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The theory of classical waves in periodic high contrast photonic
and acoustic media leads to the spectral problem

—Au = Aeu,

where the dielectric constant g(x) is a periodic function which
assumes a large value € near a periodic graph ¥ in R* and
is equal to 1 otherwise. Existence and locations of spectral
gaps are of primary interest. The high contrast asymptotics nat-
urally leads to pseudodifferential operators of the Dirichlet-to-
Neumann type on graphs and on more general structures. Spec-
tra of these operators are studied numerically and analytically.
New spectral effects are discovered, among them the “almost
discreteness” of the spectrum for a disconnected graph and the
existence of “almost localized” waves in some connected purely
periodic structures.

1. INTRODUCTION

Photonic crystals, or photonic band-gap structures,
are artificially created low-loss periodic dielectric
materials, whose characteristic property is the ex-
istence of stop bands or gaps in the frequency spec-
trum of electromagnetic waves. If the wave fre-
quency falls in a gap, such a wave cannot propagate
in the medium. The gaps arise as a result of mul-
tiple scattering and interference of waves. Acoustic
analogs of such media can be also considered. Pe-
riodicity of the medium is the natural environment
for spectral gaps, due to the well known band-gap
structure of spectra of periodic differential operators
[Ashcroft and Mermin 1976; Eastham 1973; Kuch-
ment 1982; 1993; Reed and Simon 1978]. Due to a
rich variety of expected important applications, the
quest for creation of photonic crystals is very ac-
tive now. One can find information about this area
of research in [Bowden et al. 1993; Joannopoulos
et al. 1995; John 1991; Leung and Liu 1990; Sou-
koulis 1993; Villaneuve and Piché 1994; Zhang and
Sathpathy 1990]. The questions of possibility of cre-
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ating band gaps, of relations between the geometric
and physical parameters of a medium and its spec-
tral structure, and of reliable numerical analysis are
among the most important ones. Until recently, the
research had mainly concentrated on experimental
and numerical study of photonic band-gap struc-
tures. Mathematical analysis of the problem was
started in [Figotin 1994; Figotin and Godin 1997;
Figotin and Kuchment 1996a; 1995; 1998a; 1996b;
1998b]. In particular, it was rigorously proved that
band gaps can be created in 2D square structures.
An asymptotic analysis of the problem was under-
taken for the case when the volume fraction of the
optically dense portion of the dielectric tends to
zero, while its “mass” (the product of the volume
fraction by the dielectric constant) tends to infin-
ity. It was discovered that there are two parts of
the spectrum, having different asymptotic behav-
ior. Namely, one type of eigenmodes prefers to stay
inside the air bubbles. The corresponding spec-
trum shrinks to the spectrum of the Dirichlet or
Neumann Laplacian (depending on polarization) on
the air bubble, which leads to the opening of wide
gaps. Another type of modes propagate almost ex-
clusively inside the thin optically dense dielectric
walls. The corresponding spectrum consists of very
narrow spectral bands separated by narrow gaps.
It was shown in [Figotin and Kuchment 1998b] that
the operator responsible for this “bad” type of spec-
trum is a pseudodifferential “Dirichlet-to-Neumann”
operator on a graph. A generalization of this re-
sult will be provided in [Figotin and Kuchment —
to appear]. It is interesting to notice that differen-
tial operators on graphs (or on surface structures in
higher dimensions) also arise as asymptotic models
of mesoscopic physics in microelectronics, supercon-
ductivity, chemistry, and other areas; see [Exner and
Seba 1989; 1995; Freidlin and Wentzell 1993; Carl-
son 1997; 1998; 1999; Rubinstein and Schatzman
1998; Schatzman 1996], and references therein).

In this paper we undertake a numerical and an-
alytic study of the pseudodifferential operators on
graphs mentioned above. It turns out that spectra
of such operators display interesting and unexpected
features. We provide some discussion of these ef-
fects. This study naturally extends the analysis of
[Figotin and Kuchment 1998b].

We see the role of asymptotic models as follows.
First, they clarify many spectral properties that are
obscured in the non-asymptotic case. Secondly, they

are usually much easier to treat numerically, due
to the reduction in dimension that occurs in the
asymptotic limit. Besides, the eigenmodes obtained
for an asymptotic model can be used as a basis for
Rayleigh—Ritz type numerical methods for the com-
plete model [Figotin and Godin 1997; Ponomarev
1999]. In many cases asymptotic models take into
account singularities of the problem that impede its
direct study by, for instance, Fourier type meth-
ods. Finally, they supply information about possi-
ble spectral effects and behavior of eigenmodes, thus
providing a natural basis for subsequent considera-
tion of the complete non-asymptotic model.

In this paper we outline numerical results about
spectra and analyze the spectral effects discovered.
As explained later on, only the most “troublesome”
type of eigenmodes and corresponding spectra is dis-
cussed, namely the waves that are mostly localized
inside of the optically dense dielectric region of the
medium.

We briefly describe the contents of the paper. Sec-
tion 2 is devoted to the description of the mathe-
matical model of electromagnetic waves in photonic
crystals. Section 3 contains a description of the com-
putational algorithm used. We provide numerical
results in Section 4 and formulate related analytic
results in Section 5. Section 6 is devoted to dis-
cussion of differences between the 2D and higher-
dimensional cases. Finally, Section 7 contains con-
clusions and some open problems.

2. A MATHEMATICAL FRAMEWORK OF THE PROBLEM

The main object of our consideration is a periodic
dielectric or acoustic medium occupying R® or R?.
Properties of the medium can be described by a
scalar function e(x) on R*® or R?, which is the di-
electric constant for dielectric media, or the com-
pressibility for elastic media. We call (x) the di-
electric constant. Suppose that the medium consists
of two types of components and hence the function
e(x) assumes two values, say 1 and € > 1 (due to
natural rescaling properties, only the ratio of these
two values matters, so our assumption does not re-
strict generality; see [Joannopoulos et al. 1995]).
One can imagine that the component of the medium
with e(x) = 1 is filled with air and the one with
e(x) = € > 1 is filled with some optically dense
dielectric material. The object of our study is a
high contrast medium, where the dense component
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occupies thin walls of thickness § < 1 (and hence
of volume fraction of order 6 < 1) and the total
“optical mass” € of the dense component per unit
volume does not approach zero. In particular, €0
can be very large.

2A. The Maxwell Operator

Electromagnetic wave propagation in our dielectric
medium can be described by the standard Maxwell
equations

10B

V-D=0, VxE=——, D=c¢E, (2-1)
c Ot
and
10D
V-B=0, VxH=-—, B=uH, (2-2)
c Ot

where FE is the electric field, D is the electric in-
duction, H and B are respectively the magnetic
field and magnetic induction, and c is the velocity
of light. We shall assume that ¢ = 1 (this condi-
tion holds for most dielectric materials of interest).
The dielectric constant ¢ is assumed to be position-
dependent, that is, e = e(x) > 1. Assuming that the
wave is monochromatic with frequency w, one can
reduce this system to one of two equivalent models

Vo (cl@) 'V x H@) = (Y) Hz) @3

(&
or

w\ 2

(2) 'V x (Vx E@) = (£) B@) 4

under the additional conditions of zero divergence
V-H =0and V:eFE = 0, respectively. Hence, we
have to study the spectral problem for one of the
operators

V xe(x)™'V x (2-5)

or

e(x)™'V x Vx, (2-6)

with appropriate zero divergence conditions, where
(w/c)? plays the role of the spectral parameter. It is
well known — see, for instance, [Joannopoulos et al.
1995] — that these two problems are unitarily equiv-
alent, and hence have the same spectra. The main
question of interest is how the spectrum is related
to the geometry and dielectric constant of our peri-
odic medium —in particular, whether it is possible
to create spectral gaps at desired places of the fre-
quency spectrum.

