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We develop an efficient technique for computing relative class
numbers of imaginary abelian fields, efficient enough to en-
able us to easily compute relative class numbers of imaginary
cyclic fields of degrees 32 and conductors greater than 10'3,
or of degrees 4 and conductors greater than 10'°. Acccording
to our extensive computation, all the 166204 imaginary cyclic
quartic fields of prime conductors p less than 107 have relative
class numbers less than p/2. Our major innovation is a tech-
nique for computing numerically root numbers appearing in
some functional equations.

1. INTRODUCTION

Let n > 1 be a given positive integer.

Let N be an imaginary abelian number field of
degree n, hence n is even, and let N* be the sub-
field of N of degree n/2 fixed by the complex con-
jugation. Then N is a quadratic extension of N*
and the class number hy, of NT divides the class
number hn of N. We call hy = hn/hys the rela-
tive class number of N. Let fx be the conductor
of N. Then N is a subfield of the cyclotomic field
Q(¢;,) and we let Xy denote the group of prim-
itive Dirichlet characters which are trivial on the
Galois group of the abelian extension Q((;)/N.
For any x € Xn we let f, denote its conductor.
We let wn denote the number of roots of unity in
N and @Qn € {1,2} denote the Hasse unit index of
N. Finally, we let X denote the subset of all the
X € Xy such that y(—1) = —1. For each cyclic
subgroup X of Xy choose a generator 1) € X, let
ny denote the order of ¢, let N, be the norm map
from the cyclotomic field Q(¢,,) to Q and finally
let Y denote the set of such odd generators 1.
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The following equality is well known [Washington
1997]:

hn = Qnwn H —5B1
XEXN (1_1)
=Qnun [ Ny(-3Biy)
YEYS
with
B L fi:l (x) L S (1-2)
= — xx(z) = — — , -
N 2-x(2)7"
where
def
Sx = Z X(I)
1<e<fy /2

is an algebraic integer. Hence, if x has order m
then S, is in Z[(,,], the ring of algebraic integers
of the cyclotomic field Q(¢,,). We also note that
according to the Brauer-Siegel theorem log hy is
asymptotic to

%log< 1T f><>

XEXN

when fn goes to infinity. In particular, hy is usu-
ally a very large integer. Roughly speaking, us-
ing (1-1) we have to do O(fn) operations to com-
pute hy. In this paper will reduce this amount of
required computation down to O(v/fx log fn) ele-
mentary operations. Indeed, we will explain how
we can compute the exact values of the integral
coordinates of all the Sy € Z[(,,] which appear in
(1-1) and will explain how we can then compute
the exact value of hy.

However, to make our technique clear, when do-
ing relative class number computation we will as-
sume that n = 2" > 2 is a 2-power, that N is
cyclic of degree n = 2" and of prime conductor p,
and that N is not a cyclotomic field. In that sit-
uation, not only are the S, algebraic integers, but
all the B;, € Z[(>-] are algebraic integers of the
cyclotomic field Q(¢z-). Moreover Qn = 1, wn = 2
and Y{ is reduced to a set with one element.

2. THE METHOD

To begin with, for any odd primitive Dirichlet char-
acter x we will express B, as the limit of a rapidly
absolutely convergent series (see formula (2-3)).
So, let x be an odd primitive Dirichlet character of
conductor f and order m. We set

-1
; 1

T, = X(l,)e%m/f and ¢ =—1,
X ;_:1 X Z\/T X

g(z,x) =Y nx(n)e ™ (z>0) @2

n>1
and
(s+1)/2
1
F(s,x) = (%) r (%) L(s, X).

Note also that

1
Vi o
It is known that €, has absolute value equal to one
and that

3/2 3/29(x7 X)7 (2_2)

g(1/z,x) = e x”Zg(x,x) = e,

for « > 0. Therefore, for s complex we have

o S d
Fso) = [ glana 250 it Re(s) > 1,
0

and this equals

| st e s, [ glo0e P da
1 1
for any s, so we get

F(l - 37X) = 5XF(87>_<)

and we now express B;, = —L(0,x) as the limit
of a rapidly absolutely convergent series:

for s complex,

n>1

+> @F(wﬁ/f)), 2-3)

n>1
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where

X/ d:E X/ —Xedy = e X,

There are similar results for even primitive Dirich-
let characters [Williams and Broere 1976; Schoof
and Washington 1988; Seah et al. 1983] and our
method developed below could be easily adapted
to the numerical computation of class numbers of
real abelian number fields (whose regulators are
known).

