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We find asymptotic formulas as n — oo for the coefficients
a(r, n) defined by

ﬁ 1 —x)"" = i a(r, n)x".
v=1 n=0

(The case r = 1 gives the number of plane partitions of n.) Gen-
eralized Dedekind sums occur naturally and are studied using
the Finite Fourier Transform. The methods used are unortho-
dox; many of the computations are not justified but the result
is in many cases very good numerically. The last section gives
various formulas for Kinkelin’s constant.

1. INTRODUCTION

In [Almkvist 1993] I gave the first four terms of an
asymptotic formula for m(n), the number of plane
partitions of n. A form for higher-order terms is
suggested there. This is false in general (beginning
with £ = 5) and this paper describes a way to
repair these errors.

More generally, let

flx) = H(l —2") = Za(r,n)x”

(hence m(n) = a(1,n) and p(n) = a(0,n)).

To find the k-th term in the asymptotic for-
mula for a(r,n) it is necessary to find very good
estimates of f(x) near the singular points =z =
exp(22) with (h,k) = 1. This is done by four
different methods in Sections 3, 4, 5 and 8. Thus
we find the expressions for

f<exp<27]rjh —t)> (1-1)

for small positive .
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Then, in Section 7, comes the experimental part
of the paper. To find a(r,n) we put z = exp(ip) in
f(x) and integrate on the unit circle (viewing f(z)
as a distribution). Then we extend the interval
of integration from [—m, 7] to (—oo,00) assuming
that the approximation (1-1) is valid on the entire
imaginary axis. We have converted a Fourier coef-
ficient to a Fourier transform. This hilarious com-
putation gives in many cases very good asymptotic
formulas. This is remarkable and I have no expla-
nation why it works so often. For example, if r = 0
we get

a(0,n) = p(n),

the number of partitions of n. The method above
gives the Bessel function I_3/, instead of I3/, in
the celebrated formula of Hardy, Ramanujan and
Rademacher. The difference is very small.

As another example we obtain all 28 digits of
a(2,100) correctly, but “only” 46 out of 65 for
a(2,300). Most of the missing digits are recovered
by using a pseudodifferential operator containing
exp(—cD™!) with D = 2L This is done in Section
8 where an Eisenstein series is used to find an ap-
proximate functional equation for f (exp(@ —t)).

In Section 6 we study generalized Dedekind sums
using the Finite Fourier Transformation.

In Section 9 the fifth and sixth terms of the
asymptotic formula for mw(n) are computed. Nu-
merically we get an error of only one or two digits
out of 28 for 7(199) and 7(200).

In Section 10 we use our method to find exact
formulas for the number of triangular partitions.
My student Goran Andersson has shown that the
method always gives the correct result if the gen-
erating function is rational (i.e., partitions into at
most r parts).

Finally, Section 11 briefly discusses the various
definitions of Kinkelin’s constant, first studied in
1860. The simplest one, found recently by Vardi
and Meurman, is

K =('(-1),

where ((s) is the Riemann zeta function.

2. PLANE PARTITIONS

Let m(n) denote the number of plane partitions of
n. Thus 7(3) = 6, since we have the following pat-
terns (see [Andrews 1976] for an exact definition):

3 21 2 111 1 11
1 1
1

By convention, 7(0) =1. Major MacMahon showed
that the generating function for m is

o0

> wn)am =] —a").

v=1

This is much more difficult than the correspond-
ing result of Euler for ordinary partitions [Andrews
1976].

The value of 7(n) grows very fast with n. E. M.
Wright [1931] showed that

K 7/36 9
7T(’n)N e a (

s )" explatan i),

n
where
=1
a=(B)=>

1

Kzz/ wlogz
0

627Tz _ 1

C. Knessl [1990] found a second term of size ap-
proximately equal to the square root of Wright’s
term. For the actual computation of m(n) this is
rather useless since the error in the first term is
much larger than the second term. This depends
on the fact that the exponential is not the cor-
rect function for approximating 7(n). In [Almkvist
1993] the following formula

m(n) & 1) + pa() + -

is given, where

o1 (n) — eKa13/24

o (—Z 2(2i-+1)1¢ (20) ¢ (2i+2) D%) =

i(2m)tit?

=1
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with
D=—

and
00
x2u+’y 1

9(z,7) = z_; T (20 + )

Formulas for ¢,, p3 and ¢, are also given. The
form for higher-order terms is suggested. This is
false in general (starting at k& = 5). The constant
¢, depends on h (the k-th term corresponds to the
behaviour of [[(1 — «¥)™" at the singular point
exp(2mih/k)). This paper describes the author’s
work to repair these errors. It will lead to many
new problems, some of them, possibly more inter-
esting than the original problem. To begin with we
generalize the problem to

flx) = H(l —zV) = Za(r,n)x”.