2B. Two-Dimensional Photonic Crystals

In this paper (apart from Section 6) we deal mostly
with two-dimensional media; see also [Bowden et al.
1993; Joannopoulos et al. 1995; Maradudin and Mc-
Gurn 1993; McCall et al. 1991; Meade et al. 1992;
Plihal and Maradudin 1991; Sigalas et al. 1993; Sou-
koulis 1993; Villaneuve and Piché 1991] for the study
of 2D photonic band gap structures. Our study
will take place in the real plane R?, which repre-
sents our 2D medium, that is, a cross-section of a
2D photonic crystal. For two-dimensional photonic
crystals, when e¢(z) does not depend on the verti-
cal variable, and for the waves propagating in the
crystal’s plane R?, the Maxwell operator can be rep-
resented as the direct sum of two scalar operators.
These operators correspond to the so called TE and
T M polarizations of waves. In the T'E polarization
the electric field is directed along the plane of peri-
odicity, while in T'M polarization it is the magnetic
that satisfies this property. This splitting leads to
a decomposition of the spectrum into two subspec-
tra. The corresponding scalar eigenvalue problems
in Ly(R?) are

—V e 'Vu=M\u (2-7)

and

—Au = Jeu. (2-8)

The same scalar problems describe propagation of
acoustic waves in elastic media, so considering them
in 3D also makes sense. The case of such periodic 2D
dielectric or acoustic media, when the “air” domains
are squares and the periods form a square lattice,
was studied in [Figotin and Kuchment 1996a; 1995;
1998a; 1996b] under the condition that
e6? < 1.

e6>> 1, (2-9)

It was shown that the asymptotic behavior under
condition (2-9) is different for the spectra of prob-
lems (2-7) and (2-8). Namely, the spectrum of
problem (2-7) shrinks to the (discrete) spectrum of
the Dirichlet Laplacian on the fundamental domain
of the group of periods. In the case of square geome-
try this is just the unit cube, and hence the Dirichlet
spectrum consists of numbers 72(n?+m?), where m
and n are integers. In particular, large gaps can
be opened in this spectrum. We shall call it the
“good” spectrum. The Floquet—Bloch eigenmodes
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(see [Eastham 1973; Kuchment 1993; Reed and Si-
mon 1978] and Section 3 of this paper) are mainly
concentrated inside the air bubbles, where € = 1.

A very different asymptotic behavior is demon-
strated by the spectrum of problem (2-8), which cor-
responds to T'M polarized waves. In this case there
are two types of eigenmodes. The first corresponds
to the waves that mostly stay inside the air bubbles.
The corresponding spectrum shrinks asymptotically,
under (2-9), to the (discrete) spectrum of the Neu-
mann Laplacian on the fundamental domain (the
unit cube in this case). However, there is another,
“bad” type of eigenmodes that propagate mainly in-
side the thin areas where ¢ is large. The correspond-
ing spectrum in the limits (2-9) asymptotically con-
sists of narrow bands alternating with gaps, both of
width (£6) !, Thus spectral gaps do arise, but they
become very small. We can call this spectrum the
“bad” spectrum, since it creates obstacles to open-
ing large gaps. This description implied the first an-
alytical proof of the possibility of creating band gaps
in photonic crystals. Besides, the asymptotic behav-
ior of the spectrum in the case of square plane geom-
etry was well understood. Moreover, understanding
the nature of the eigenmodes gave some insights into
what kind of problems one can face computing these
spectra numerically. Namely, very singular behavior
of the eigenmodes of the “bad” spectrum suggests
that if one tries to use Fourier type methods without
taking into account the singularities, some crucial
spectral information can be lost. This remark is in
agreement with the effects discovered numerically in
[Villaneuve and Piché 1994], where the numerically
computed spectra of the two equivalent problems
(2-5) and (2-6) were different.

However, many important issues were not consid-
ered in [Figotin and Kuchment 1996a; 1995; 1998a;
1996b]. The main one is that only the square geom-
etry was treated. This was the natural consequence
of the adopted approach of separation of variables.
Practically no other geometry can be treated this
way. A new approach was suggested in [Figotin and
Kuchment 1998b], where an asymptotic model was
obtained under much less restrictive asymptotic con-
ditions than in the earlier papers, and arbitrary ge-
ometries were treated. We describe briefly the main
result of this more recent paper, since our investi-
gation will start from that point. Its results hold in
any dimension, but we will treat here mostly the 2D
case.

Cousider the Euclidean plane R?. Suppose that
R? is tesselated (tiled) with polygons €, and that
this tessellation is periodic with respect to a dis-
crete group I' of motions of the plane. We assume
that the fundamental domain of I' is compact. In all
our examples below I' will consist of integer linear
combinations of two vectors a and b, usually paral-
lel to the coordinate axes. Denote by ¥ the union
of all boundaries of the polygons €2,; this is a I'-
periodic graph in R* (Figure 1, top). We consider
here not combinatorial graphs, that is, collections
of vertices with assigned connections, but rather
topological graphs as one-dimensional “varieties” in
the plane consisting of segments that represent the
edges of the graph. Choose a small number § > 0
and consider the d-neighborhood ;s of X. Define
Us = R? \ X5. Now imagine that Us, which is a lo-
cally finite union of bounded domains, is filled with
air (i.e., ¢ = 1 there) and ¥; is filled with an op-
tically dense dielectric (i.e., € > 1 there). In this
way we obtain a 2D photonic crystal defined by the
dielectric function (z) (Figure 1, bottom).

FIGURE 1. A graph X (top) and the corresponding
2D photonic crystal.

In particular, we can consider problems (2-7) and
(2-8) in this setting. We will be concerned here
only with problem (2-8), which is responsible for
the “bad” spectrum.

Now consider the asymptotic assumptions

§—0, ed =W 1e(0,o00]. (2-10)
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Notice that these assumptions about the parameters
of the medium are significantly weaker (especially
when W # 0) than (2-9). It was shown in [Fig-
otin and Kuchment 1998b] that in this limit, after
rescaling A to a new spectral parameter D by setting

A= (e§)7'D,

any finite part of the spectrum (in terms of values
of D) of problem (2-8) tends to the corresponding
part of the spectrum of the problem

—Au = D(6x + W)u. (2-11)

Here 0y, is the d-function on the graph X; that is, for
any smooth compactly supported function ¢(z) on
R? the value of the distribution dx on ¢ is defined
by

(65, 0) = / () do,

where do is the arc length measure on ¥. In par-
ticular, when W = 0, i.e., when the “mass” de of
the dielectric part of a fixed volume of the medium
tends to infinity, the limit problem is

—Au = Désu. (2-12)

2C. The Dirichlet-to-Neumann Operator

The spectrum of problem (2-12) can be described
in terms of the spectrum of a Dirichlet-to-Neumann
type pseudodifferential operator on X. (Such op-
erators are currently very popular due to their re-
lation to important inverse conductivity problems:
see [Sylvester and Uhlmann 1988].) This operator
is defined as follows. Let ¢ be a function (from an
appropriate functional class) on the surface ¥. Us-
ing ¢ as the boundary data, we solve in each of the
polygons €2, the Dirichlet boundary value problem
for the equation —Awu = 0. The resulting functions
in different polygons match on the common bound-
aries, but their normal derivatives do not match.
The jump of the normal derivative across X gives
another function ¥ on X. In this way we determine
the “Dirichlet-to-Neumann” operator N : ¢ — 1.
Now the spectrum of problem (2-12) coincides with
the spectrum of the operator N.

2D. Statement of the Problem

The main goal of this paper is to study the spectral
problem (2-12) for different geometries of the graph
Y. We are interested in existence of gaps, their sizes
and locations, dispersion relations, etc. The case

when the graph X is not connected is also consid-
ered. Some interesting new effects are discovered,
namely periodicity of the spectrum, the “almost dis-
creteness” of the spectra of disconnected structures,
and the existence of strange spikes in the density of
states for some connected periodic structures. We
also provide some initial analytic explanations for
these effects. Problems (2-11) and (2-8), as well as
the complete 3D case, will be considered elsewhere.

3. THE COMPUTATIONAL ALGORITHM

In this section we describe the algorithm that was
used for numerical study of the spectral problem
(2-12). We assume that the medium under consid-
eration is periodic with periods p; and p, in the di-
rections of the variable axes x; and x,, respectively.
In other words, the group of periods is

I' = {(pin1, pane) : ny,na € Z} .
The first step of the algorithm is to rescale the prob-
lem in such a way that both periods equal 1. So,
from now on we will assume for simplicity that this
is the case.
Each elementary cell of the medium contains a
translated copy of some polygonal structure S con-
sisting of a finite number of segments S;:

S=Js;.
J

The whole graph 3 is obtained by replication S by
the group of periods. Each segment S; is deter-
mined by its length [;, the coordinates of one end-
point b;, and the unit vector s; directed along the
segment. The spectral problem in L,(R?) that we
need to solve is

—Au = Désu.

Due to the periodicity of Jyx, this problem can be
treated according to the standard Floquet theory
[Eastham 1973; Kuchment 1982; 1993; Reed and Si-
mon 1978], which says that the spectrum can be rep-
resented as the union over k = (k1, ko) of (discrete)
spectra of the following Floquet—Bloch boundary
value problems on the fundamental cell {0 <z, <1:
m=1,2}:

_AMm%:D(E:%A@>u@L
with
u(1,z5) = e u(0,23), u,, (1,75) =e

u(zy, 1) = e*2u(zy,0), uy,(z1,1) =€
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Here g, (x) is the delta-function of the segment .5,
ie.,

(85,1 0) = / pla o

and the union of spectra is taken over the set of
quasimomenta k = (k1, k) such that

0<k, <2,

i.e., the quasi-momentum k = (k;,k2) belongs to
the Brillouin zone B = [0, 27] x [0, 27].

