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We show that the mapping class group of a closed surface of
genus 2 does not satisfy the Kazhdan property by constructing
subgroups of finite index having a nonvanishing first cohomol-
ogy group. We also construct some subgroups of finite index in
the mapping class group of a genus 3 surface and calculate their
first cohomology groups, which all turn out to be trivial. Most of
the calculations have been carried out by computer using GAP.

1. INTRODUCTION

Let 8, be a closed surface of genus g, with funda-
mental group 7, = m(8,) and corresponding map-
ping class group My; recall that M, is the group
of the isotopy classes of orientation preserving dif-
feomorphisms of 8,. The connection between M,
and combinatorial group theory was established by
Nielsen [1927; 1929; 1931]. M, has index two in
the extended mapping class group M (the group
of isotopy classes of not necessarily orientation pre-
serving diffeomorphisms), which from is isomorphic
to Out(m,), the outer automorphism group of m,.
Hence M, can be identified with a subgroup of index
two in Out(r,), which we denote by Out™(7,). The
group M, is generated by Dehn twists around sim-
ple closed curves [Dehn 1938]. Unaware of Dehn’s
result, Lickorish [1964] found a generating set of
3g — 1 elements. The minimal number of Dehn
twists generating M, is 2g+1 and was determined by
Humphries [1979]. The Dehn twists around the sim-
ple closed curves ai, 51, s, 02, ..., Q4,040 of Fig-
ure 1 will be our choice for a generating set and
we will denote them by D, Dg,, Do,, Dg,, ..., Da,,
Dg,, Ds.

(© A K Peters, Ltd.

1058-6458/2000 $0.50 per page
Experimental Mathematics 9:2, page 261



262 Experimental Mathematics, Vol. 9 (2000), No. 2

FIGURE 1. Dehn twists generating M,.

The question of the existence of a finite presen-
tation was settled in [Birman and Hilden 1971] for
the case of ¢ = 2 and in [McCool 1975] for g > 3.
A simple presentation was determined (and later
corrected) by Wajnryb [1983], based on results ob-
tained by Hatcher and Thurston. Directly from the
presentation, we can establish the well-known result
that M, is a perfect group for g > 3 [Powell 1978]:

Hi(M,,2) = {ZIO ?fg— 2,
0 itg>3.

Another property of M, is its residual finiteness,
proved in [Grossman 1974]. Residual finiteness of
M, means that the intersection of all of its normal
subgroups of finite index is trivial [Magnus et al.
1966, p. 116]. In the mid-eighties, the analogy be-
tween M, and the arithmetic groups was established
by Ivanov [1987; 1984; 1986]. For the definition of
an arithmetic group we refer to [Humphreys 1980].
However for our purposes the only arithmetic group
of interest would be the symplectic group over the
integers, Sp,,(Z), for g > 2.

Theorem 1.1. Let ' (m) be the kernel of the canonical
eptmorphism

®,(m) : Sp2g(Z) — Sp2g(Zm).

(a) Every cofinite subgroup of Sp,,(Z) (every sub-
group of finite index) contains one of the con-
gruence subgroups I'y(m).

(b) Every nontrivial normal subgroup in Sp,,(Z) dif-
ferent from the center contains a congruence sub-
group and hence is of finite indezx.

(c) Every cofinite subgroup U of Sp,,(Z) has a van-
ishing first cohomology group; that is, H(U) =
0. Since Sp,,(Z) is finitely presented, this prop-
erty is equivalent to saying that U/U’ is finite.

Proof. Parts (a) and (b) are proved in [Mennicke
1965] the symplectic group and generalized in [Bass
et al. 1967]. Part (c) of the theorem is a consequence
of part (b) and the following proposition:

Proposition 1.2. Let H < G be cofinite. If [H : H'] is
finite, so is [G : G'].

Proof. Since H' < G', therefore H' < G' N H and
consequently G’ N H will be cofinite in G, but G' N
H < G', which means that G’ is cofinite in G. [

To prove part (c) of the theorem, we may assume
that U is a normal subgroup of G = Sp,,(Z); other-
wise we can pass to Coreg(U) = [, ¢ g~ 'Ug, which
is a cofinite normal subgroup in G contained in U.
Using the proposition, it suffices to prove the state-
ment for Coreg(U). Since U is a normal subgroup
of G, therefore U’ as a characteristic subgroup of U
will be a normal subgroup of G. Using part b of the
theorem, U’ is cofinite in G hence cofinite in U. O

Let N < m, be a cofinite characteristic subgroup of
mg. Then the canonical map

Aut 7, — Aut(m,/N)

factors through the outer automorphism group, and
after the restriction to M, —recalling that M, ~
Out™ (m,) —we obtain a homomorphism

v, N : My, — Out(m,/N)

whose kernel A, y is a cofinite normal subgroup in
M,. We call these subgroups the congruence sub-
groups, in analogy with arithmetic groups. N. Ivanov
[1994] asks these questions about M,:

1. Congruence Subgroup Problem for M,: Does any
cofinite subgroup U < M, contain one of the
Ag,N?

2. Does every cofinite subgroup U of M, have a van-

ishing first cohomology group?