Thus

a(0,n) = p(n) = number of partitions of n,
a(l,n) =7(n) = number of plane partitions of n.
To find the asymptotic behaviour of a(r,n) as n —
oo it is necessary to study f(x) near its singular

points = exp(2mih/k), where (h,k) = 1. This is
achieved by substituting

x = exp(2wih/k —t)

and letting ¢ — 0. The main term will come from
the point # = 1 and we put z = e *.

We will now describe four different methods (la-
belled A, B, C, D) to find the expansion of

f(exp(2mih/k —t))

ast — 0.

3. METHOD A: THE ABEL-PLANA FORMULA

This great formula, which seems to be almost com-
pletely forgotten, is a concise version of the Euler—
Maclaurin summation formula. If A(z) is a function

behaving nicely at co (see [Henrici 1974, p. 274] for
a precise statement), then

- * h(0
S hn) :/ W) do + MO
0 2
0
- [ h(iy) — h(=iy)
— "t dy.
—H/O T y
We want to study

g(t) =log f(e ZV log(1 —e™").

Hence put
h(z) = —2" log(1l — e™™)

in the Abel-Plana formula

g(t) = —/ 2" log(l — e ) dw
0
% ()" 1 1— —ity\ _ (__ s ™ 1— ity
[ b= i i),
0 ey — 1
Expanding log(1 — e **) in Taylor series and using

T _ P+ dw+l) - (=)
/o ey — 1dy B (2m)v+L " 2sin(vr/2)

(and assuming for the moment that v is not an
integer) we get

vt [y

C(—V) = —25in7 ; mdy
and
, _ .0
¢'(—v) = mwcos 5 /0 762”9—1dy
v [ y“logy
—I—2$1n7 . m
Hence
r!I¢(r+2) ,
g(t) = TJFC (=r) = ¢(=r)logt
(1—
+ (- +ZC V=)
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In Section 7 we will show how we can find the first
approximation ¢;(n) of a(r,n) using the formula
for ¢g(t) above. Using the functional equation

Flat

1= o
for
fl)=[a-a")"",

we can easily obtain the second term corresponding
to the singular point x = —1. However, it seems
hard to find the higher-order terms, corresponding
to « = exp(2wih/k), by this method.

4. METHOD B: DIVERGENT SERIES

This “method” should be used with care. It is
easy to lose some terms. It is mentioned here since
it was in this way that I found the generalized
Dedekind surmns.

We wish to study f(z) = [[~,(1
x = exp(2mih/k). Hence we put

— x¥)™"" near

x = exp(2mih/k —t)
and take the logarithm
g(t) = log f (exp(2rih/k — 1))

=— Z v log(l — exp(2mivh/k — vt))

v=1

Z e " exp(2mihur k)

1w
oo
E 6 —qu(kt)
- o0
J=1 ¢=0

= Sl +Sg

I
||M8

l
z

~(kaetvt oxp(2mijrh k)

22
z:: qk+J

The summand S; = 1 f(e™*") is known by the
Abel-Plana formula. In order to compute S5 we
first sum over q.

Lemma 4.1. Let 1 < j < gq. Then

~(kat)u 1 T T
— 2 1ogu—logk — Zcot 2T
Z kq+ k(og“ BN TRty

q=0
— 2ujm [Tk
+ cos . log(Zsm?)
p=1
 (=1)k (J/k) »

v=1

where B, (x) is the Bernoulli polynomial of degree
v.

The proof uses the value of ¥ (j/k) (where 1(z) =
I'"(z)/T'(z)), which was known to Gauss. We get

w|'—~

logt—logy—logk-l—gcot%

Z Z exp(2mijvh/k)

kz exp(2muji/k) log (2sm?)
f: DB )

pop!

Then, summing like Euler, we get
D v =)
1
Z v logr = —('(—r).
1

By formally differentiating

oo

> e = Licot(a/2) - 1)

1

r times we get

o0

Zyre”’o‘ =3 (;z) cot™ (a/2)

1
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This gives rise to a very interesting term of S, (for
even r), namely

% > L > o <2mkjuh)
1 < Jm () (JhT
= 15(2i) 2- cot<?) cot <T)
= mis(r, h, k),
where
k— . :
0008) = g S con () o ()

is a generalized Dedekind sum.