The substitution p(z) = e*®u(x) leads to the
equation

Ap(®) = = Y (O — k) p(@)

m=1,2
- DX 04 @) )ela),
J
with periodic boundary conditions

(p(171'2) = 90(07372)7 90901(17372) = Py (07$2)7
So(xla ]-) = @(l‘l?O)J Py (1:17 1) = Pg, (1131,0).

Here Aj can be considered as an operator on the
2 2 . .
torus T? = R"/Z". Fourier expansion

o) = Z P’

nez?

reduces A to multiplication by (27n + k). For
any quasi-momentum k in the Brillouin zone, ex-
cept zero, this operator has a Green’s function. The
value kK = 0 can be avoided, since the spectrum
of the problem can be described as the closure of
the union of spectra for any dense subset of values
of quasimomenta in the Brillouin zone; see, for in-
stance, the proof of a similar statement in [Figotin
and Kuchment 1996b]. Instead of the value k = 0
some values with small |k| were chosen. (A different
type of computation was also conducted that does
include k = 0. It shows that no significant error was
made by avoiding this value.) Take k € B, k # 0,
and let Gi(x—y) be the corresponding Green’s func-
tion. Our spectral problem can be rewritten as

o) = [ aute ) (L5 )etw)ay.

Denote by t,(t) the restriction of the function ¢(x)
to the segment §;:

Y;(t) = p(b; +ts;), for0<t<1;.

Then the problem can be reformulated using one-
dimensional convolution

Nn(0) = Y / " Glb + 5, — (by +75,))(7) d,

where A = 1/D. In order to truncate it to a standard
matrix eigenvalue problem, we sample the functions
1;, setting

¥ =1;(tr),
and approximate each ;(t) using an appropriate
point-spread function B(t):

pi(t) =Y YIB(t—t,).

r

where ¢, = (r — 1)At,

Then we obtain
Apr = "y / Gr(bp+t,8,—(b;+78;))B(T—t,) dr,
or "
APy,
= Z¢;/Gk(bm+tpsm—(bj+trsj)—Tsj)B(T) dr.
J.r

Now the problem is reduced to the eigenvalue prob-
lem for a matrix G = { g } with entries

m,j
gﬁé,rj = gj(bm +t,8m — (bj + trsj))a

where the functions g;(x) are defined by

gi(x) = /Gk(a: —78;)B(T)dT.
Denote by 3;() the following extension of the func-
tion B(7) from segment S; to the whole 2D domain:
Bi(x) =d(x - s7)B(x - s;),

J

(3-2)

where s7-s; = 0. Then g; can be understood as the
2D convolution of G (x) with §;(x):

5(@) = [ Gula—),(0)de.

In order to construct the matrix G, we need to
compute the functions g;(x). The Fourier coeffi-
cients =, ,, of 8;(x) are

(3-3)

Ej,n = B(’I’l : Sj):

where B(p) is the 1D Fourier transform of B(t).
Functions g;(x) can be calculated for a fixed quasi-
momentum k € B, k # 0, as sums of Fourier series:

gj(x) = Z e? = B(n, . s;)(2mn + k)7

neZz?

(3-4)

Approximate calculation of g;(x) and hence of the
matrix G can be now implemented according to a
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truncated version of the formula (3-4). The use
of FFT makes the computation efficient. However,
precise calculation, especially of the values g;(0),
which stand on the main diagonal of the matrix G,
is necessary to obtain a satisfactory result. Here the
correct choice of function B(t) is crucial. If, for in-
stance, B(t) is the é-function (B(p) = 1), the series
(3-4) diverges. We obtained the best results with
the following choice of B(t). Let pmax = 1/(2At) be
the Nyquist frequency for the sampling step At. We
define the Fourier transform of B(t) as the once con-
tinuously differentiable spline B(p), where B(p) = 1
when |p| < 0.9pmax; B(p) = 0 when |p| > 1.1pmax,
and B(p) = a cubic polynomial when 0.9pp., <
|p| < 1.1pmax. Values of g;(x) are computed using a
truncated version of (3-4) (for |ny|,|ns] < N) on a
square grid in the unit square. In order to increase
accuracy of calculation of ¢;(0), we correct these
values adding an estimate dg;(0) of the truncation
error. We estimate the truncation error, computing
numerically the integral

,0) = [ Bl a0+ k) tde, 65

where integration is carried out over the exterior of
the square X with side 2IN +1 centered at the origin.
Now standard methods for numerical calculation of
the spectrum can be used. We used N = 2° and
At ~ 1072. We recall that the fundamental cell is
the unit square.

In the next sections we describe our numerical
results and results of some accuracy tests.

4. NUMERICAL RESULTS

4A. Square Geometry. Tests of Accuracy

In order to verify the reliability of the algorithm we
calculated the spectrum for a square lattice of in-
finitely thin dielectric rods. This structure is gener-
ated by two perpendicular segments .S; and .S, in the
unit square [0, 1] x [0, 1], as shown in Figure 2, top.
In this case the spectrum can be found analytically
by separation of variables; see [Figotin and Kuch-
ment 1998b]. It consists of numbers D such that for
some 17 > 0 the following system of transcendental
inequalities is satisfied:

<1,

D . D .
cosn—%smn coshn—%smhn <1

This gives us the opportunity to compare the solu-
tions given by our numerical algorithm with those of

S
S2

3l
30m
291
281
27T
26T
257
241
237
221
21m
207
197
187
17m
167
157
147
137
127
117
107
97
8
s
6T
o
4
3
27
1
O

r X M r
FIGURE 2. Square structure and its spectrum, as ob-
tained by the algorithm. In this and subsequent fig-
ures, the vertical axis on the right is the spectral
axis; the black vertical bars indicate the spectrum;

the jagged graphs indicate the density of states; and
the curves show the dispersion relations.

7
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the transcendental system. It is known (see [Figotin
and Kuchment 1996b]) that the spectrum consists of
bands that converge to the segments [27n, 2mn+ 7]
as D goes to infinity; the first band, corresponding
ton =0, is close to the segment [0,4]. A direct nu-
merical solution of the transcendental system gives
the following result for the first three bands:

Band number n  Beginning  End
0 0.000 4.006
1 5.759 9.425
2 12.582 15.775

Starting with n > 4, the bands practically coincide
with the intervals [27n, 27n+7].

Figure 2, bottom, shows the results obtained by
the algorithm presented in the previous section. In
this picture the spectral axis is vertical. The first
column represents the graphs of several branches
of the dispersion relation D;(k). In order to avoid
graphing surfaces, the dispersion relation is graphed
only for the values of the quasimomentum k on the
boundary of the irreducible Brillouin zone, which
is the triangle with vertices I'(0,0), X(m,0), and
M(m,m). The second column contains the graph
of the density of states over the spectral axis. (We
recall the notion of the density of states in Section
5.) The third column shows the band-gap structure
of the spectrum. The endpoints of the bands thus
obtained agree with the expected values within 0.1%
accuracy for at least the first sixteen bands.

Another accuracy check was performed as follows.
The same geometric structure, in our case the square
lattice, can be obtained by periodic replication of
different sets of segments. If the algorithm were in-
accurate there would be no reason for it to produce
the same results for these different representations.
On the other hand, if the algorithm is correct, the
spectra must agree. Thus we used a structure gen-
erated by the two diagonals of the square of side
V/2; this structure is congruent with the original one
(under a 45° rotation). Our computations in both
cases lead to the same spectrum. The discrepancy
for several lower bands does not exceed 0.1%. An-
other attempt to “trick” the algorithm was under-
taken using the four halves of these two diagonals
instead of the whole diagonals. The computed spec-
trum practically did not change. All these results
show that the algorithm is reliable.

4B. Rectangular Structures

The algorithm was applied to two structures consist-
ing of translated rectangles. The first one is gener-
ated by three segments in the unit square (Figure 3,
top). The rectangular cells have ratio 2:1 between
sides. The spectrum shows periodic behavior for
large values of the spectral parameter D (Figure 3,
bottom). For higher frequencies it appears to be the
superposition of two series of bands. The first one
corresponds to the case of the unit square structure.
The second series is the first one dilated by a factor
of 2.

The second rectangular structure consists of rect-
angles with side ratio v/2 : 1. The spectrum, shown
in Figure 4, no longer shows any periodicity.

It appears that at high frequencies each of the
two sides of the rectangular cell is responsible for
its own series of spectral bands. This would explain
the disappearance of the periodic structure of the
spectrum in the case of incommensurable sides of
the rectangular cell. In fact, this can be justified
by a separation of variables analysis similar to the
one used in [Figotin and Kuchment 1998b] and in
the previous section. A system of transcendental
equations can be written and easily analyzed. The
corresponding analytic results agree well with the
results of our numerical analysis.

“Brick” structures (with alternating rows of rect-
angles) show effects similar to the ones obtained in
rectangular cases.