In particular, (2-3) is a rapidly absolutely con-
vergent series which could be used to compute nu-
merical approximations of values of Dirichlet gen-
eralized Bernoulli’s numbers B , (see below). But
since there is no known general formula for Gauss
sums [Berndt and Evans 1981], we should know
how to compute ¢, numerically. To this end, and
since 7, is a product of Jacobi’s sums which are
algebraic integers of the cyclotomic field Q((,,), ac-
cording to the literature bearing on this question,
one usually uses known results on Gauss sums to
get a formula for n, = e". This leaves it unspec-
ified which m-th root of 7, is equal to ¢,. As in
[Schoof and Washington 1988, Section 4] and in
[Seah et al. 1983], people usually get round this
problem by computing, for each of these m pos-
sible m-th roots, numerical approximations of L-
functions and class numbers. For example, the
numerical computation of the class number of a
cyclic cubic number field whose regulator is known
boils down to the computation of L(1,x) for only
one Dirichlet L-function for some primitive cubic
character x. In all the cases they considered, it
turned out that exactly one out of these m = 3
possible choices for /7, yielded a value for the
class number which was close enough to a positive
integer to be the numerical approximation of the
class number, thus providing them with the ex-
act value of this sought class number [Seah et al.
1983]. However, if we delt with a cyclic quintic
number field, then the numerical computation of
its class number would boil down to the compu-
tation of L(1,x) for only two Dirichlet L-function

associated to primitive quintic characters y. Here,
for each of these two L-functions we would have
five possible choices for /7, and we would end up
with twenty five possible values for the class num-
ber. It becomes less likely that only one of them
is going to be close enough to a positive integer
to be the numerical approximation of this sought
class number. In fact, for cyclic quintic fields, a
slightly different approach was used in [Schoof and
Washington 1988], but it also left the authors with
twenty possible values for each class number they
wanted to compute. Luckily, each time, it turned
out that only one of these twenty values was close
enough to a positive integer to be the numerical
approximation of this sought class number.

Here, we will promote a completely different ap-
proach.

Using (2-2) at s = 1, we get ¢, = g(1,x)/9(1,x),
provided that g(1,x) is not equal to zero. We will
use (2-2) first to verify that g(1,x) # 0 and then
to compute good approximations of all €,’s for x €
XN (see Theorem 3.1). Second, we will use the
rapidly absolutely convergent series (2-3) to obtain
good enough approximations of all B, ,’s to use
(1-1) to deduce the exact value of the relative class
number of a given N. To begin with, we set

B(t,M,f)z\/%(tlog(f/ﬂ)—l-M). (2-4)

Throughout this paper we will replace various infi-
nite sums similar to (2-3) by sums up to the least
integer greater than or equal to B(t, M, f) where
t and M will be be suitably chosen. Note that
n > B(t, M, f) implies

0< F(mn?/f) <e ™ < (n/f)le ™

Roughly speaking, we will prove first that we need
compute only B(1, M, f) terms in (2-1) to compute
£, with an error not exceeding e~ (see Theorem
3.1), second that we need compute only B(3 +
e, M, f) terms in (2-3) (where ¢, is replaced by
its just computed approximation) to compute B ,,
with an error not exceeding e (see Theorem 4.2),
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and third we will show that this enables us to com-
pute the exact value of B, ,, i.e., to compute the
exact values of the the coordinates of the algebraic
integer S in the canonical Z-basis of the ring of al-
gebraic integer Z[(,,] of the cyclotomic field Q((,,).
Finally, we explain how the knowledge of these co-
ordinates will provide us with the exact value of
hn- To keep this paper short, when doing actual
relative class number computation, we will focus
on imaginary cyclic fields of 2-power degrees and
prime conductors. In that case all By , for x € Xy
are algebraic integers.

3. A CONJECTURE

In this section, we explain why it is reasonable
to conjecture that the complex number ¢(1,x) is
never equal to zero.