Indeed,
4k200t( Heo (5

which is equal to the classical Dedekind sum,

s(0, h, k)

sthok) = S (/M) (Gh/R)),
where
2) — x—[z]—3 ifz¢Z,
(( )) {0 fxeZ.

The equality of these two expressions for s(h, k)
is usually attributed to Rademacher [1933]. But
the cotangent formula already appears in [Mellin
1923], in a formula that approximates []° (1—z*)™*
near x = exp(2mih/k).

Summing the other terms of S5 we get a formula
for log f(exp(2mwih/k — t)), which is close to the
correct one; but we are of course far from a proof.
In the next section we will use a safer method.

5. METHOD C: THE MELLIN TRANSFORMATION

This is by far the best method and we can even
prove an asymptotic formula for f(exp(2nwih/k—t))
as t — 0+.

Theorem 5.1. Let f(x) =], (1 —a")™"".

(i) Assume r is even > 2. Then, as t — 0+,

log f(exp(@rin/k — 1)) = ZU T2 L

+k7¢' (—r) + mis(r,h, k) + $¢(=1 —r)t, (5-1)

where

k—1

- > Braali/ (/)

s(r,h, k) =

is a generalized Dedekind sum (we use the same
notation as in Section 4, since these two s(r, h, k)
are identical; see Section 6). (If r =0 we get an
extra term —((0)logt = £ logt in (5-1).)

(ii) We have, if r is odd,

log f(exp(2mih/k —t))

! 2) 1
) R - K (-

kr
r+1

—k"((—r)logt

-1

r)log k

k—1

jh
ZBTH (4/k) log‘Qsm—Tr

Eal

'kr—i—l
312 ¢

> 1
+zy1.<

B, 12(j/k) cot(j%”)

(]

1

<.
Il

v

??‘

1/+rt1/

r+1)

~—

(BVBV+T+1

R
_|_

jh
By iri1(j/k) cot™ ™V (%)) :

Sketch of proof. We compute

g(t) = log f (exp(2rih/k — 1))

= — Z v log(l — exp(2mihv/k — vt))
53

v=1 d=1 p

Mg

exp(—y(,uk +d)t)
x exp(2mivdh/k).

Il
<}
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The Mellin transform

(s)
(nk +d)

=D(s)k™ 771 > " ((14s,d/k)
. XC(—T—FS,j/k)
x exp(2mijdh/k),

where

= 1
C(S7a):2m7

n=0

is the Hurwitz (-function.
To recover g(t) we use Mellin’s inversion formula

1 a+100
gt) = — / §(s)t ds,

270 J g ico

where a > 1+ r. We complete the path of integra-
tion to a rectangle where the left vertical side goes
through —N — 1/2 where N is a large integer.
The main term of the expansion of g(t) near t =
0 will be
ri¢(r+2) 1
Lr+2 27

which is the residue of g(s)¢~° at the simple pole
s=r+1.

The most difficult part is the calculation of the
residue at s = 0, a double pole. Expanding every-
thing at s = 0 and deleting everything of order s?
we get

g(s)t * =k"1(1 —2slogk)(1 — slogt)

0D (57 =T (e /K)
d=1j=1 (C(=r)+s¢'(—=r,j/k))
x exp(2mijdh/k),

where «y is Euler’s constant and ¢ (z) = I''(z)/T'(z)
as before. Using

jz:;log@ sin %) = log k,
kz_icot (%) exp(Zwliju) = ?((u/h))
j=1

[Rademacher and Grosswald 1972, p. 14], we get,
after some tricky computations,

Res(g(s)t™*)
= k"¢(—r)log(kt) + k"¢'(—r) + mis(r, h, k)

= _ _ /jhm
+7“+1 ;BTJrl(]/k)log 2SIH<T)‘.

The other terms are obtained as the residues at
s=—-vforv=123,....

Using the Riemann-Lebesgue Lemma one can
show that the integral on the other three sides
tends to zero as the rectangle goes to infinity and
t — 0+. O

6. GENERALIZED DEDEKIND SUMS

In Section 5, when we estimated
flo) =t =)™
v=1

at the singular point exp(2mih/k), we found formu-
las containing the functions ((—v,z), cot® (mx),
log [2sin(nz)|, ((x)), and B,;i(xz). What is com-
mon to all these functions? They all satisfy a func-
tional equation (“addition theorem”) of the type

Ead

-1

)

J

where m is a particular integer and k > 1 is any
integer. We call such a function a Kubert function
of type m. Let K,, denote the vector space of all
such functions satisfying (6-1). (In [Milnor 1983]
a different notation is used.)
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Let’s order these functions, and a few others,
according to their type:

mf
3 ((3,%), ¢(3,1—x), cot® (mz)
2 ((2,%), (1 —=x), cot™ (nz)
1 1, cot(mx)
0 Bi(z), (x)), log|2sin(nz)]
—1 By(z), A(mx), £(2,z), £(2,1—x)
—2  Bj(x), £(3,x), £(3,1—x)
—3 By(z), (4,x), £(4,1—x)
Here y
Aly) = —/0 log(2sint) dt

is the Lobachevsky function and

=\ exp(2mine
l(s,x) = Z 7(715 )
n=1

is the periodic {-function.