4C. Disconnected Dielectric Structures

A disconnected structure is one whose periodic graph
Y. consists of disjoint compact pieces. We consid-
ered the cases when ¥ consisted of repeated dis-
joint circles, disjoint segments, disjoint crosses, dis-
joint squares, and some other disconnected graphs.
Spectra of all these disconnected dielectric struc-
tures possess an interesting property: as the band
number increases, the bands become very thin, cre-
ating what is practically a “point” spectrum. Be-
sides, several of these structures exhibit apparent
asymptotic periodicity of the spectrum.

A circle structure was generated by translating a
circle of radius 0.2 (Figure 5, top), approximated by
a sixteen-edge inscribed polygon. This disconnected
structure produces an asymptotically periodic and
“almost discrete” spectrum; see Figure 5, bottom.
The narrow bands of the spectrum are situated near
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the numbers 2n /7, where r is the radius of the circle;
this effect will be explained in a later section. Note
that 2n/r can be also written as 47n/L, where L is
the length of the circle.

The structure generated by one segment of length
L = 0.5 in the unit square and its spectrum are
shown in Figure 6. The spectrum is asymptotically
periodic, the phenomenon of “almost discreteness”
is clearly visible, and the bands are located close

AD \D
| 31w = ... g 3l7w
| 307 ;I 307
| 297 - g | 297
- 287 ZI 287
- 21w - 2T
- 26m -1 267
- 25m - 257
| 247 -1 247
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- 20m -1 207
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- 17w 177
- 16w -1 167
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11w 11w
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|- 97 497
|- 8w -| 8w
T | T
| 6T -1 67
| b -1 b
| A A
| 3T -1 37T
127 2w
A Al

‘ ‘ -0m ‘ ‘ - Om

r K X r r K X
FIGURE 3. Rectangular structure with side ratio 1:2 FIGURE 4. Spectrum of rectangular structure with

and its spectrum. side ratio v/2 : 1.



10 Experimental Mathematics, Vol. 8 (1999), No. 1

FIGURE 5. A disconnected circle structure and
spectrum. In the vertical axis, r = 0.2 is the radius
of the circles (the squares have side 1).

\ D
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8/r

6/r

4/r

2/r

0/r
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to the numbers 2n7/L. It looks like we have the
same formula for location of bands as in the case of
a circle, if we think of a segment as being double-
sided (and therefore of double length). However,
even with this double-sidedness trick, the agreement
with the formula for the circle case is much better
than for a single segment. In the case of a seg-
ment one sees an apparently regular shift from the
value predicted by the formula 2nw/L. We believe
that this reflects the role played by the singularities
(endpoints of the segment). An initial discussion
will be provided in Section 5, and a more detailed
investigation is planned for the next paper.

The cross structure (Figure 7, bottom) is created
from the previous one by adding a second segment
orthogonal to the first. Its spectrum is again asymp-
totically periodic and “almost discrete”. The bands
located right above the frequencies (2n + 1)27/0.5
bring to mind the odd-numbered bands of the pre-
vious structure (Figure 6).

An analogous effect was discovered in the periodic
disconnected structure that is obtained by repeating
a square.

It is interesting to mention the existence of an “al-
most point” subspectrum in some (but not all) con-
nected dielectric structures. This topic is discussed
in the following sections.

4D. Octagonal Structures

A structure consisting of octagons and squares can
be obtained by cutting off edges of squares in the
standard square structure (Figure 8). The spec-
trum is asymptotically periodic with a period ap-
proximately equal to 15. A very interesting phe-
nomenon is that this structure produces an “almost
point” subspectrum. One can detect it either by
looking at the dispersion relation and noticing hor-
izontal branches in it, or by noticing high spikes in
the graph of the density of states. These spikes look
numerically like eigenvalues (sometimes embedded
in the continuous spectrum), but we do not believe
that’s what they are, though at this moment we can-
not prove it. The first such band is located near the
value D = 34. The others apparently repeat with
a period close to 15. This phenomenon is rather
unusual for periodic operators. We will discuss its
nature in Section 5.

It can be shown using separation of variables that
square (or rectangular) geometry does not support
this kind of subspectrum. It is interesting therefore
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r X M r r X M r

FIGURE 8. A structure made of regular octagons. FIGURE 9. A structure made of irregular octagons;
The spectrum is computed with At = 0.00863. long segments are four times the short ones.
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to investigate in what way this subspectrum dis-
appears when the size of squares in the octagonal
structure becomes very small, so the octagons ap-
proach squares. An octagonal structure of this kind
is shown in Figure 9, where the long segments are
four times the short ones. The spectrum is still
asymptotically periodic and has an “almost discrete”
component, but the narrow bands are situated much
higher in the spectrum. Computations show that
when the small squares shrink into points, so the
octagons become squares, the narrow bands move
higher in the spectrum and apparently disappear at
infinity.

4E. Hexagonal Structure

A hexagonal honeycomb structure was generated by : 1 I
six segments of length s = v/3/3, inscribed into a ! }

rectangular cell with a height/width ratio equal to 3 : J I 147
s (Figure 10). Both the “almost point” spectrum R e

and band periodicity can be easily seen. The period >\4 1 I
is very close to >/ J I

6r _ 2m S - 12m/s

YEE - 1 1
and the “almost discrete” bands reside just above >/ I I

the frequencies 27n/s, for n =2,3,4,.... I - 10m/s
Since creating spectral gaps is one of the main >\4 1 I

goals of photonic crystals research, it is interest- >/ 1 I

ing to notice that the hexagonal structure provides — = — 8n/s

smaller density of spectral gaps than the square one.

4F. Connected-Circle Structure >/ I 6x/
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - om/Ss

A connected circle structure was generated by six-

teen segments as shown in the Figure 11. The circle, >\4 l I
of radius 0.25, was approximated by a dodecagon. >/ ] I

The narrow bands are repeated with period 4/0.25. @@ 1—m—o7m-— =~ 1K 4n/s
Comparing with the disconnected circle structure, : :

it appears that the “almost point” part of the spec- >\4 1 I
trum in the connected case is a subseries in the spec- " J I
trum of the disconnected circle structure. We will TS Trre—eeer RN - 2m/s

discuss this phenomenon in Section 5. N J I
4G. Connected-Square Structure w - 1 I 1 on/s

A connected-square structure generated by six seg- r X M r

ments of equal length, as in Figure 12, shows similar FIGURE 10. A hexagonal structure (honeycomb) and
spectral effects. It is asymptotically periodic and its spectrum. On the vertical axis, s = 1/v/3 is the
contains rather large gaps and a number of narrow height of the unit-width rectangular cells. The spec-

“almost point” bands. trum is computed with At=0.0165 and dim A = 336.
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5. ANALYTIC DISCUSSION OF THE RESULTS

In this section we provide some explanations, some-
times conjectural, for the spectral phenomena de-
scribed above. Among the interesting properties
discovered are the “almost discrete” nature of spec-
tra of disconnected structures, existence of “almost
point” (i.e., very narrow) embedded bands, and the
periodic nature of spectrum for some geometries.

We start with the square structure, then consider
disconnected structures, and conclude the section
with the existence of narrow bands for some con-
nected structures.

5A. The Square Structure

As mentioned above, and as discussed in detail in
[Figotin and Kuchment 1998b], the square struc-
ture can be treated using separation of variables (see
analogous considerations in Section 6), and its spec-
trum can be described by the following transcenden-
tal system of inequalities:

D D
cos 1 — 2—sin77‘ <1, ‘coshn — 2—sinh77 <1
n n

(5-1)
Here D is the spectral parameter and n is a sep-
aration of variables parameter. In other words, D
is in the spectrum if and only if there is a value
of n such that the pair (D,n) satisfies the system
(5-1). This approach was suggested by I. Pono-
marev. Figure 13 shows the solutions of the sys-
tem; the horizontal axis on the picture represents
D, and the vertical axis represents the parameter
7. The series of “parallel” strips depicts the set
of solutions of the first (trigonometric) inequality
in (5-1), while a single “diagonal” strip that ob-
viously degenerates into a straight line shows the
solution of the second (hyperbolic) inequality. The
spectrum corresponds to the D-coordinates of the
intersection of the two sets. The vertical lines on
the picture correspond to the values D = nw. It is
clear from the picture—and it can be easily proved
analytically as in [Figotin and Kuchment 1998b] —
that the spectrum very quickly approaches the se-
quence of intervals of length 7 separated by gaps of
same length. The Dirichlet-to-Neumann operator
can be considered as an one-dimensional periodic
operator (a pseudodifferential operator on the one-
dimensional topological graph ¥). An interesting
feature here is that the spectrum becomes asymp-
totically periodic when D — oc. In particular, the

length of gaps does not go to zero, approaching a
constant non-zero value instead. This is an unusual
property for one-dimensional periodic operators; see
[Eastham 1973]. On the other hand, problems of
mesoscopic physics lead to some Schrodinger type
periodic operators on graphs with singular interac-
tions, whose spectra also show similar effects; see
[Avron et al. 1994; Exner 1995].