. Does M, satisfy the Kazhdan property?

w
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For an introduction to the Kazhdan property (or
property T') see [Kazhdan 1967; de la Harpe and
Valette 1989; Lubotzky 1994]. What we need to
know here is that if a group satisfies the Kazhdan
property the first cohomology group of all its cofinite
subgroups vanishes. Thus a negative response to
the second question would answer the third question
negatively as well.

Theorem 1.3. The mapping class group of a closed
surface of genus g = 2 does not have the Kazhdan

property.

We will prove Theorem 1.3 by constructing examples
of subgroups having a nontrivial first cohomology

group.

2. CONSTRUCTING EXAMPLES FOR g = 2

M, acts on the first homology groups H;(S,,Z) and
H,(8,,%Z,,) for every m € Z. This action preserves
the symplectic form and gives rise to the homomor-
phisms

Oy : My — Spy,(Z)

and
O4(m) : My — Spy,(Zm),

which are known to be surjective. Let T, = Ker 0,
be the Torelli subgroup of M, and

T,(m) = Ker©y4(m)

the preimage of the congruence subgroup I'y(m) in

M. In this way, we obtain a lot of cofinite normal
subgroups of M, all containing 7,. In particular, in
the case of g = 2 and m = 2 we get

@2(2) . Mg — Sp4(Z2) ~ 56-

Sp4(Zs) is isomorphic to Sg, the symmetric group
on six elements, which has order 720. Therefore
T2(2) 9 M, will be a normal subgroup of index
720 in M,. The normal subgroup T»(2) is gener-
ated by the squares of the Dehn twists around the
simple closed curves and normally generated by the
square of only one of the Dehn twists, such as aq,
the first generator of M, [Humphries 1992]. Using
the Schreier-Reidemeister method [Johnson 1976;
1980b], we can calculate a presentation for T5(2) us-
ing GAP [Schonert et al. 1996]. (We have used GAP
version 3 release 4.4 of April 18, 1997.) The simplest
presentation we can construct, after all the possible

reductions using Tietze transformations contains 14
generators and 388 relations of total length 8622.
As a subgroup, T,(2) is generated by the 14 ele-
ments aj?, b7%, a;°, by%, d72, ayby?at, biay?by?,
azby?ay’, byd=?by', aibia;?brlar’, asbyd b 'a?,

arbiazbyay by ar!, basby *ay by, and
blagbgd72b;1a2ilb;1.

By writing the 388 relations in additive form, we
obtain a matrix of 388 rows and 14 columuns that we
refer to as the relation matriz of the presentation.
From the presentation, we can compute H;(T5(2))
(the commutator factor group of T3(2)) by applying
the Gaussian algorithm to this matrix to evaluate
its invariant divisors. The divisors are

07 0’ O’ 07 07 07 O’ 07 07 27 2’ 27 27 47
meaning that

As a byproduct, we see that 14 is the lowest cardi-
nality for a generating set of this group ( since none
of the invariant divisors is 1). This example takes
care of the genus g = 2.

In addition, using an algorithm called LowIndex-
Subgroups in GAP we can calculate a complete list
of the conjugacy classes of all subgroups of finite in-
dex bounded by a given number p. (The algorithm is
efficient only for small indices. For example, p = 20
is already a huge index for M,.) We have tabu-
lated all the conjugacy classes of subgroups of M,
for p = 10 together with their commutator factor
group in Table 1.

Index H H/H'
1 H, Zyg
2 H, s
3 _ _

4 _ _
5 H; Zio
6 Hy Zyg
6 Hsy Zgo
7 _ _
8 _ _
9 _ _
10 Hg 0
10 H, 7&7Z,

TABLE 1. Subgroups of low index in Ms.
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Actually, Hg is the commutator subgroup of Ms,,
which is a perfect group, and H; corresponds to the
only subgroup (up to conjugation) of order 72 in S.
Hereby, we have found the smallest index subgroup
with nontrivial first cohomology group. Using the
same method, we can find a generating set, together
with a presentation for Hr:

H7 = <b1, a2_2, bg, a2b1a162a2d_1b2_1b1_1a2_1>.