Theorem 3.1. Set g = g(1,x) and
Im = gm(LX) = ZnX(n)eiﬂn .
n=1

Then m > +/p/2m implies |g — | < %e—ﬂmz/f
and

|g _gm| S f
|G| |G|

Therefore, m > B(1, M, f) and |g,,| > se=" imply
19=9n| < 567, 9 #0, g # 0 and |e =g /G| <
e M/ |gm|-

Proof. Notice that x — xe~™"/f decreases for >
V f/2m. O

Corollary 3.2. 1. Whenever p is an odd prime let
gp > 2 denote the least primitive root modulo p
and let x, be the odd character modulo p defined
by Xp(gp) = exp(2mi/(p — 1)). Hence, the x}’s
with 1 < k < p and k odd are the (p — 1)/2 odd
characters modulo p. Choosing M = 20 and let-
ting Xf; range over the 773733 odd characters for
the 668 odd primes p < 5000 we get the follow-
ing table of the ten least values of |g(1,x%)| (with
1<k<(p—1)/2 and k odd), according to which

e~/ (301)

|5x _gm/§m| S 2

we have g(1,x) # 0 for the 773733 odd charac-
ters modulo any prime p < 5000. (Here ord(X’Ij) =
(p— 1)/ ged(p—1, k) denotes the order of x%.)

P k ord(xy) g1, xp)l
2161 725 432 0.00160 - - -
3041 535 608 0.00151 - - -
2767 285 922 0.00108 - - -
1559 775 1558  0.000830- -
3779 1745 3778 0.000722---
1433 273 1432 0.000618- -
3617 225 3616 0.000556 - -
3061 143 3060  0.000196- - -
3373 615 1124 0.0000802- - -
2803 1337 2802  0.00000541 - --

2. If x 1s an odd primitive quartic character of
prime conductor p then p=>5 (mod 8). Conversely,
for each prime p = 5 (mod 8) there are two odd
quartic characters of conductor p, they are conju-
gated and we let x,, be the one well defined by means
of xp(2) = i. Choosing M = 20 and letting x range
over all the 166204 odd primitive quartic charac-
ters x, of prime conductors p, we get the following
table of the ten least values of |g(1, x,)| according
to which we have g(1,x,) # 0 for these 166204 odd
quartic characters.

p l9(L, xp)| p l9(L, xp)|
5717 0.311--- 907589  0.121---
2537461 0.271 - - 105173 0.0943 - - -
2089037 0.177 - - 2958821  0.0756 - - -
114797 0.153--- 7750373 0.0356 - - -
149 0.143- - 3428861 0.0189- - -

According to this Corollary, we put forward the
following hypothesis:

Conjecture. For any primitive odd Dirichlet charac-
ter x (of conductor f) we have

g(Lx) =Y nx(n)e ™/ £0,

n>1
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Of course, if x — g(x, x) isreal valued and e, = —1
then (2-2) yields g(1,x) = 0. In particular, for
slightly different L-functions, the associated g(1, x)
can be equal to zero. Indeed, according to [Frohlich
1972] there exist infinitely many quaternion octic
number fields such that the Artin roots number
gy for their irreducible non-abelian characters 1 of
degree two of their Galois groups Hy (the quater-
nion group of order eight) are equal to —1 (how-
ever, since the exact value of €, is known, we were
able in [Louboutin > 1998] to develop a technique
for computing the values at s = 1 of the associ-
ated Artin L-functions s — L(s,), which in turn
enabled us to derive an efficient technique for com-
puting relative class numbers of quaternion octic
CM-fields).

Finally, we conclude this section with a partial
proof of this conjecture:

Theorem 3.3. Let X denote the set of odd primitive
Dirichlet characters modulo an odd prime p. Set

2 .
M, = pr— > g1,

XEX,

(and note that there are (p—1)/2 elements in X 7).
Then M, is asymptotic to p*/*/(4wv/2) when p
goes to infinity. Moreover,

p | P
1 < — —

In particular, for any ¢ < w/ (2\/5) there exists p.
such that iof p > p. then at least c\/p characters
in X, satisfy g(1,x) # 0. Therefore, there are in-
finitely many odd characters x of prime conductors
such that g(1,x) # 0.

Proof. Standard orthogonality relations give for the
sum - oy~ x(a)X(b) the value

(p—1)/2 if b=a (mod p) and a Z0 (mod p),
—(p—1)/2 if b=—a (mod p) and a #Z0 (mod p),

0 otherwise.