5B. Disconnected Structures

We believe that the feature of “almost discreteness”
of the spectrum of the Dirichlet-to-Neumann oper-
ator is common to all disconnected periodic graphs
and to more general disconnected surface structures
in higher dimensions. We will provide a crude idea
of an explanation first, and then elaborate it for the
case of smooth disconnected structures.

Let K be a fundamental cell of our periodic struc-
ture Y. If the structure is disconnected, we can
choose a cell K in such a way that its boundary has
no intersection with the structure. Let the segments
S, belong to the interior of K and constitute the part
of the structure X that is contained in K. Replicat-
ing them by the action of the discrete group I' of
periods, we obtain the whole disconnected structure
3. Now imagine that we have a non-zero solution
u(z) in K of the problem

—Au(z) =D (Z 8, (m)) u(x), (5-2)

such that u = 0 in a neighborhood of the boundary
OK of the cell K. In fact, due to standard unique-
ness theorems for elliptic equations such a solution
cannot exist, but we will ignore this for a moment.
If we have such a solution, we can extend it to a
Floquet—Bloch solution with any quasimomentum.
To do this, we define u(x) as zero outside of the fun-
damental domain K. Now we can define the func-
tion

ug(x) = Z u(x — y)e*.

This function obviously satisfies the equation
—Aug(x) = Dig(x)ug(x)

and the Floquet condition with quasimomentum k.
This means that the number D belongs to the spec-
trum for any quasimomentum. In different terms,
there is a constant branch in the dispersion rela-
tion. Then standard Floquet theory [Eastham 1973;
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FIGURE 13. Solutions of the transcendental system for the square structure.

Kuchment 1993; Reed and Simon 1978] shows that
D belongs to the point spectrum. This explains how
existence of a solution with the described proper-
ties leads to the point spectrum. The main idea
is that the disjoint parts of X essentially decouple.
However, due to standard elliptic uniqueness theo-
rems such (non-zero) solutions cannot exist. Now
recall that, by assumption, the segments S; do not
reach the boundary of K. Results from [Figotin and
Kuchment 1995; 1996a; 1996b; 1998a] and some ex-
actly solvable examples suggest that away from the
segments S; the solutions of problem (5-2) decay
very fast for large values of D. In other words,
if some large value of D belongs to the spectrum,
then we have a solution u(z) that is small (though
not identically zero) near the boundary of the fun-
damental domain K. This means that the same so-
lution “almost satisfies” the same problem for arbi-
trary quasimomentum, and hence the corresponding
branch of the dispersion relation is almost constant.
This leads to a narrow band of the spectrum and
forces the high portions of the spectrum to be al-
most discrete. This effect becomes more and more

apparent as D increases and different components
of ¥ decouple.

We make these considerations more precise for the
case of a smooth disconnected structure X of arbi-
trary dimension. Let S C R™ be a smooth ori-
entable hypersurface located strictly inside a funda-
mental domain K of a lattice I'. Applying transla-
tions by elements of I' to S, one obtains a periodic
disconnected structure (surface)

EzU’ySCRm.

el

Let N be the Dirichlet-to-Neumann operator on X
defined as in Section 2. We are interested in the
spectrum of N. Adhering to our previous notations,
we denote the spectral variable by D. The next re-
sult explains the phenomenon of “almost discrete-
ness” of spectra of disconnected smooth structures
like the disconnected circles structure. It also pro-
vides asymptotic locations of these spectra and an
explanation of their asymptotically periodic nature
in 2D. Namely, it states that the spectrum of NV at
high frequencies concentrates in a small vicinity of
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the numbers 2v/D,,, where {D,,} is the spectrum of
the Laplace-Beltrami operator on S.

Theorem 5.1. Let {D,} C R be the (discrete) spec-
trum of the (positive) Laplace—Beltrami operator Ag
on the closed surface S. There exists a sequence of
positive numbers p, — 0 such that the spectrum of
operator N on X belongs to the union of intervals

o(N) C U[2VDn—pn, 2v/Dn+pal,

and each of these intervals contains a non-empty
portion of o(N).

Proof. We sketch the proof over the next three pages,
omitting some standard technical details that are
easily recoverable.

Denote by T the boundary of the fundamental
domain K and by K the interior of K. Consider
the Dirichlet boundary value problem

~Au=0 inK\S,

uls = o, (5-3)
u|T = 0.
Now define an operator
0
No:p— {—(’0] ; (5-4)
ov |4

where [g—f] ¢ denotes the jump of the normal deriva-
tive of function ¢ across S, that is, the sum of outer
normal derivatives from both sides of S. Standard
results on the Calderén projector (see [Sylvester and
Uhlmann 1988, Theorem 0.1], for instance) imply

the following statement.

Lemma 5.2. The operator Ny is a classical pseudodif-
ferential operator of order 1. Moreover, its symbol
shows that

No =2/ As + R,
where R is a smoothing operator.

Perturbation arguments show that asymptotically
(for large eigenvalues) the spectrum of N, behaves
as {2v/D, }. Now we only have to deduce that the
spectrum of N concentrates around the spectrum of
Ny. To do this we need the following auxiliary state-
ment, which formalizes our heuristic considerations
made in the beginning of this section.

Lemma 5.3. Let up € L2(S) be a normalized eigen-
function of the operator Ny, with eigenvalue D. FEx-
tend up to all of K as a solution of (5-3), using

up as the Dirichlet boundary value p. Let U be a
neighborhood of T in K such that SNU = &. Then

lup(x)| < CD™',  forz € U. (5-5)

Proof. First of all, since up = 0 on 7T, the maxi-
mum principle implies that it is sufficient to prove
estimate (5-5) away from 7'. In other words, it is
possible to assume that (SUT)NU = @. A solution
u(x) of problem (5-3) can be described in K\ S by
means of a kernel (Green’s function of the Dirichlet
boundary value problem):

u(z) = / F(z,y)o(y) dy,

where F(z,y) as a function of (z,y) € U x § is
smooth (we need to recall here that (SUT)NU = @).
In particular,

[ F' (@, )l 15y < comst, for z € U. (5-6)

Now consider the solution up in U:
up(e) = | Flay)u(w) dy
s
1
=5 / F(z,y)Ngup(y) dy
s

1
— 5 [ MF@ s d,
S

where the operator N¢ stands for N, acting with
respect to variable y. Here we have used the self-
adjointness of this operator, the equality Noup =
Dup, and the inclusion F(z,-) € D(Ny) = H'(S)
for x € U. This representation, the normalization of
up, the estimate (5—6), the fact that Ny is a pseudo-
differential operator of order one, and the Cauchy—
Schwartz inequality imply (5-5):

up(z)| < D INSF(z,9) |5 1wl s
< CD™' max{||F(z, Mears) 2 € U}
<CD O

The next statement follows from this lemma and
standard interior elliptic estimates.

Lemma 5.4. In any subdomain V C K such that V is
disjoint from T U S we have

||UD||Hr(V) <C.D™ (5-7)
for the Sobolev space H" (V') of any order .

Now choose a quasi-momentum k. Then, imposing
Floquet conditions on 1" with this quasimomentum
instead of zero Dirichlet conditions, one defines an
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operator N (k), which is also a pseudodifferential op-

erator on S
ou
N(k)p = [—]

on| |
where v is the solution of the problem
—Au=0 in K \ S,
uls = ¢ on S,
u(z +v) = e *u(z)
ou(x + )
on T
Floquet theory [Kuchment 1993; Reed and Simon
1978] claims that
o(N) = Ukeso (N (k)),

where B is the Brillouin zone introduced before.
We now need to establish some simple properties
of problem (5-8).

onT, (5-8)

o 0ul@)

T.
. o on

Lemma 5.5. For any k in the Brillouin zone the ho-
mogeneous problem (5-8) (i.e., with ¢ = 0) has only
the trivial solution u = 0.