Since H; has a relatively small index and is gener-
ated by only four elements, the procedure of finding
a presentation can even be done by hand. The sim-
plest presentation we can construct for H; consists
of 4 generators and 25 relations of total length 564.
Table 2 shows this presentation explicitly.

13434

2 4242

3 212121

4 32313231

5 41414141

6 32323232

7 4134313143141313

8 3131413131314131

9 4131413141314131

12 41313131314133413431
13 31413214123141321412

14 13131141131311314131

16 21314131243213141313323
17 21413243231421231431314

23 342321212413132141243413432334143414123132141

- 23131413323
TABLE 2. The 25 relations in the presentation of Hy.
Here 1 stands for g; and 1 stands for g; 1. The gen-

erator g1 occurs 197 times, g, occurs 81 times, g3
occurs 174 times, and g4 occurs 112 times.

At the end, we calculate the commutator factor
group of H;. The invariant divisors of the relation
matrix are 1, 1, 2, 0, meaning that

Hl(H7) == Zg @Z,

or

H'(H;) =Z.
This proves Theorem 1.3.

3. CONSTRUCTING EXAMPLES FOR g = 3

The result for genus g = 2 is not very surprising, be-
cause of the exceptional status of g = 2. There are
many properties that all surfaces of g > 3 share, but
a surface of g = 2 does not [Johnson 1983]. There-
fore, the interesting examples would be for surfaces
of higher genera.

The case g = 3 is not only much more difficult
to handle but also quite different in nature. The
first reason is the following theorem, proved in [Mc-
Carthy 1996].

Theorem 3.1. Let I' < M, be a subgroup of finite index
containing the Torelli subgroup T,. Then H*(I') =0.

The proof uses a result from [Johnson 1980a] and the
fact that the image of I' in Sp,,(Z) contains some
congruence subgroup. According to this theorem, if
a cofinite subgroup of M, with nontrivial first coho-
mology group exists, it has to be found among those
that do not contain T,. The residual finiteness of M,
assures us the existence of subgroups not containing
the Torelli subgroup. The main problems we en-
counter for the construction of these subgroups are:

1. How to find cofinite subgroups of M,?
2. How to check whether they contain T, or not?

3. How to calculate the first cohomology groups of
these subgroups?

Problem 1. In order to construct a whole series of
cofinite subgroups of M, we have adopted a method
that was originally introduced by R. Gilman [1977]
to study the automorphism groups of free groups.
We have modified this method and have applied it
to M, as follows:

Let @ be a finite group and G a finitely presented
group. Two epimorphisms ¢; and ¢, from G onto
@ have the same kernel if and only if they differ by
an automorphism of @; that is, ¢; = ¥y,, where
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1 € Aut Q). If we denote the set of all epimorphisms
of G onto @ by Epim(G, @), we have the bijection

No={N <G :G/N ~ Q} +» Epim(G, Q)/Aut Q.

Now let G = m,. The automorphism group of =,
acts on N as a permutation group. Let k be the
cardinality of Ng and S the symmetric group on k
elements. We obtain a homomorphism

&, o Autmy — 5.

The inner automorphisms act trivially on Ng. Thus
®, o factors through the outer automorphism group
of m,. After restriction to M,, we obtain a homo-
morphism

(bg,Q : Mg — Sk

¥,.q, the kernel of ®,,, will be a cofinite normal
subgroup of M. In this way, we obtain a lot of dif-
ferent normal subgroups of M, for different choices

of Q.
Remark 3.2. Let N € Ng. Then

H= () @N)

pEAut Ty

will be a cofinite characteristic subgroup of m,, and
Ay w < X, 0. In particular, each of the subgroups
Y, o contains at least one congruence subgroup.

Problem 2. Based on Johnsons’ results on the Torelli
subgroup [Johnson 1983], we will give a method to
determine whether T, < ¥, o, or not. This will be
discussed in Section 4, when we construct some sub-
groups.

Problem 3. This is the most difficult part of the cal-
culation to deal with. In order to determine H'(U),
a presentation of U has to be given. The algorithms
we use to determine a presentation for a subgroup
of a finitely presented group are based on a classical
theorem from combinatorial group theory:

Theorem 3.3 (Schreier-Reidemeister). Let G be a finitely
presented group with n generators and m relations.
In addition, let H < G be a subgroup of finite index
with [G : H] = p. Then H is also finitely presented,
and there is an algorithm to construct a presenta-
tion for H on pn—p+ 1 generators and at most mp
relations.