Theorem 6.1 (Kubert). K,
m.

15 two-dimensional for all

Thus there are linear relations like
cot ™V (wz) = C(((m, ) + (=1)"¢(m, 1 — z))
for some constant C'

r . )
(3) (6_7”8/26(871‘) + e7rzs/2€(57 ].—I))

C(1_37 ‘I) = (271')‘9

(Hurwitz’s formula).

The Fourier expansion of B,.(z) in the interval
(0, 27) shows that B, (z) is a linear combination of
l(r,x) and {(r,1—x).

We also have

im?

A(xz) = 2 By(a) - %Z(Z,x).

The Finite Fourier Transformation (FFT)

Consider periodic functions f satisfying

flz+1) = f(z)

and let k¥ > 1 be a fixed integer. We define the

finite Fourier transform fof f by

Eal

-1

flu/k)y =) F(i/k) exp(—2miju/k).
j=0
We have the inverse transformation
k—1
Flw/k) = 3 3 Fu/) exp(@rip[F)

SO

fla) =kf(1—w).
We also define the scalar product

k—

= f(i/k)g(i/k)

,_.

=0
and obtain
k(f,9) = (f,9) (“Parseval’s formula”).
Here is a small table of FFT’s:
fof
(z)) %cot(mn) (Eisenstein)

Us,z) k'75¢(s,x)

Bn(z) mkt™(i/2)™ cot™ Y (n(x))
log(2sin(mx)) v+ logk + 5 Cot(mc) +(x)

(Gauss)

By inspection (dim K,
integers m # 0,

fEKm = fEKl—ma

feK, = fleK,..

= 2) we see that, for all

Definition 6.2. For positive integers h,k with k > 1
and functions f and g we define the Dedekind sum

s(f,g;h, k) =Zf (j/k)g(jh/k).

Using Parseval’s formula we obtain the following
result:
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Proposition 6.3. k s(f,g;h,k) = s(g, fih, k).

Examples. (i) Let f(x) = g(x) = ((z)). Then

Eal
_

s(Fg:h.k) = ) _((3/R)((Gh/k)) = s(h. k)

<
i
o

is the classical Dedekind sum. Now

f(z)

and Proposition 6.3 shows that

- 2o () ()

(Mellin—-Rademacher); here we have used the fact
that f(0) =

(i) Put f(z) = B4, (%) and g(z) =

get, for even r,

i) = 5 cot(m)

f(0) =0, by the functional equation.
((x)). Then we

s hok) = — > Braali/B)(h/k)

= giay 2 () o ()

the formula referred to in Section 5.

(iii) We have the Dedekind zeta function

L(s) =(ou=r(s) =% > (m’+mn+2n*)"°
m,ne”
(m,n)#(0,0)

of the field Q(v/—=7) (see [Zagier 1986]). We want
to compute L(s) for integer s. By [Zucker and
Robertson 1975] we have

L(s) = 77¢(s) i(;)qs, v/7),

v=1

where (%) is the Legendre symbol. We consider

this as a Dedekind sum for k = 7 with
_(F
Fuim = (£),
B
9(£) = <o/

Then ) i
/7 = =ivi(£),
9(p/7) = TU(s, 1= p/7),

and we obtain by Parseval’s formula

L(s) = 77¢C(s) - 77/, 9)
:_; 2. %) (8,1 —p/7)
=2§§)( (2)+Cl(7) ran(¥))
where
:gsmflnx)

is the Clausen function. In particular for s = 2 we
get, since Cly(z) = 2A(22),

Caven@ =3 (4(F) A (F) (7))
2 2

v

(A(m/7) + A(2m/T) + A(4m /7).

7. A RAMANUJAN-STYLE COMPUTATION OF A
“RATHER EXACT” ASYMPTOTIC FORMULA

According to Hardy, Ramanujan never mastered
complex integration. But already in his first letter
to Hardy in 1913 he states that the coefficient of
" in
1
1 —2x+ 2% — 22° + 2216 F - - -

is the nearest integer to

1 (cosh(ﬂ\/ﬁ) -

L sinh(r /) ) |

v

As Selberg has pointed out, there occurs here

£ (=42)

This expression is absent in the Hardy—Ramanujan
formula for p(n), but reappears in Rademacher’s
convergent series.
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It is likely that Ramanujan used Fourier series
and Fourier transformations to obtain such a for-
mula.