Proof. Consider the spectral problems M (k) given
by

—Au = My in K\S,
uls =0 on S,
u(z + ) = eku(z) on T, (5-9)
ou(z + ) _ vk du(x) on T,
on - on |,

The claim of the lemma is that the spectrum of the
problem M (k) does not contain zero for any k € B.
Now introduce the Dirichlet Laplacian (—Asy p) in
R™\ ¥ with Dirichlet conditions on the periodic sur-
face ¥ (we recall that ¥ consists of disjoint replicas
of S). As follows from Floquet theory [Kuchment
1993; Reed and Simon 1978], the spectrum of this
operator can be described as

o(—Axp) = | o(M(k)).
keB
Hence, our goal is to show that o(—Ag p) does not
contain zero. Denote by  the unique unbounded
(and periodic) connected component of the open set
R™\ ¥ and by € its complement in R" \ ¥. Then
the operator —Ay p splits into the direct sum of
two Dirichlet Laplacians, in €2 and 2; respectively.
The domain €2 is the union of a periodic array of
bounded domains, so the maximum principle implies
that the Dirichlet Laplacian —Agq, p has a strictly

positive spectrum. What remains to show is that
0 ¢ o(—Aq.p). To do so, we first notice that op-
erator (—Agq p) has only essential spectrum; this
can easily be shown by taking into account peri-
odicity and selfadjointness (using arguments similar
to the ones in the proof of [Eastham 1973, Theorem
6.10.1]). In the terminology of [Glazman 1966] and
[Edmunds and Evans 1987], € is a quasi-cylindrical
domain. In particular, Theorem 6.7 of Chapter X of
this last reference applies, and implies that the es-
sential spectrum of (—Agq p) is bounded from below
by a positive constant. ]

We are now able to prove an analog of Lemmas 5.3
and 5.4 for operators N (k).

Lemma 5.6. Let up € Ly(S) be a normalized eigen-
function of the operator N (k) (where k € B) with
etgenvalue D. FExtend up to the whole K as a so-
lution of (5-8), using up as the Dirichlet boundary
value @. Let U be an open subdomain of K such that
(SUT)NU = @. Then

||UD||H7-(U) <CD™', (5-10)

where the constant C' does not depend on k € B.

Proof. Lemma 5.5 implies existence of Green’s func-
tions F'(z,y, k) smoothly depending on k € B. Now
the proofs of Lemmas 5.3 and 5.4 can be repeated
with all estimates uniform with respect to k. [l

We will show now that for large eigenvalues and
for any quasimomentum k the spectrum of N (k)
is located close to the spectrum of Ny. This implies
closeness of o(N) and o(Np).

Lemma5.7. If D € o(Ny) and up is the correspond-
ing eigenfunction, the following estimate holds uni-
formly with respect to k:

I(N (k) = D)up|| ) < CD™".

Proof. To define N (k)up, we have to solve problem
(5-8) with ¢ = up. Let U C K be an open “shell”
domain such that (SUT)NU = @ and such that
S and T belong to different connected components
of K\ U. Consider a smooth cut-off function
that is equal to 1 in a neighborhood of 5, is equal
to zero in a neighborhood of 7', and differs from 1
and 0 inside U. Set ¢(z) = up(x)yp(z). Then this
function satisfies both boundary conditions in (5-8),
but does not satisfy the Laplace equation. However,
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our estimate (5-7) implies that the function p(z) =
—Aq(x) satisfies, for any r, the estimate

||p||HT(K) <C.D™h

Now consider the problem

—Au=—p in K \ S,
uls =0 on S,
u(z + ) = e*u(z) on T, (5-11)
w — ¢irk Ou(r) on T.
on T on |,

According to Lemma 5.5, this problem has a unique
solution. Let V' be an open neighborhood of S such
that V N T = @. Then the function u can be es-
timated uniformly with respect to k according to
standard estimates for elliptic boundary value prob-
lems as

||u||H2(V\S) <CD™.

In particular,

5], =
ov Lo(5)
Now

Oup ou ou
) =D = |52 = o [5] - [55].
which finishes the proof of the lemma. O

Since N (k) is self-adjoint, the norm of its resolvent
can be estimated from above by the inverse distance
to the spectrum of N (k). Hence, the lemma implies
existence of a sequence p,, — 0 such that intervals of
half-length p,, centered at D,, contain elements from
the spectra of N (k) for all k.

Corollary 5.8. In a p,-vicinity of an eigenvalue D,, of
Ny there are points from the spectra of all operators
N(k). Here p, — 0 when n — oc.

Now our arguments can be reversed: starting with
N (k) one can show the existence of a sequence p!, —
0 independent of k € B such that intervals of half-
length p! centered at eigenvalues of N (k) contain
elements from the spectrum of Nj.

Corollary 5.9. For any k € B there are points from
the spectrum of Ny in a pl, -vicinity of an eigenvalue
D, (k) of N(k). Here p,, — 0 when n — 0.

These two corollaries imply that the spectrum of
the operator N is asymptotically close to that of
the operator Ny. Since, as explained before, the
spectrum of Ny is asymptotically close to {2v/D,},
this finishes the proof of the theorem. [l

Remark 5.10. In fact, if S is smooth, one can guaran-
tee that

pn < cpDP

for any p. This can be easily achieved by repeat-
ing the arguments of Lemma 5.3. The case when S
is a circle can be solved explicitly using Fourier se-
ries. It shows that analyticity of S probably implies
exponential decay of p,.

Theorem 5.1 explains the “almost discreteness” and
location of the spectrum for disconnected smooth
structures. For instance, in the 2D case we con-
clude that the spectrum at higher frequencies must
concentrate around the values 4rnL !, where L is
the length of S. In particular, for a circle of radius R
this leads to 2n/R, which agrees perfectly with our
numerical results described before. This also pro-
vides an explanation of the asymptotic periodicity
of the spectrum that was observed in numerics. Nu-
merics also suggests that although the theorem has
an asymptotic nature (i.e., it works for high eigen-
values), the asymptotic convergence is very fast and
works even for rather low eigenvalues.

Another important feature of this theorem is that
it describes asymptotically the spectrum of a pseudo-
differential problem in terms of a differential one,
which is much simpler to study.

It is interesting and important to study similar
effects for non-smooth disconnected structures (the
ones that have corners, loose ends, and graph ver-
tices). We conjecture in particular that an analog of
Theorem 5.1 could explain the asymptotic behavior
of spectra for some non-smooth disconnected struc-
tures. However, the numerics suggests that non-
smooth structures present some new features that
still need to be understood. For instance, making S
non-smooth changes the spectrum of S significantly,
although our initial guess was that only the rate of
convergence to numbers 47n/L would be smaller.
Computing the spectrum for the case of disjoint
squares (Figure 14), one discovers that apparently
the formula 47n/L (where L is the perimeter of the
square) no longer predicts the approximate locations
of the spectral bands. Moreover, considering rect-
angles with the same perimeter but with different
aspect ratios, one discovers that the spectra differ
significantly. The example of a single-segment dis-
connected periodic structure (Figure 6) shows that
although the formula 4nm/L does give an approxi-
mate idea about the location of bands (if one thinks
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FIGURE 14. Spectrum of structure made of squares

with perimeter L = 1.2.

of the segment as two-sided, therefore doubling its
length), there is some regular discrepancy associated
with this formula. The question is, what (if any)
“Laplace—Beltrami” operator on a segment (or on a
more general graph) describes correctly the asymp-
totics of our photonic spectrum? Some preliminary
considerations suggest that the boundary conditions
at the ends of the segment must also contain the
spectral parameters in order to agree with the nu-
merical results. It is not quite clear yet how one can
treat more complex structures involving vertices or
corners. It is also not known whether a differential
problem on a general periodic graph can provide the
asymptotics for the photonic spectrum. If the an-
swer were yes, this probably would lead to closer ties
with the study of problems of mesoscopic physics,
where such differential operators customarily arise
(see [Exner and Seba 1989] and references therein).
So, analytic consideration of the case of non-smooth
disconnected structures is still an unsolved problem.
We plan to treat it elsewhere.

5C. Connected Structures: “Almost Point” Spectra and
Localization

If one wants to understand the phenomenon of the
“almost point” spectrum that sometimes arises in
connected structures (see discussion in Section 4
above), the natural idea is to look at the correspond-
ing eigenmodes. Since Lip-eigenvalues (i.e., the point
spectrum) correspond to the localized states, also
known as bounded states, one can expect that the ef-
fect of “almost point” spectrum could also be related
to some localization of waves. Figure 15 shows in
grey scale the absolute values of the first and second
eigenmodes that correspond to the narrow bands of
the spectrum of the connected circle structure. Fig-
ure 16 contain similar pictures for the connected-
square and hexagonal structures. In all cases it is
obvious that the waves are rather strongly local-
ized. In the case of the connected circle structure
the wave runs around the circle, in the square case it
runs around the square, and in the hexagonal case it
seems to be reflecting from the endpoints of an edge
of the structure and hence staying mostly inside this
edge. It is not hard to show that at the locations of
these narrow bands one can create an “almost eigen-
function” supported in the fundamental domain of
the periodic structure. (By this we mean a normal-
ized function ¢ such that ||(N — D)yl < ep |l¢|l,
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FIGURE 15. The first and second localized eigenmodes of the connected circle structure.

where D is located in a narrow zone and ep — 0
when D — o0.)