There are generally two different methods to con-
struct such a presentation, one due to Schreier and
Reidemeister, and the other due to Todd and Cox-
eter [Johnson 1976; 1980b]. Modified versions of
both algorithms have been implemented on GAP.
As we see from the theorem, the complexity of the
presentation increases with the index p. In addition,
the length of the defining relations for H depends on
p as well and can become eventually very large. (See
the presentation that was constructed for T5(2) in
the previous section. For instance, the first relation
is a word of length 4. Meanwhile the length of the
last relation is 50.) Therefore, constructing presen-
tations for subgroups of huge indices can become
an infeasible task, (for instance p = 1000 is already
huge in the case of M4 (2)).

In the next sections, we consider some examples
for different choices of ). At first, we show that
abelian @’s are of no help for our purposes.

Example 3.4. ) = Z,.

Aut Z, is trivial. Hence there are as many subgroups
of index 2 in w3 = m(83) as different epimorphisms
from w5 onto Z,. Therefore, there are exactly 2° —
1 = 63 subgroups of index 2 in m3. Consequently,
we obtain the homomorphism

@2722 . Mg — 563'

The action of M3 on these subgroups coincides with
the symplectic action of M3 on the subspaces of
codimension 1 in (Z,)® ~ H,(83,Z3). Therefore,
®, 2, factors through Spy(Zs) and gives us a faith-
ful permutation representation of Spg(Z,), which is
also transitive (see [Huppert 1967] page 221). This
implies that ¥3,, = T3(2) is a normal subgroup of
index |SpG(Z2) ‘:1451520 that contains T, and con-
sequently, H!(X37,) = 0.

Theorem 3.5. For every abelian Q, H (X, o) = 0.

Proof. T, acts trivially on H;(8,,Z). Since @ is
abelian, every N < 7, with 7,/N ~ @ contains .
As a result, T, acts trivially on {N : 7,/N ~ Q},
that is, T, < X, o. O

In the next section, ¢ will be always a nonabelian
group, and we will describe the procedure to con-
struct the homomorphism @, and its kernel ¥, .



266 Experimental Mathematics, Vol. 9 (2000), No. 2

FIGURE 2. The bounding pair generating T,.

4. CONSTRUCTING &,
We proceed as follows:

1. We need to know Aut Q). In general, there is no

algorithm to calculate the automorphism group
of a finite group, unless the group belongs to a
certain category such as P-groups or more gener-
ally nilpotent groups [Schonert et al. 1996]. But
for small @) this might be done by hand.

. To find the set Epim(my, @), we consider all tu-
ples g1, 2, ...,q24 € Q generating ) and satisfy-
ing the only defining relation of 7:

To = [Q1,Q2][Q37 Q4] e [q2gfla C_I2g] =1.

Aut ) acts on the set of all these tuples. Let
us choose a set of orbit representatives for this
action. This yields the set Epim(7,, Q)/Aut Q.

. For every ¢ € Epim(r,,Q), we determine N, =
Ker ¢ as the normal closure of a finite set of ele-
ments of 7, as follows:

We construct a presentation for ) on generators
q1,G2, - - -, G2g- Besides 7y, the only relation of m,,
this presentation of ) will satisfy some more re-
lations, such as ry, ry, ..., 7p. If we rewrite 7y,
T2, ..., T, as words in generators of 7,, we will
obtain a set whose normal closure will be V.

. M, ~ Out™(7,) acts on the conjugacy classes of
mg. Through hand calculation we determine the
action of Dq,,Dg,,...,Dq,, Dg,, Ds (see Figure
3) on the conjugacy classes of the generators of
74 (see Figure 3). We choose a fixed presentation
of 7, as follows:

< al,bl,...,ag,bg . [(Zl,bl][ag,b2] [ag,bg] = 1>

In Figure 3, we have drawn 2g loops, with the ap-
propriate orientation, whose isotopy classes rep-
resent the 2g generators of m, satisfying the only
relation of 7,. Here, [a,b] = aba™'b™! is the com-
mutator of ¢ and b, and we multiply curves from

left to right; that is, the curve ab is obtained by
traversing at first curve a, then curve b.