Thus

p—1
g k)2 (i) ?
M=% Z((Hkp)(mp)e :
r=1 k>0 [>0

g k)2t (o= rtip)?
—(r+kp)(p—r+ipe )
from which we easily deduce that M, is equivalent
first to Y27, r2¢ 2™/ and second to
3/2

r2e=2m /P i = ﬁ/ e~ 2P gy = P .
/0 4 /o 47T\/§

As for the bound on |g(1, x)|, we note that ne="""/?

is less than or equal to \/p/(2me) and we use a
comparison of series with integrals. 0

4. COMPUTATION OF NUMERICAL
APPROXIMATIONS OF B,

In this section, we explain how to use (2-3) to com-
pute as good as desired numerical approximations
of By, provided that g(1,x) is not equal to zero.

Lemma 4.1. Let x be an odd primitive Dirichlet
character modulo f.

1. (See also [Louboutin 1996)). For any f > 2 we
have

1
Zﬁe < llog f

n>1

2. Set
BLx(m) = _g <8x Zm: Xgln) eﬂmz/f
+Zl XT")F(mz/f)>
We have

[Biy — Biy(m)] < L

(4-1)
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Therefore, m > B(%, M, f) implies
2e—M
By, (m)| < .
S e iog (7 7m) + 200)

Proof. Part 2 follows from [Louboutin 1996]. As for
(4-1), using F(X) < e=*, we have

|Bl,x -

|By, — By, (m |<2— Z e ™
n>m
\/_ 7T12/f dx
m X
S / —7rz2/f dr
mm? J,,
3/2
= f/ eiﬂmZ/f O
m2m?

Theorem 4.2. Assume g, # 0 and set

ﬁ(g_mzm:

™

X(n) 6—7rn2/f

By (m) = —
17x(m) T 2"

DR X P 1))
Then m > B(t, M, f) implies

|Bix = Buy(m)]
-M

1 logf e
§<‘+H%JWWMWW”

(4-2)

Therefore, setting

3 M +loglog f
2" log(f/m)
then m > B(t,M, f) and |g,,| > e imply

3
t= 54‘0(1),

[Biy — By (m)] < 2¢

Proof. According to (4-1),
Lemma 4.1, we have

(3-1) and part 1 of

|Bix =B (m))]
< |Biy = Biy(m)|+|Biy (m) = By, (m)]
f3/2 em?/f f3 /2 2
Sﬂmze /—i— 2] m|( og f)e . g

For numerical computation purposes, we note that

F(X) = zx/f/oo e du

anJrl

=vVrX —2 "
Z (2n +1)(n!)’

a rapidly absolutely convergent series which is use-

ful for numerical computation of F'(X) when X is

small. Moreover, we have

Xe=X

F(X) = 1

X
+2_|_...

(see [Wall 1948, pages 356-358]); this is useful for
numerical computation of F(X) when X is large.

5. DETERMINATION OF B,

We now explain how our method provides us with
an efficient technique for computing relative class
numbers of imaginary abelian number fields.

To simplify, we will assume that N is a non-
quadratic imaginary cyclic field of 2-power degree
n and prime conductor p. In that case, N is the
maximal subfield of 2-power degree of Q((,), hence
p determines N and n, and we will let N, de-
note the only imaginary cyclic field of conductor
p and degree n. We also simplify the notation and
set h; = hltlpv Wy = Wy, Qp = QNP € {1,2},
Xnp =Xy, and X7 = X . Note that according
to Brauer-Siegel’s theorem log h,, is equivalent to
7 log p when p goes to infinity. If N, is not equal to
the cyclotomic field of conductor p, then all B, ,’s
are algebraic integers of the cyclotomic field Q(¢,)
and 20"/2~1 times h is equal to the norm of any
of these algebraic integers. We will define a partic-
ular generator x, of X, , and will explain how we
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can compute exact values of the rational integers
a; which are such that

(n/2)—1
Biy, = Y. alh

k=0

The idea is to compute good approximations of all
the B; s, to express each a; as a linear combina-
tion of these B, , and to use the fact that all the
a’s must be rational integers to deduce their exact
values from their good enough numerical approxi-
mations. We finally explain how we compute the
exact value of b, from these a;’s.

Let n =2" > 2 be a given 2-power.