The waves corresponding to the wide bands do
not show such localized patterns. This raises the
following natural model: We keep only the part of
the graph where the wave is localized and transla-
tions of this part along the group of periods. This
creates a disconnected structure. Consider its spec-
trum. The natural guess is that the “almost point”
spectrum of the connected structure must resemble
a part (or the whole) of the spectrum of the cor-
responding disconnected structure. We show below
that this model is supported by our numerical re-
sults. In some cases we are able to explain the phe-
nomenon of narrow bands and predict their location
by means of some symmetry arguments.

Consider the connected-circle structure ¥ shown
in Figure 11 and denote by N the corresponding
Dirichlet-to-Neumann operator, whose spectrum we
are interested in. Choose the coordinate system
centered at the center of one of the circles, which
we call S, and direct the coordinate axes along the
connecting edges of the structure. Then the struc-
ture becomes symmetric with respect to both axes,
with group of symmetry G = Z, X Z, generated by
mirror reflections about the axes. Eliminating the
connecting edges, we obtain a disconnected struc-
ture X; consisting of circles, which has the same
symmetry group. The corresponding Dirichlet-to-
Neumann operator will be denoted by N;. As was
established in Theorem 5.1, the spectrum (27n/L)?
of the (positive) Laplace—Beltrami operator Ag on

FIGURE 16. The first localized eigenmode of the octagonal (left) and honeycomb (right) structures.
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the circle S leads to the spectral bands of the op-
erator N; that are located close to numbers 47n/L.
The eigenfunctions of Ag can be classified accord-
ing to the irreducible representations of the group
G; those of Nj can be classified in a similar way.
Let D, be a series of eigenvalues of Ag that corre-
spond to eigenfunctions that adhere to some fixed
irreducible representation of G. The arguments in
the proof of Theorem 5.1 were G-invariant. As the
result, the bands of the spectrum of N; that con-
centrate around the numbers 24/D,, contain some
Floquet eigenmodes with the same symmetry. In
fact, the proof of the theorem also shows that both
the operator N, of (5—4) and a similar operator with
Neumann conditions on 1" have eigenvalues close to
2y/D,, and such that the corresponding eigenfunc-
tions have the same symmetry. Consider the eigen-
functions that are antisymmetric with respect to
both coordinate axis. It is easy to see that they cor-
respond to the eigenvalues (47n/L)? of Ag. The cor-
responding bands of the spectrum of operator NV; are
located around the numbers 8mn/L. We will show
now that J-type spikes must appear close to these
numbers in the density of states of the Dirichlet-to-
Neumann operator N for the connected structure
Y. In fact, we will deal with the (yet to be defined)
integrated density of states N(A) of the operator N.
This claim is based on a simple observation:

Lemma 5.11. If an eigenfunction of the operator N,
for the disconnected structure is antisymmetric with
respect to both axes, then it is also an eigenfunction
(with the same eigenvalue) of the operator N (for
the connected structure).

Proof. Denote by Y, the union of the circles of our
structure, and by Y. the union of all connecting
edges. Then an eigenfunction v of N that corre-
sponds to an eigenvalue D must satisfy the condi-
tions

—Au=0 in R*\ (2. UX.),
[Ou/Ov] = Du on X,
[Ou/0v] = Du  on %,

where [0u/0v] denotes the jump of the normal deriv-

ative. On the other hand, an eigenfunction of N;
satisfies

(5-12)

—Au=0 in R*\ ¥,
[Ou/Ov] = Du on X,
[Ou/0v] =0

(5-13)

on ..

Here the condition on X, follows from the harmonic-
ity (and hence smoothness) of u across .. Now,
an antisymmetric solution of (5-13) is automati-
cally equal to zero on Y., and hence it also satisfies
(5-12). O

We will assume as before (without loss of generality)
that the group of periods is the integer lattice Z>.
Denote by V,, a sequence of concentric squares with
sides of size v,, parallel to the coordinate axes, with
v, — 00. Assume also that the boundary of V,
does not contain any vertices of the graph ¥ and
intersects X transversely at its edges. One can now
define a bounded from below self-adjoint Dirichlet-
to-Neumann operator Ny, on ¥, = XNV, as follows:

ou
e =[]

zn’
where u is a periodic function in R? with fundamen-
tal cell V,, and satisfying the problem

{—AuzO inV,\ X,,
U=

on X,.

It is not hard to justify that this operator has a
discrete spectrum. This enables one to define for
this operator an integrated density of states function
as the eigenvalue counting function: Ny, (A) is the
number of eigenvalues D < A of Ny, , where eigen-
values are counted with their multiplicity. It should
be possible to generalize Theorem 2.1 of [Shubin
1979], which claims the existence of a weak limit
when n — oo of the functions Ny, (A) normalized to
the volume of V,,:

N(A) = limw,, *Ny. (N).

This limit should naturally be called the integrated
density of states of operator N. The appropriate no-
tion of a weak limit can be found in [Shubin 1979,
Section 2.1]. For the task we are pursuing now it
is not worth going into the details of such a theory.
Instead, we formulate a result in terms of the dis-
tribution functions Ny, (A). This result explains the
d-type spikes close to points 4n/r in the density of
states dN(A)/dA (if such a derivative exists).

(5-14)

Theorem 5.12. There are numbers p, — 0 such that

4 4
lim inf (Nvm (_n + pn> — Ny, <_n — pn)> > 1,
r r
(5-15)
where the limit is considered for m — oo and r is the
radius of the circle S defining the connected circle
structure.
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Proof. Consider the sequence {1, } of antisymmet-
ric eigenfunctions of Ag corresponding to the eigen-
values (2n/r)®. Then the solution of the Dirichlet
problem

—Au, =0 in K\ (SUT),
Up =%,  oOnS, (5-16)
U, =0 onT,

is also antisymmetric. An estimate similar to the
one in Lemma 5.4 shows that this solution decays
on any open subset disjoint with S and 7" as n tends
to 0o. Then the Dirichlet-to-Neumann operator Ny
of (5—4) satisfies

(No — 4n/r) = 2(v/Ds — (2n/r))n + Ripy,

with a smoothing operator R. We can conclude that
H(NO —4n/r) 'l/)nHL2(S) — 0.

As explained in Lemma 5.11, the same function ,,,
extended by zero over the edges of the connected
structure, provides an approximate eigenfunction for
the Dirichlet-to-Neumann operator Ny on the con-
nected structure too (since 1, is equal to zero along
the edges). Due to the decay of u, away from S,
considerations analogous to the ones in Lemma 5.7
and Corollary 5.8 show that

[(N (k) — 4n/r) 4,

uniformly with respect to k € B. This shows the ex-
istence of a sequence p,, — 0 such that any segment
(4n/r—46,, 4n/r+J,) contains eigenvalues of N (k)
(for the connected structure) for arbitrary k € B.
Now counsider the operator Ny, . Any eigenfunction
of N(k) with k = (2nl/v,,, 2nt/v,,), for integer [
and t, is an eigenfunction of Ny, . Since the seg-
ment (4n/r—d,, 4n/r+4,,) contains eigenvalues of
N(k) for arbitrary k € B, in particular for any
k = (2nl/v,, 27t/v,,) € B, we get for m — oo
the inequality

liminf (Ny,, (4n/r + p,) — Ny, (4n/r — p,)) > 1,

which proves the theorem. O

La(s) 0

The theorem explains the existence and predicts well
the asymptotic location of all numerically discovered
high spikes in the density of states for the connected-
circle structure. Similar symmetry considerations
can be provided for some other structures, like the
octagonal or connected-squares ones: eigenvalues
corresponding to the antisymmetric eigenfunctions
of the disconnected structure indicate the location

of spikes of the density state for the connected one.
Numerics confirms this analytic result.

Our whole approach was based on symmetry. It
is not clear, however, how important the symme-
try is. Can the effect survive when the symmetry is
destroyed? It would also be nice to have an explana-
tion of this effect for the honeycomb structure and
of its non-existence for the square structure. Nu-
merics shows that the d-type spikes in the density of
states for the honeycomb structure occur close to the
location of some narrow spectral bands of the dis-
connected one-segment structure obtained by elim-
inating all non-horizontal edges of the honeycomb
structure. This shows that some part of the above
considerations should survive for this geometry too.

6. COMPARING 2D AND HIGHER DIMENSIONAL
CASES

As shown in [Figotin and Kuchment 1996a; 1995;
1998a; 1996b] (and also as a consequence of the
study presented in this paper), there are many pos-
sibilities for opening spectral gaps in 2D photonic
crystals. In particular, many geometries provide
an infinite number of gaps in the spectrum of the
Dirichlet-to-Neumann operator studied above. We
will see now that the situation is completely differ-
ent in dimensions three and higher. We believe that
the following statement holds:

Conjecture 6.1. Let X be a periodic hypersurface struc-
ture in R"™, where n > 2. Then the spectrum of the
corresponding Dirichlet-to-Neumann operator N has
only a finite number of gaps.