In addition to D,,, Dg,, ..., Dy, Dg,, Ds, we
also need to know the action of D, (see Figure 3).
The reason is the following (see [Johnson 1983]).
The Torelli subgroup T, is generated by all the
elements of the form

D;D;*,

where § and 7 represent a bounding pair, i.e., a
pair of disjoint simple closed curves representing
the same nontrivial Z-homology class. Johnson
further defines the genus of a bounding pair to be
the smaller of the genera of the two pieces of the
surface cut by the two curves, and proves that T,
is normally generated by any genus 1 bounding
pair. Our choice in Figure 3 is of genus 1. This
result will be used to settle problem 2. That is, in

FIGURE 3. The generators of 7.
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only some of the generators. So we will not list

order to determine if a certain normal subgroup D, :a + a0,
of M, such as ¥, o contains T, or not, all we have Do, : ai_1 — ai_i05,
to do is determine whether bioy — abi_jo;' fori=2...,g,
— a; = Q;04,
(ﬁng(DlsDr] 1) .
Dﬁi‘ bz '_)b'L/Bz fOI'l:]_,...,g,
is the trivial permutation, which can easily be Ds: ay 5 a8,
done. D a o4
We will now list the action of the Dehn twists on e b2 . 2_?’()
the generators of 7,. Every Dehn twist changes ? 7771 2"
az = n -asmn,
—1
those generators that remain invariant. We will bs = ben
need some new elements of 7,, defined as follows: We will also need the action of the left Dehn
_ twists:
a1 = bl 1,
a; = a;b; ta; by, fori=2,...,g, Dyl ar = aog
—1. ..
Bi = a;, fori=1,...,9, D, : a1 — az—llaw .
bi—l — CKZ_ bi_lozi for i = 2, e g,
0 = by, a; — ala;,
—17-1
n=oy by Dyl b = bBt fori=1,...,9,
See Figure 4. Di':ay = ad,
D' :ay e oagm,
by = by,
as > nagn ",
b3 — 7’]b377_1.
5. Let w = w(ay, by, ...,a,,b,) be some word in the
generators of 7,, and let D, be some Dehn twist.

Define
D, (w) = w(Dy(a1),Da(b1),...,Da(ay), Da(by))-

Now if N is the normal closure of n,ny,...,n;,
where n; are some words in ay, by, ..., a,, by, then
D, (N) will be a normal subgroup normally gen-
erated by D,(n1),...,D4(n;). Now let ¢ be an
element of Epim(r,, @) and N = N, be the cor-
responding kernel of ¢. If we apply D, to N,
we will obtain another N, for some other ¢’ €
Epim(7,, Q). Since we know all ¢’s together with
their kernels, we can find the appropriate normal
subgroup that N gets mapped to under the action
FIGURE 4. The action of Dehn twists. of D,. In this way, we construct the homomor-
phism

These elements of 7, are denoted by the same let-
ters as the simple closed curves used in the pre-
sentation of M, because they all happen to be  In the next example we choose ) to be the smallest
simple closed curves representing the same iso-  nonabelian finite group S;. First we need some facts
topy classes. For the right Dehn twists, we get: from classical group theory.

(I)97Q : Mg — Sk
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Definition 4.1. Let G be a group and H a permutation
group on a finite set Q with |Q] = n. The wreath
product G H of G with H is defined to be the set

GV H ={(91,92,---,9n,h) : gs € G,h € H}
with the group multiplication
(gl,gz,,,,,gmh)(g'l,g;,...,g;,h/)

= (9192(1)7 9292(2)7 e 7gn92(n)a hh').
Theorem 4.2. Let G and H be defined as in definition
4.1. Then GiH has a normal subgroup isomorphic to
the direct product of n copies of G and is isomorphic
to a semidirect product of this normal subgroup by

H. Hence, the order of GU H will be
|GV H| = |G|"|H].
See [Huppert 1967] page 95 for a proof.

Definition 4.3. A permutation group G on the set 2
is imprimitive if there exists a proper subset A C €
such that for all g € G either gA = A or gANA = &.
A is called an imprimitivity region of G. A transitive
permutation group that is not imprimitive is called
primitive.

Theorem 4.4. Let G be an imprimitive permutation
group on §) with imprimitivity region A, and let H =
{g € G : gA = A} be the stabilizer of A. Let further
R be a set of coset representatives of G/H.

(@) @ =U,errA.

(b) If |2 = n is finite, then || = |A|[G : H|. Let
|Al =k and |G : H| = p. Then G is isomorphic
to a subgroup of the wreath product of Si 1.S,.

(c) H acts transitively on A.

The proof can be found in [Huppert 1967, p. 146].