Let p be an odd prime such that p =1 (mod n).
Since the multiplicative group G = (Z/pZ)* is
cyclic of order p — 1, then

H={zecG:z" V" =1}

is its unique subgroup of index n. Let n, be defined
by

n, = min{a > 1:a® 1?2 =

(%) = _1}7

where (5) is the Legendre symbol. Then n, has
order n in the quotient group G/H. If x is a char-
acter of order n on G then y must be trivial on H
and x is well determined by the image x(n,) = ¢
which must be some n-th primitive root of unity.
For any © € G we have y(z) = ¢* if and only
if x(z/ny) = 1, hence if and only if =/n} € H,
hence if and only if (x/nk)®=D/" = 1. Setting
m, = nF~H/" (modulo p) we get the following ef-
ficient technique for computing the values of x:

x(x) = ¢*

where k, = min{k € {0,1,2,---,n—1} : 2~V/7 =
m? (mod p)}. Note also that we have x(—1) =
X(nép_l)/2) — C'r(zp_l)/2 = (_1)(1’_1)/”7 so that X is
odd if and only if p = 14+n (mod 2n). We shall x,

denote the character modulo p well defined by

Xp(1p) = Ga = exp(2mi/n).

Proposition 5.1. Let N be a non-quadratic imagi-
nary cyclic field of prime conductor p and 2-power
degree [N : Q) =n =2" > 4. Set (,, = exp(2mi/n).

1. We have p =n+1 (mod 2n) and for any prime
p = n+ 1 (mod 2n) there exists exactly one
imaginary cyclic field of conductor p and degree
n, to be denoted by IN,,.

2. If p=n+1 then N, = Q((,), w, = 2p and
Q, =1

3. If p>n+1then w, =2, Q, =1, h, is odd
(use [Washington 1997, Theorem 10.4 (b)]),

_ def ; _ 2
hp = th = 2n/2 NQ(C!L)/Q(BLXP)’ (5_1)

and
(n/2)-1
Biy, = Y all € Z[G)]

k=0
is an algebraic integer of Q((,) where each

9 » 9 n—1 o
ax = = Trg(e, )0 " Buy,) = = D " Buy
i=1

i odd

18 a rational integer, which according to part 1
of Lemma 4.1, satisfies

1
jar] < max [Bi| < 5—vp(logp +2)

Finally, all these ay, are odd.

Proof. If one of these a;’s were even then all of them

would be even, 2/2 would divide Nogenyso(Brx,)

and h, would be even (use 5-1), a contradiction.
[l

Now, let p = 1+ n (mod 2n) be given and let us
explain how we compute h,,, the relative class num-
ber of the imaginary abelian field of degree n and
conductor p. To begin with, we use Theorem 3.1 to
verify that for all the x € X we have g(1,x) # 0.
We have not yet found any y such that Theorem
3.1 would not imply g(1,x) # 0. Then we use
Theorem 4.2: we let m be the least integer greater
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than or equal to B(2 4 ¢, M, f) and compute ap-
proximations B ,(m) of all By, for x € X (in
practice, we choose M = 15). Setting

92 n—1
==Y ("B (m)

n i=1

i odd

we get |ap — a| < 2¢7M, so that a; is the near-

est integer to a,, and we have computed the exact
values of all the a;’s. It is worth noticing that the
absolute values of all the B, ,; (m) being less than

‘;—f (log f+2), then even for very large values of p we
need only work with complex numbers of reason-
able absolute values to compute the exact values
of the coordinates of B .

It remains to explain how we compute h. . Here
of course, we need to work with large precision
arithmetic on integers. Setting S,(r) = B, €
Z[¢,] and

Sp(8) = No(eusn) /e (Sp(i + 1)) € Q(¢x)

for 1 <7 <r—1, we can write

2i-1
Sp(i) = > ai(i)S.
7=0
with
20—t N\ 2 201 2
Sp(i) = < a;(27) i) _C2'< a;(2j+1) §:>
j=0 j=0
201 20—t
=Y AG =) w()E,
=0 j=0

where Ay = (a;(0))?, Ay, = —(a;(2° — 1))?,

min(7,2°71—1)

A; = >

k=max(0,j—(2¢~1—1))

a;(2k)a;(2j — 2k)

min(j—1,2°"1—1)

-

k=max(0,j—2¢—1)

(for 1 <j<2'—2)and a; 1(j) = A; — Aj 0 (for
0 < j <27!'—1), which enables us to compute the
exact value of the positive integer

Sp(1) = Ny(eyjo(Biy,) = 2027 hy .