It is interesting to notice that the threshold between
infinitely and finitely many gaps in the spectrum of
N occurs between dimensions 2 and 3. Recall for
comparison that for Schrédinger operators with pe-
riodic potentials the analogous threshold is between
dimensions 1 and 2; see [Dahlberg and Trubowitz
1982; Karpeshina 1989b; 1989a; 1990a; 1990b; 1997,
Skriganov 1979b; 1979a; 1984; 1985a; 1985b]. But
there is no disagreement between these two cases,
since we are dealing with Dirichlet-to-Neumann op-
erators, which in 2D are essentially one-dimensional,
and in 3D are two-dimensional.

We remind the reader that the operator N in 2D
is responsible only for a part of the total spectrum
of a photonic crystal. If this part of the spectrum



24 Experimental Mathematics, Vol. 8 (1999), No. 1

has few gaps, even less should be expected from the
whole spectrum of the crystal.

We will prove now Conjecture 6.1 for the case of
a cubic structure.

Theorem 6.2. Let R® be tiled with unit cubes and let
Y be the union of their surfaces. The spectrum of
the corresponding Dirichlet-to- Neumann operator N
has only a finite number of gaps. Moreover, there
are no gaps in the spectrum for the values of the
spectral parameter D > 407,

Proof. Let dx; be the Dirac’s delta function supported
on Y. Now we study the spectrum of the problem

—Au = Désu.

Assuming that the edges of cubes are directed along
the coordinate axes and taking into account that
Os(z,y, z) = 6,(x)+06,(y)+0,(2), where 0, is the sum
of one-dimensional delta functions concentrated at
the integers, we can separate variables: u(zx,y,z) =
w1 (x)uz(y)us(z), which leads to the system

(—d2/d3:2 — D¢, a:))ul = piug,
(—dQ/dy2 - D5p(y))u2 = H2Uz,
(=d?/dz* — Db, (2))us = paus,
pr + p2 + ps = 0.

A real number D belongs to the spectrum if there
is a triple of real numbers (u1, p2, p13) such that the
system (6-1) has a non-trivial solution. One can
see that either one or two among numbers py, o,
and ps must be non-negative, and the remaining
two or one must be non-positive. We will show that
the case when there are two positive among these
three numbers already guarantees the finiteness of
the number of gaps, so we will consider only this
case. Set py = =N <0, up = A2 >0, 3 = A2 >0,
and A7 = A2+ \2. It is straightforward to check that
non-trivial solvability of system (6-1) is equivalent
to solvability with respect to D, A;, and A\, of the
system of inequalities

D D
cosh)\1—2—>\lsinh)\1 <1, Cos)\2—2—/\zsin)\2 <1,
D
cos /A2 -\ —————sin /A2 N2 <1. (6-2)
1 2 2\/@ 1 2

Choose A\; = D/2 and A\, = mm for an integer m.
Then the system (6-2) reduces to a single inequality

1
\/1-m2m2(D/2)-2

xsiny/(D/2)* —x2m?

Introduce numbers « (where |a| > m) and 8 > 1 as
follows:

cos\/(D/2)? —m2m?—

<1l. (6-3)

D =27r«
and
B=(1-m*m?(D/2) %) " = (1-m2a )/’ > 1.

Let 7/4 < v < w/2 be an angle such that 8 = tan-y.
In fact, we will need v < 7/3, so we will try to
satisfy the inequality

B <3

Now the inequality (6-3) becomes

|cos a2 —m? — tanysinTtva? — m2| <1, (6-5)

or

(6-4)

|cos(7r\/m +7)| < cosn,
which can be reduced to
nr+y< Vo2 —mi4+y< (n+1)m—7y
or
m?+n®<a®><m’+ (n+1-2y/7)%

Since we plan to have v < /3, this inequality is
satisfied if

m? +n? <o’ <m?+ (n+1/3)% (6-6)

Consider the family of segments
In,m - [m2+n27 m2 + (n + 1/3)2] 9

where m and n are integers. The statement of the
theorem would follow if we were able to show that
these segments cover a half-axis [¢,00). Notice that
the segments I,, ,,, are shifts (by m?) of the segments
I, = I, 0. The length of I,, is |I,,| = 2n/3+1/9. We
first consider the sequence of segments [, ,, for a
fixed n and for m =0,1,2,.... The segment I,, ,,+1
is shifted with respect to I,, ,,, by 2m+1. Hence, until
2m + 1 stays less than 2n/3 4+ 1/9, the sequence of
segments I, ,, for a fixed n covers a single segment

Jn = U {In,m :m S %n - %}
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without gaps. Now change the value of n in J,. A
sufficient non-emptiness condition for the intersec-
tion J, N J,41 is
(n+1/3)" + [n/3 = 4/9]* > (n +1)?,
where |a] denotes the integer part of a number a. It
is not hard to check that this condition is satisfied
for n > 20. We now need to check condition (6-4).
It amounts to
m? < %aQ.
Since we only use m? < (n/3 —4/9)? and o? > n?,
it is sufficient to check the inequality
(n/3—4/9)* < 3n’,
which is also satisfied in the range n > 20 that we
chose. We can conclude that the intervals I, ,, cover

the whole half-axis [407, c0), which due to the rela-
tion D = 2w« proves the theorem. O

6A. The Square Structure

Remark 6.3. Our choice of the restriction v < 7/3
in the proof of the theorem was rather arbitrary. It
certainly influenced our estimate of the upper bound
for gaps in the spectrum. One could try to find the
wisest choice of v and hence to improve the esti-
mate. There is, however, little hope that one can
get the exact value of the threshold in this way. On
the other hand, since our analytic estimate is quite
reasonable, below it one can compute the spectrum
numerically using the transcendental system (6-2).
Figure 17 shows the result of the corresponding com-
putation. The white horizontal axis in the middle
of the picture is the spectral axis. Numerics shows
that below 407 there are only three small gaps in
the spectrum (three black segments on the spectral
axis), the highest (and tiniest) of them ending at
about D = 17.83. This, together with the state-
ment of the theorem, shows that in fact there are
no gaps anywhere beyond this value.

Remark 6.4. It is not hard to prove that the state-
ment on finiteness of number of gaps for the cubic
structure holds in any dimension n > 2. The proof
is analogous to the one provided above.

7. CONCLUSIONS AND OPEN PROBLEMS

We summarize briefly the results of our analysis.

e The proposed algorithm works well for comput-
ing the spectra of waves localized in the dielectric
regions of high contrast periodic 2D photonic band

gap structures. Here high contrast means small 0
and large £4.

e The spectra of many structures show asymp-
totically periodic behavior for large values of the
spectral parameter. An analytic explanation of this
phenomenon is provided.

e Disconnected structures have spectra that be-
come practically discrete—that is, have very nar-
row bands for large values of the spectral parameter.
This happens since disjoint parts of the structure es-
sentially decouple at large frequencies. In the case of
smooth disconnected structures an asymptotic for-
mula for the location of the bands is developed in
terms of the spectrum of the Laplace—Beltrami op-
erator on one component of the structure.

e Many connected geometries (excluding, how-
ever, the rectangular one) support “almost local-
ized” waves that produce high spikes in the density
of states. These waves are mostly supported along
some cycles or single edges of the structure. The
existence of such waves apparently depends on ge-
ometry of joints. Symmetry arguments are provided
that explain the existence of this effect for some ge-
ometries.

e Spectral gaps are rare and hard to achieve in
dimensions higher than two. For instance, there is
only a finite number of gaps for the cubic structure
in dimensions three and higher.

Open Problems

e Prove an analog of the Bethe-Sommerfeld con-
jecture for the spectral problems of the photonic
crystal theory, and in particular for the Dirichlet-
to-Neumann operator on periodic surfaces.

e Prove absolute continuity of the spectra of the
same problems. This problem boils down to showing
the absence of the point spectrum. One has to be
careful here, since our recent study shows that some
differential operators on periodic graphs arising in
mesoscopic physics do posses non-empty point spec-
trum. The conjecture, however, is probably true for
the Dirichlet-to-Neumann operators.

e Explain the asymptotically periodic structure of
spectra for more general classes of periodic graphs.

e Justify the almost discreteness of the spectra of
Dirichlet-to-Neumann operators on non-smooth dis-
connected periodic graphs by elaborating the heuris-
tic consideration of the beginning of Section 5B.
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FIGURE 17. Spectrum of the 3D cubic structure.

e Introduce, when possible, an analog of the La-
place—Beltrami operator on a graph such that a ver-
sion of Theorem 5.1 holds.

e Explain the phenomenon of the spikes of the
density of states (“embedded eigenvalues”) in situa-

tions more general than the ones treated in Section
5C.

e Prove finiteness of the number of gaps for pe-
riodic 3D surface structures more general than the
cubic one.
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