Let’s show how to find a(r,n) when r is even and
greater than 2, where

oo

f@) =T[a=a)" =3 alrme.

v=1 0

Put x = e¢" and compute the Fourier coefficent,

1 (" ; -
C L[ e
2 .

This might look dangerous, but f(e®) is singular
“only” for y = 2mwih/k where (h,k) = 1, a set of
measure zero.

Then put

y=2mh/k+ ¢

and assume that the asymptotic formula for ¢(t)
in Section 5 is valid also for ¢t = —iyp, i.e.,

. . ~ a s\ (r+1)
Fexp(2mih/k + i) ~ exp ( o (ig)

+k"¢'(—r) + mis(r, h, k) — w%o)
(this is the most dubious part of this computation).

Let ¢ (n) denote the contribution to the integral
near the points exp(2mih/k) for all h = 1,2,... k
with (h,k) = 1. We also extend the integration
to the interval (—o0o, 00) since most of the mass is

concentrated near ¢ = 0. Then

er(n)
~exp(k"('(=r)) Y exp(mis(r,h, k) — 2mihn/k)
(h,k)=1
1 [ a C(—1-7)\.
e e
= exp(k"¢' (- ))A r,k,n)

X — / exp< kr+2 — ifgo) dep,

where
a=r!{(r+2),
o S(=1=1)
5 =n + 2 ’
A(r,k,n) = Z exp(m’s(r,h,k) - 27m'hn/k).
(h,k)=1
Now
a( | v\r
exp<7kr+2 > Z k” —ey 1/' —ip)~ (r+1)
and
é—u(r—i—l)—l
o0 . — _  _ifvr>1
o[ (i) = -t
TJ_x
d(&) itv=20

(as distributions).

Since & > 0 we can delete the delta function and
hence
i (n) ~ A(r, k,n) exp(kTC'(— )

Vé'V(T-i-l) 1

szvav( r+1) -1

= A(r,k,n) exp(k"¢'(—r))
X (r+D!¢(r +2) L(r-i—l a§T+1>7

krt2 7o fert2
where
Lim,z) = ; u!(m(uf— N
If
y=2xa"L(m,z™)
then

(m+D) — iy,
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A Numerical Example
Let r =2 and n = 100. Then
w1 = 23302 11343 21083 38037 18557 774.349,

s = 36126 79905 487.906,
5 = —40315 672.924,
1 = 158 721.384,
s = 6 526.089,
Vs = 245.983,
7 = —46.124,

ZI p; = 23302 11343 21083 74136 58313 036.666.

This compares with
a(2,100) = 23302 11343 21083 74163 58313 037,

so the error is 0.33. Another example is given in
the next section.

The Wilf Polynomial

In the Hardy—Ramanujan—-Rademacher formula for
p(n) there occurs the factor

A(k,n) = Z exp(mis(h, k) — 2mihn/k).
(h,k)=1
H. Wilf got the idea to use the A(k,n)’s as roots
of a polynomial

k

QUk,z) = [ (@ — Ak, n)).

n=1
Theorem 7.1. Q(k,x) has integer coefficients if and

only if k is even or a square.

There are at least three different proofs [Almkvist

1994; Almkvist and Wilf 1995; Dokshitzer 1994].

Dokshitzer’s proof is completely elementary.
There is a natural generalization

k

Q(r k,x) = H(w —A(r,k,n));

n=1

Dokshitzer [1995] has proved the following result,
again from scratch (see also [Almkvist 1994]):

Theorem 7.2. Q(r, k,x) has integer coefficients if

(r+1,k)=1 and (r+1,¢(k)) =1,

where ¢ is BEuler’s totient function.
One gets the following byproduct [Almkvist 1994]:

Irregularity Condition for Pedestrians. A prime p is
wregular if and only if the integer

p—1 '7'(' "]I'
Z cot™ (J—) cot (j—)
~ p p

15 divisible by p for some even r < p — 5.

The usefulness of this criterion is limited by the
size of the numbers. Thus for the smallest irregular
prime p = 37 we have

;;61 cot30) (;—7;) cot(%)

= 99381 1217950173 18051 1264920615 51734\
8730061612 8232760119 991858102272

=2%2.37. 6253775825 56148 47530 74079\
90686 69445 50625 05872 68309 36641 1.