Since we do not have any positive lower bound
on the absolute values of the g(1,x)’s, for we do
not even know how to prove they are never equal
to zero, we cannot give any proved upper bound on
the number of elementary operations our algorithm
requires for computing h, . However, in practice,
lg(1, x)| is never very small so that we may use the
bound B(2 +¢, M, f) with M = 15. We have pro-
grammed our formulas in Kida’s language Ubasic,
which allows fast arbitrary precision calculation on
PC’s.

For example, let N, be the imaginary abelian
field of degree 32 and conductor p = 10'° +97. We
get minigigy—s lg(1,x})| = 456 382.26---, By, =

15 S
D ko @rCly with

k ap k Ay k Ay k Ay
0 —4809 | 4 421 8 3991 | 12 —-7377
1 —2705 | 5 1933 9 2781 | 13 —7021
2 7729 | 6 819 | 10 —13879 | 14 —4091
3 7

2979 2541 | 11 —2221 | 15 o937

and h,; = 22391 83221 41405 05711 42075 03659
49593 37650 55905 64162 98557 82256 60609 ~ 2 -
1054,

Now let N, be the imaginary abelian field of
degree 32 and conductor p = 10" 4+ 609. We get
minigicp—s lg(1,x})| = 173 010 991.29 -+, By, =

15 S
D ko @iy with

k ap k Ay k Ay k ap

0 —216157 |4 —213847| 8 —160929 |12 152601
1 —-211319|5 —264627| 9 35681 |13 —271679
2 7435716 —25413 |10 309661 |14 388853
3 396321 |7 —238953 |11 —15135|15 537675
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and h, = 10 57160 41460 14284 21537 30049 35283
89944 64043 49937 90979 09467 19576 76809 23876
07191 38750 25726 21601 ~ 10°*.

6. THE IMAGINARY CYCLIC QUARTIC CASE

We now focus on imaginary cyclic quartic fields
of prime conductors p = 5 (mod 8), for here we
almost have an explicit formula for €, . Note that

n, = 2 and N, = Q(y/—(p +b\/p)), where p =
a® + b? with a > 1 odd and b even.

Proposition 6.1. Let p = a®> + b* = 1 (mod 4) be
prime and set

_ |ptayp b [p—ayp
a, = 5 +Z|b| 5 .

1. For o € Zl[i] coprime with m1 = a + ib let the
quartic residue symbol [2] € {1, %i} be defined
by o~ V/* = [2] (mod 7). We have

[g} - (_1)(17*1)/47;*@/2_

™

2. Let p = a®* + b* = 5 (mod 8) be prime, where
a=-1 (mod4) and b = 2 (mod 4) are ratio-
nal integers. Hence, ab = 2 (mod 4). Choose
the sign of b so that

i = 2] =i,

™

i.e., so that ab = 2 (mod 8). Then, for some
gp = 1, we have 7, = €,

Proof. We may assume that a is odd. We let ()
denote quadratic residue symbols. We have

- - )
= (= 1)/ /4 (%)

(for [£] = i®»=D/*) and a(1 +i) = a+ b (mod )
yields

()= ()
(455 - (2) (2
- (ﬁ) - (|ffb|> - |aib|>

_ (a4 -1)/4

If the sign of b is chosen as required, then according
to part 1 we have x, = (/m), where 7 = a+ b and
the desired result follows from [Ireland and Rosen
1990, Lemma 6 on page 121 and Proposition 9.10.1]
which yield 'rﬁp = 7/p.- Note also that according to
[Berndt and Evans 1981] there is no known efficient
technique for computing numerically this sign ¢,,.
O

Once we have proved, using Theorem 3.1, that
g(1,x,) # 0, and once we have computed good ap-
proximations of €, ,, we can deduce the exact values
of x1 = ¢, =1, /oy, = i\/pey, [0y, and T, = €y,
Then, according to Lemma 4.1 and since By, =
&+ yi is in Z[4], we need compute only B(%, M, f)
terms to determine the exact value of B, 6 and
we end up with an exact value for L(1,y,). For
example, with p = 10'° + 61 = 88795% + (—45994)?
we found €, = +1, By, = 12099 + 205074, h, =
$|Bi g, |* =283 461 425 = 5% - 13 - 872169 and

