-
nent, and it is not ready to receive another glider
during this time. There is no problem here as long
as we insist that one of the reflectors is set to out-
put its final glider as late as possible. This con-
struction will allow us to realize every ¢-th period
within some range. We can treat ¢ as a constant,
in practice the lowest period of a triggerable glider
gun. This construction is depicted schematically

Absorb 4F gliders.
Emit 1 glider after
absorbing m.

N

Absorb 1 glider. Absorb 1 glider.
Emit 4% gliders. Emit 4% gliders.

NS

Absorb 4F gliders.
Emit 1 glider after
absorbing all.

FIGURE 12. Schematic of an oscillator of period
(4" +m)q + O(1).

in Figure 12. We summarize the set of oscillators
realizable this way as follows.

Lemma 9. For any n, there is an oscillator of period
n' and diameter O(\/logn) such that n' < n and
n—n'"=0(1). O

This construction is a bit counterintuitive, so it is
worth considering a cycle of this oscillator, setting
m to various values in the first (adjustable) reflec-
tor. When m is set to 1, the first glider is reflected
very soon after its collision. The reflected glider
then enters the second reflector, set to maximum
delay. These two reflectors continue to operate
concurrently for most of the cycle. The first fin-
ishes shortly before the second. The second emits
its glider and then finishes, repeating the cycle. As
the initial state of the first reflector is adjusted, the
number of steps of concurrent activity is reduced
accordingly. When the first reflector is set to max-
imum delay m = 4%, there is relatively little con-
currency between the reflectors; the first finishes
shortly after emitting the reflected glider.

Proof of Theorem 2. To complete the proof of The-
orem 2 we need to be able to adjust the period n
to any desired value. This is possible using a more
conventional delay technique, because the total er-
ror is now constant. It is relatively straightforward
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to prove the following using a snaking pattern of
stable reflectors of appropriate phase shifts.

Lemma 10. For any sufficiently large n, there is a
pattern with O(\/ﬁ) diameter that absorbs a glider
and later emits another glider equivalent to the first
glider delayed by n steps. t

So, to complete the construction, we first place a
pair of reflectors to attain a period within some
constant of that desired. Next, we add a delay
component, as above, to the path of the recircu-
lating glider, adjusting the period so it is exactly
equal to n.

The construction of this section works for suffi-
ciently large periods n. For lower periods, we can
build an oscillator some other way, without affect-
ing the asymptotic bounds of the theorem. This
completes the proof of Theorem 2. O

8. CONCLUSION

Conway’s announcement of the rules of Life and
its subsequent popularization by Martin Gardner
(collected in [Gardner 1983]) led to much interest
in this elegant cellular automaton. Many funda-
mental questions were answered during an early
burst of activity, much of which was carried out
entirely by hand. Life remains a source of interest-
ing open questions to this day. In the meantime,
our understanding has been increased by over 25
years of careful study, and our tools include refined
search techniques and greatly enhanced computing
power.

The study of Life has moved beyond its early
stages, in which a limited number of known inter-
actions were combined in an ingenious fashion to
prove the existence of patterns of interest. Often
such patterns (notably, the as-yet-unrealized uni-
versal constructor) were far too unwieldy to build
explicitly. Since that time, useful interactions and
atomic patterns have been found in such abun-
dance as to defy all attempts to catalog. The ques-
tion of whether a certain kind of pattern can be
built at all has been replaced in many instances by

the puzzle of finding a particularly small or elegant
example.

This shift in focus is demonstrated by the prob-
lem of realizing all oscillator periods and the re-
lated problem of finding a stable reflector. In this
case, the early proof’s reliance on the universal
constructor would have made it hard to build even
a very large instance of a stable reflector. By com-
bining new interactions, however, we were able to
exhibit a small, convincing example of such a pat-
tern.

The search for Life patterns combines computer
search, ad hoc puzzle solving, and a variety of ana-
lytical techniques that apply to well-behaved pat-
terns such as oscillators, reflectors, and conduits.
Life’s rich structure makes it an ideal testbed both
for combinatorial search and more interactive forms
of computer-aided mathematics. We believe the
techniques demonstrated here will lead to more
methods for finding useful configurations in other
CAs of interest. Future directions include the fol-
lowing questions:

Is there a smaller, faster stable reflector (or glider-
to-Herschel conduit) — particularly one that does
not require a multiple-stage Herschel track?

Can a feasible automated method be developed to
enumerate all Herschel conduits within a given size
range?

Can the gaps in known oscillator periods be filled,
either by ad hoc constructions or a more general
uniform construction?

Can similar constructions be realized in other CAs,
particularly those not designed for this purpose?

Is there a C'A for which nontrivial negative results
hold for the oscillator or stable reflector problems?

Can the techniques used here be applied to CAs of
more general interest, such as those motivated by
physical systems?
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