8. METHOD D: EISENSTEIN SERIES

We try to compute the 65-digit number

a(2,300) = 29688 40393 33162 67875 30618 39296\
19499 14404 47685 68754 23423 51912 79016.

Using the asymptotic formula in Section 7 we ob-
tain, taking 16 terms,

16
Z ©;(300) = 29688 40393 33162 67875 30618 39296\

J=1 1949914404 4768568841 34180 54670 03154.4927.

We get an error “already” in the 47th digit. (There
is nothing wrong with the size of the terms: |¢;5| <
11—0.) The error is 871075702757 24138.4927. How
can we get rid of such a large error? Let’s go back

to the beginning. We have

o0

flx) = H(l —) = Za(r,n)ac"

v=1 0
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and

g(t) = log f(ex
ZZ—T exp(uv(2mih/k —t)).

p(2mih/k — 1))

Take the derivative

S Z Z v exp(—pv(t — 2wih/k))

,u—l v=1

= — E O'T+1 exp

n(t — 2mih/k)),

where

orp1(n) = Zdrﬂ-

d|n

This we recognize as an Eisenstein series of weight
(r+2)/2. Indeed let

G (T ZZ (m +nt) —2k

for k > 2, where the sum is over all pairs of integers
# (0,0). The Fourier expansion of Ga(7) is (see
[Serre 1977, p. 150])

(2mi
G2k( )—2C(2]€ 2k7r_1 Zagk 1

where
q = exp(2miT), Im7 > 0.
Now by modularity
at +b ok
%(CT + d) = (c1 + d)* G (7)

if (“b) is an integer matrix with ad —bc = 1. We

()= ()

take
Hh = —1(mod k).

where

We have g = exp(2mit) = exp(2mih/k —t), that is,
T =h/k +it/2n.

Then
ar+b 271
"= =H/k+
4 cT+d [k + k2t
and
4 2
¢ = exp(2mir') = exp (2miH/k — %).
Also
ikt
ct+d= o
It follows that
g'(t)
= - Z Or+1 (n)q
n=1
_(r+DCr+2)  (r+1)!
o (2mi)rt? 2(2mi)r+2 Gr2(7)
L) ikt ) (D O
T2 (27r) 2(2mi)+2 ”2( KT k2t)
_C(=1=7r) (r+D1IC(r+2)
2 - kr+2¢r+2

271'2 r+2 2 2minH 47m3n
“(kty 2 Z”T“ exp (=) e (=)

Integrating, we obain the following formula (we
know the constant from the Mellin transformation)

g(t)

= T!C,C(::;Q) trlﬂ + C(_;_ ") t+mis(r, b, k)+k"¢' (=)

(2mi)" T2k & (n) 2miH 472
O S T e () e ()

( -I-Z I/'( ) (47%n) (k%)”‘”).

This agrees with the result we got from the Mellin
transformation up to the last term. When ¢ — 0+
this term is very small.

Now we want to estimate the error caused by the
last term. We specialize to r = 2 and put

a = 2((4) = 7*/45, b= 4n.



354 Experimental Mathematics, Vol. 7 (1998), No. 4

Then
(t) = a1l + t + mis(2,h, k) + k*¢'(—2)
I =733 T 90 T
2 = 03(v) 2mivH _V—b
52 2
=2 ot7! 2
X(F e T W>
Put
c=exp('(-2), £=n+ 35

Computing f(exp(2mih/k —t)) = exp(g(t)), we
take only v = 1 in the last term. We will get the
pseudodifferential operator

—exp (2W2H> exp (— bDil) (ED‘2 +2D7 "+ Z—kZ)

k2 k2 b
(where D = d%) acting on the ¢y (n)-term.
Let’s find (formally)
—m G —1 jcj —j—m
D™ exp(—cD )" =Z( j)' D—I—mgn
7=0
- (-1)'¢ +i+
= N! e [ EAN
;]! J+m+p)!

S AN}

where J,,,;,(z) is the Bessel function.
Then (abusing the notation in first line)

. m bD!
Z exp(2miH/k)D exp(— 2 )npk (n)
(h,k)=1

- 2y (ENF/2 & 1
= A(k,n)ac" k 2(g> ;m

(GG (55

where
~ 2miH  2mihn
A ka = ( ) 27 ) - )
(k,n) Z exp(mis(2, h, k) + ? ?
(h,k)=1
For each k =1,2,3,... we get three terms (cor-

responding to m = 0, 1, 2).