7'[' —

L(1,x,) = ——=¢,,B1x, =B, /7y
\/13 v IAP IAP v

20507 + 12099¢

[p+88795p . [p—88795,p"
2 T2

= 0.715907801 - -- — 0.216809690 - - - ¢

Note that we could not have computed 7, or B, ,
easily by simply using their definition, for this p is
much too large. Here are two more examples:

1. If p = 10 + 133 = 99199672 + 12626382 then
e, = —1, By, = 145937 — 32094017 and h; =
5 160 776 193 385.
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2. If p = 10" 4 37 = 17936879% + (—26043586)”
then €, = —1, B, ,, = —9475929 + 163987i and
h, =44 910 061 074 605.

Proposition 6.2. There are 166204 primes p = 5
(mod 8) less than or equal to 107. For 82204 out
of them we have €, = +1 while for the 84000 re-
maining ones we have €, = —1.

Theorem 6.3. For any prime p =5 (mod 8) let h;
denote the relative class number of the tmaginary
cyclic quartic fields of conductor p. Then

1. For the 64 primes p =5 (mod 8) less than 1621
we have hiy < p/5, but hiz,, = 333.

2. For the 814 primes p = 5 (mod 8) less than
29989 we have hy < p/4, but hygggy = 8325.

3. For the 11878 primes p = 5 (mod 8) less than
578029 we have hy < p/3, but hyrgome = 198725.

4. For the 109542 primes p =5 (mod 8) such that
p < 6389629 we have h < 2p/5, but hgzggeae =
2765413.

We have not been able to find the smallest prime
p =5 (mod 8) such that h; > p/2. Nevertheless,
we note that there are 77 primesp =5 (mod 8) less
than 1679516029 such that yx,(¢) = +1 for the first
nine odd primes ¢ € {3,5,7,11,13,17,19,23,29}.
They all have relative class numbers h less than
P/2, but higrosie020 = 904595821 > p/2. It can be
proved that for any ¢ > 0 there are infinitely many
primes p = 5 (mod 8) such that h, > cp.

7. AN APPLICATION OF SUCH EXTENSIVE
COMPUTATIONS

To conclude this paper, we finally give one possible
use of our efficient technique for doing extensive
computations of relative class numbers of imagi-
nary cyclic fields of 2-power degrees and (large)
prime conductors: they are useful when dealing
with Catalan’s equation #? —y? = 1 (here z and y
denote relative integers, and p and ¢ denote pos-
itive integers (we may assume that p and ¢ are
prime)). This equation has only finitely many solu-
tions [Tijdeman 1976]. But to date, it is not proved

that its only solutions are the trivial ones. How-
ever, in using the following Theorem, bounds on
relative class numbers and extensive relative class
number computation, various authors [Mignotte
and Roy 1997; Steiner 1998] have lately proved
that if Catalan’s equation has a non-trivial solu-
tion (x,y,p, q) then min(p, q) must be large.

Theorem 7.1 [Schwarz 1995]. Let p # q be odd
prime numbers and let N, denote the imaginary
subfield of 2-power degree of the cyclotomic field
Q(¢p). Then Catalan’s equation z? —y? =1 has no
non-trivial integral solution if p~* # 1 (mod ¢?)
and q does not divide h, .

Let us sketch how they use this Theorem. First,
assume p = 3 (mod 4) and p < ¢. Then N, =
Q(y/—p) is an imaginary quadratic field and we al-
ways have h~ < p. Therefore, if Catalan’s equation
z? —y? = 1 has a non-trivial integral solution then
p? !t =1 (mod ¢*). Now, assume p = 5 (mod 8)
and p < ¢g. Then N, is the imaginary cyclic quar-
tic field of conductor p and we do not always have
h, < p. However, according to our computation,
if p < 107 and if Catalan’s equation z? — y? = 1
has a non-trivial integral solution, then p?~! = 1
(mod ¢?). We refer the reader to [Mignotte and
Roy 1997] for a lesser trivial and more comprehen-
sive exposition of the usefulness of such relative
class number considerations to prove that Cata-
lan’s equation often has no non-trivial solution. We
also refer the reader to [Steiner 1998].
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