Theorem 4.5. Let G = (g1, 9o, . -
be a finitely presented group and

s Gm P T1,Tay ey k)

p:G—= S,
be a transitive permutation representation of G on
n elements. Let us denote the image of ¢ by H.
Then we can construct a presentation for H on hy =
0(g1)y -+ hm = @(g,) as follows

H: <h1,h2,...,hm : TII’TIQ""’T;C’>
(see Section 7), and N = Ker ¢ is normally gener-
ated by ry,rh,...,rw.. (Note that 7,..., 7}, are the

same words used in the presentation of H but writ-
ten in the generators of G.)

Let further {si,sa,...,8:} be a set of representa-
tives of the preimages of all elements of H under .
Then a generating set for N as a subgroup will be

N=(s;'ris;zi=1,...,t, j=1,....k).

If U is a subgroup of H (such as the stabilizer of one
point), generated by uy,...,w;, and wi,...,w; are
their preimage representatives in G, then ¢ *(U) is
generated as

s, ti=1,...

(wy, ... w87 7]

The proof is trivial.
Now we are ready to look at some examples.

Example 4.6. ) = S;.
Aut S3 is isomorphic to S3. The set
Epim(7,, Q)/Aut S;

contains exactly 2520 elements; that is, there are
exactly 2520 normal subgroups N < m(83) with
m1(83)/N ~ S;. As a result, we obtain the homo-
morphism

D35, 1 Mz — Sosa0-

S3 is solvable with §% ~ Zj;. As mentioned ear-
lier in example 3.4, there are exactly 63 subgroups
My, M, ..., Mgz in 7,(83) with Z,-quotient. Each
of these normal subgroups M; turns out to contain
Ni1,N;a,...,N; 4 normal subgroups with Zj3 as a
quotient such that each NV; ; is also normal in 7 (83)
and 71(83)/N; ; ~ Ss. Let’s denote the set of these
subgroups by Ng, = {N; ;}. In this way, we obtain
a partitioning of these 2520 normal subgroups into
63 blocks, Ai,...,Ags, each containing 40 normal
subgroups. The action of M3 on Ng, is transitive
but not primitive. The imprimitivity regions are
exactly the blocks Aq,...,Ags3. The permutation of
the Als is determined by the action of M3 on the
normal subgroups My, Ms, ..., Mss, which gives us
a faithful transitive permutation representation of
SPs(Zy) on 63 elements, as we saw in example 3.4.
The stabilizer of one of the Als, such as A,, for
instance, under the action of Mj acts transitively
on A; (see Theorem 4.4). Therefore, the restriction
of this action on A; will be a transitive permuta-
tion representation on 40 elements. Let us denote
the image of this representation by U. We can also
compute a set of generators for U. Table 3 shows
six permutations that generate U.
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(1 5,23,32)( 6,24,34)( 7,25,33)( 8,26,38)( 9,27,40)(10,28,39)(11,29,35) (12, 30,37) (13, 31, 36)
(14, 32,23) (15,33, 24) (16, 34, 25) (17, 35, 26) (18, 36, 27) (19, 37, 28) (20, 38, 29) (21, 39, 30) (22, 40, 31)
(2, 3, 4)( 8, 9,10)(11,13,12)(17,18,19)(20,22, 21)(26, 27, 28) (29, 31, 30) (35, 36, 37) (38, 40, 39)
(1, 2, 4)( 6,11,10)( 7, 8,12)(15,20,19)(16,17,21)(24, 29, 28) (25, 26, 30) (33, 38, 37) (34, 35, 39)
(2, 3, 4)( 8, 9,10)(11,13,12)(17,18,19) (20,22, 21) (26, 27, 28) (29, 31, 30) (35, 36, 37) (38, 40, 39)
(12,22,19)( 3,21,17)( 4,20,18)( 5,25,34)( 6,23,33)( 7,24,32)(11,37,31)(12,36,29) (13, 35, 30)

TABLE 3. Six permutations that generate U.

U turns out to be a simple group of order 25920.
The only simple group of this order is PSp,(Z3), (see
[Conway et al. 1985]). Thus, we proved that

Im((b&SS) >~ PSp4(Zg) l SpG(Zg),
and the order of this image is
(25920)% x 1451520 ~ 10%%*.

It’s needless to mention that computing a presenta-
tion for ¥ = X3 g, is a hopeless task, but we are not
actually interested in computing this presentation,
but rather knowing if H'(X) is finite or not. We
are going to look at H = ®; g (Stabas, ., () (N1,1))-
As mentioned above, the image of M; under ®; g,
is transitive. So the stabilizer of one of the {N; ;},
such as N, ;, will be a subgroup of index 2520, and
its preimage H will be a subgroup of the same index
in M3. What seems to be realistic to handle is com-
puting a presentation for H. On the other hand,
Y35, = Corene,(H) = [ en, 9 ' Hg, meaning that
T3 < X3, if and only if T3 < H.