The largest for n = 300 are:

=~
I
—

—85 75737 96619 63506.1407
—1 33947 24536 56529.1035
1044 84349 35559.0223

2659 98816.6964
82 98988.6074
1 29052.9901

3 76093.7907
17575.3790
408.7188

6932.2282
431.3693
13.3356

—97.1363

m =2
m=1

=l
Il
[\
Il
=N O

B
Il
wo

™

Il

W
Il

S 333 333 3383
MOH[\D&F—‘[\?O

B
Il
ot

Summing up we get
—87 10757 02757 27378.2885

which is very close to the error we got when we used
the Mellin transformation. The remaining error is
only —3240.

If we expand exp (g(¢)) further (for v = 1) we
get a second term

-1 b? —4 -3
exp(—2bD )(ED 426D +)

If we let this act on ¢, we get for

m=4 —185.8528,
m =3 —0.3.

There is a lot of cancellation. In the last sum there
are terms of order 10® but the sum is —0.3.

9. PLANE PARTITIONS, THE FIFTH AND SIXTH TERMS
For plane partitions we have r =1, so

o0

fl@)=T]a -2,

v=1

and we get a Mellin transform
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log f(exp(2mih/k —t))

281n<jh77r)‘

, ikztk_lB ) o (20

+ 5 2 Bl ot ()

s (_1)Vku+1tu

+;W(BVBV+2

v kziB (j/k) cot = 1>(jh7r)>
v+2 — .

1/ = + k

For k = 1,2,3,4 the computations in [Almkvist
1993] are correct, so let’s take k = 5. After some
computations we get (taking terms only up to D?)

Bt
o +§;Bz(,7/k)log

—i—ﬁlo
128

2
s/ a \17/24
ws5(n) ~ 2¢ (125) Zw] exp(b;D?)
2mjn 3 | a )
xcos( +a;D +c;D )g(n ﬁ’_ﬁ>’

where

_d

~dn’

a=((3),

c=exp(¢'(-1)),
wy = 51 (2sin(w/5)) /" (2sin(2m/5)) ",
wy = 5°'%(25in(27/5))"/*° (2sin(r/5)) %,

a; = 3 (2cot(m/5) + cot(27/5)) ,
ay = 1 (2cot(27/5) + cot(4m/5)),
po— 019 V5
'T2880 107
619 V5
b= 580 T 10
1 cot(m/5) cot(2m/5) )
L7 %600 ( sin®(w/5) sin®(27/5)

Cy =

1 <74 cot(2m/5) 4

cot(4m/5)
600 \ " sin®(27/5) ! >’

sin® (47 /5)
0 p2vtr=1

9(@,7) = ; AT 1)
For k = 6, which is a much simpler case, we get

3/4
p6(n) ~ $91/431/3 (i)

216

2mn 1 10503461 3
x (25in 252 (0, D+ J20SL_ PPy )
2mn 4787 N2 [
+2c0s 22 (1= M1 D2~ ) ) g(n /55, - ),
d
with D = —.
dn

Numerical Example. Let n=199. Then

If n=200 we get
Y5 = 2549.6 we = —32.1.

For ¢i,...,p4, see [Almkvist 1993, p. 24]. The
errors will be 47 and 4 respectively; 7(199) and

m(200) are numbers with 28 digits.

10. TRIANGULAR PARTITIONS

Consider a triangular array 7). of nonnegative in-
tegers a;;:

11 12 a13 T T A1,n
21 A22
a31 a32

such that
aij 2 Aigy,

If Zz‘+j§r+1 a;; = n we say that T, is a triangular
partition of n of order r. Let T, (n) be the number
of such partitions of n of order r.

and  a;; > aip15-1.
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Carlitz and Scoville [1975] found the generating function

fol2) =Y Tma =] (1 —a® 1)~

Since f,(z) is the inverse of a polynomial, T, (n) will have polynomial growth in n. More precisely, T;.(n)
is a quasipolynomial, i.e., its coefficients are periodic functions of n.
We compute (for odd k& < 2r —1)

g(t) =log f, (exp(2mih/k —t)) Z Z rtl exp(27rih,u(2y —1)/k)exp(—p(2v — 1)t),

v=1 p=0

g(s) = /000 gt)t*=tdt =T(s)k™'~° Z rtl- Z ZC (14 s,d/k)exp(2mihd(2v — 1)/k).

The computation of the residues at the poles is complicated. We specialize to r = 4 and give only the
final result

Ty(n) = p1(n) +p3(n) + @s(n) + 2 (n),

where (with & =n + 15)

¢1(n) =

of "127 T 720 3 T 112 31 T 8100

1 /€ 65¢& 11537 &5 3881¢% 500819
33527 \ 9! 12 7! 5! &)

2mn 27
0s(n) =3 13/2(52 110)Sl T_l_g 7€cosTn

2 4 1 2 2m dnm 2m
ws(n) = —% <2cos %—i&cos %) ~ 5 (2sm % (2 cot %— cot ?> + 2sin % (cot €+2 cot €>>
1 1 1
1 sin Lj +7 i sin 73(77, —; i sin 75(77, 47_ i
pr(n) = == + -
196 sin” 3 sin on sin” on sin — sin® = sin 37
7 7 7 7 7 7

The expressions in outer parentheses are all integers. We obtain an ezact formula.

Numerical Example. Let » = 4 and n = 998. Then

p1 = 654 87000 00644 21794.362848,

5 = —704.026063,
05 = 1.622400,
o7 = 0.040816,

Y1+ @3+ s + 7 654 87000 00644 21092.000001,

which agrees with 7;(998).
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11. THE LONG HISTORY OF KINKELIN’S CONSTANT

Kinkelin [1860] generalized the I'-function to the
function I'y(z). In modern notation (see [Vardi
1988]) it satisfies

1

Ta(n +2) = UIx2lx---xn!

if n is a positive integer. There is an asymptotic
formula, similar to Stirling’s formula for I':

log Ty () = 22% — (227 — L) logz — 2xlog(2n)
—K+0(z1),

where K is Kinkelin’s constant. The corresponding
constant for the I'-function is

~Llog(2m) = C'(0).

In Kinkelin’s notation, K = %log w.

The constant K has been rediscovered a number
of times and we give several formulas for it.

From [Kinkelin 1860; Knessl 1990] we have

2

N .

N2 N

K=-1 E 1 — —log N + —
1m<1n0gn 5 og N +

N —o0 4

1 1
—NlogN — —log N — — 11-1
0g 17 og 1 2) ( )
Knessl found his formula when using WKB-approx-
imation for w(n).
From [Wright 1931]:

= 2l
K=2/ LO8T .
0

11-2
eZﬂz _ 1 ( )

This is Wright’s constant in his asymptotic formula

for 7(n).
From [Kinkelin 1860]:

i 2y+1 —1
—~ (2v+1)(2v +3)°

K=24(-2)-

(11=3)

le

L
24

log4 + ¢(3log 3 + 5log 5)

1 — < 2V +1) -1 —(2v+1)
5 4
9 ; )(2v + 1) ’

(11-4)

1
K =4 —1log(2m) + / xl(z) dx . (11-5)
0

The latter series converges very fast and 60 terms
will give 48 correct digits. Kinkelin computed K
with 8 correct digits.

In 1990 I found the formulas

_ s D' -1 .
K =—Ly+log2—2+41 ; e 1
K= 21—y~ log2r + (). 11-7)
K:—g(1+2%> (11-8)

= ()

The last series is divergent but if we stop at v = 10
we get K = —0.16548 with an error of 0.00006.

From [Vardi 1988] we have

K =('(-1). (11-9)

When computing the approximations of mw(n) we
need K = ('(—1) with many digits. Cheema and
Conway [1972] computed Wright’s integral but only
with 14 correct digits.

For even positive r one can use the formula

(=) = (=1)Parl¢(r+ 1) (2m) L
Otherwise one uses the approximation

flet+h) - flx—h)

2h

f'(z) =

with h = 10~"/2. Compute with 3n/2 digits if you
want n digits.

CONCLUSION

The methods mentioned here (the Mellin transfor-
mation and the Ramanujan-type computation) can
be used to find various asymptotic formulas. We
mention some cases that have been treated.
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1. Partitions into parts of size at least r [Dixmier
and Nicolas 1990]:

oo

[[a-="

2. Partitions into parts of size at most 7:

T

[Ja—a1

v=1

3. Partitions into distinct parts of size at least r
[Dixmier and Nicolas 1990]:

o0

H(l +z¥)

4. Partitions into distinct odd parts of size at least
2r —1:

(o9}

IT @+

v=2r—1

5. Partitions into p-cores [Garvan 1993]:

m,nEL
(m;n)#(0,0)

7. [Fee and Granville 1991]

H(l — ")) = Z a(n)z"

In an unpublished paper with Meurman the follow-
ing asymptotic formula is found:

a(n) ~ cos(nm/3 + m/4) exp(0.4377log’ n + - - -)

for n < 10*2. The real asymptotic behaviour of
a(n) does not occur until n > 10%® and is unknown.

It is the author’s hope that the computations
made in this paper can be justified and, at least in
some cases, the errors can be estimated.
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