5. COMPUTING A PRESENTATION FOR H

Even 2520 is a huge index, and our computer won’t
be able to compute a presentation for H. Therefore,
we will break down the calculations in two steps.
At first, we look at K = &3 (Staba, ,_(v,)(M1)),
which will be of index 63 in Mj. Since K fixes M,
it acts on {Ny1,..., Ny 40}. Therefore, ®3 5, can be
restricted to K and we will get a homomorphism
(that we denote by the same letter)

@3)53 K — 540.

In the previous example, we denoted the image of K
by U. Now we look at H =&, 5 (Staba, ., (x)(N1,1)),
which will be a subgroup of index 40 in K, and a
subgroup of index 40 x 63 = 2520 in Mj3. Using The-
orem 4.5, we can find a generating set for K. Then
we construct a presentation for K on this generating

set; see Section 7. The advantage of this specific rep-
resentation of K is that every element of K (written
as a word in its generators) can be directly rewrit-
ten as a word in the generators of Mj3. This means
that every subgroup of K can be directly realized
as a subgroup of M3, and any homomorphism from
M3 onto any permutation group can be restricted
on K and easily evaluated. We can also find a gen-
erating set (using again Theorem 4.5) for H as a
subgroup of K together with a presentation. Using
the presentation, we can evaluate its first homology
group, and taking advantage of the special presen-
tation of K, we can realize H as a subgroup of Ms.
The most time consuming part of the calculations
involves the computation of a presentation for H.
Here, it would be reasonable to check, at first, if H
contains the Torelli subgroup or not. The smallest
generating set we can find for K consists of the 8
elements

—2 -1 -1
,azbzde aq .

Then, we calculate a presentation for K, and apply
the Tietze transformations to simplify it. The sim-
plest presentation we get has 8 generators and 242
relations of total length 66790. H is generated by
the 9 elements a;, by, ay?, by, by, d~2, asbydby 'ay*,
asb, tas, agbgbglagl, and does not contain the Torelli
subgroup. H has a presentation on 94 generators
and 9401 relations of total length 2120026. At the
end, we determine the commutator factor group of
H. The nontrivial invariant divisors are 2, 6, and
12. Hence

—2
ay, by, a, -, by, as, bs, d

H,\(H)

Although H is a subgroup that does not contain the
Torelli subgroup, its first cohomology group is zero.

The next attempt will be undertaken using the
quaternion group (g instead of S;.

Example 5.1. ) = Qs.

QZQ@ZG@Zlg.
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Qs is a solvable group with Qf ~ Z, and Qs/Q% ~
Zy & Z>. We have exactly

(26 —1)(2° —2)
@-1)Z-2)

subspaces of codimension two in (Z3), so there are
exactly 651 normal subgroups My, ..., Mgs; in m1(83)
with Z, ®7Z, as quotient. The action of Mj on these
subspaces won’t be transitive. There are exactly two
types of subspaces of codimension two, and the ac-
tion of M3 will be transitive on each of these fam-
ilies. One of them is called isotropic, on which the
symplectic form vanishes on its symplectic orthogo-
nal complement, and the other one is called hyper-
bolic, on which the symplectic form is nondegenerate
on its symplectic orthogonal complement (see [Hup-
pert 1967]). In our situation, we will be only inter-
ested in the hyperbolic ones and there will be 315 of
those. Each of these hyperbolic subgroups M; con-
tains exactly 16 normal subgroups {N;1,...,N; 16}
such that their quotient in 7,(83) is isomorphic to
Qs In this way, we obtain 315 x 16 = 5040 normal
subgroups of quotient (Js. The homomorphism

= 651

D3 o, : M3 — Ss040

will have an image isomorphic to U ¢! L, where L is
a transitive permutation representation of Spg(Z.)
on 315 elements and U is a solvable permutation
group of order 9216 on 16 elements. The order of
this image will be

0216%'° x 1451520 ~ 10%255,
Again, we look at
K = @?:%26922 (Stab‘ﬁa,ZQ@ZQ(Ms)(Ml))

and at its subgroup H = ® ¢, (Stabag, ,_ (x)(N1,1))-
K is a subgroup of index 315 containing the Torelli
subgroup, and H is a subgroup of index 5040 that
does not to contain the latter group. K is gener-
ated by the 10 elements ay, by, a; >, ba, a3 >, bs, d~2,
asbsby ‘a3, asbydby 'ay!, and
asbyarbyasbiasbyday 'by  ay by ay by ay b ay

and has a presentation with 10 generators and 1140
relations of total length 285918. H is generated by
the 13 elements a,, by, a3, by, a3, bs, d*, asbsby 'a3",
azbadbytayt, a3 ?bya?, ay*asbsb; taga?,

asbyabyagbiazbyday by ay by ay by ay b ay

and a, ’b; ?a2, and has a presentation with 86 gen-
erators and 18105 relations of total length 3935640.
At the end we look at the commutator factor group
of H. The nontrivial invariant divisors are 2, 4, 8.
Hence

Hl(H) ~ Zg @24 @Zg

Therefore, H'(H) = 0.

We now list the results of our calculations for all
the other choices for ) that we have been able to
handle. Although in each case the calculations are
slightly different and need to be treated separately,
we will not get into the details and will just state
the results.

Example 5.2. () = Ds.

There are 15120 normal subgroups of quotient Dg
(the dihedral group of order 8) in M3. The action of
M3 on these 15120 subgroups is not transitive and
has 2 orbits of equal length of 7560 elements. The
stabilizer of one of the elements in the first orbit
is a subgroup H; of index 7560 in M3 generated
by 10 elements. A presentation on 126 generators
and 27169 relations of total length 6069283 can be
constructed for H;. The nontrivial invariant divisors
of Hy/Hj are 2,2, 2, 4, 4, 4. Hence

H'(H,) =0.

As a matter of fact H; contains the Torelli subgroup.
The stabilizer of one of the elements in the second
orbit is a subgroup H, of index 7560 in M3 generated
by 10 elements. A presentation on 126 generators
and 27168 relations of total length 6060990 can be
constructed for Hy. The nontrivial invariant divisors
of Hy/H) are 2, 2, 4, 8. Hence

H'(H,) =0.

It turns out that H, also contains the Torelli sub-
group.

Example 5.3. Q = Dq,.

There are 9828 normal subgroups of quotient Dy
in M falling into 2822 = 156 blocks. The action of
M3 on these 9828 subgroups is an imprimitive tran-
sitive group. The stabilizer of one of its element
is a subgroup H of index 9828 in M3 generated by

11 elements. A presentation on 259 generators and
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34795 relations of total length 5206667 can be con-
structed for H. The nontrivial invariant divisors of
H/H' are 2, 4, 4. Hence

H'(H)=0.
Here again H contains the Torelli subgroup.
Example 5.4. Q = Dy,.

There are 78120 normal subgroups of quotient D,
(the dihedral group of order 12) in M3. The action of
M3 on these subgroups is not transitive and falls into
4 orbits. We were not able to calculate a generating
set much less a presentation for the stabilizer of any
of these subgroups.

Example 5.5. Q = Dy,.

There are 25200 subgroups of quotient D4 in Msj
falling into % = 400 blocks. The action of M3 on
theses subgroups is an imprimitive transitive group.
The stabilizer of one of its element is a subgroup H
of index 25200 in M3 generated by 11 elements. A
presentation on 701 generators and 89308 relations
of total length 12995940 can be constructed for H.
However, we were not able to calculate the invariant
divisors of H/H'. But we could establish the fact

that H contains the Torelli subgroup, therefore
H'(H) =0.

Example 5.6. Q) = A,.

For A4, the alternating group of order 12, we were

not even able to calculate a full list of normal sub-
groups in M3 having an A4-quotient.

Example 5.7. Q = T1,.

In addition to D, and A, there is another non-
abelian group T}, of order 12, with presentation

Tio = (t1,to : £, 5, tit5 ' tats)
and permutation generators
(1,2,4)(3,6,5)(7,8,9)(10,12,11),
(1,3,7,10)(2,5,8,11)(4,6,9,12).

There are 80640 subgroups of quotient T, in Msj

falling into % = 1280 blocks. The action of Mj
on these group is an imprimitive transitive group.
The stabilizer of one of its element is a subgroup H
of index 80640 in M3 generated by 24 elements. We
were able to construct a presentation on 2336 gener-

ators and 287680 relations of total length 40604058

for H. Although we were not able to calculate the
invariant divisors, we could establish that H con-
tains the Torelli subgroup, therefore

H'(H)=0.

The choices for ), considered in the examples above,
were the only cases we were able to handle for g = 3.
However, for g = 2 we were able to construct more
subgroups.

6. MORE EXAMPLES FOR g = 2

In the following we will list some more subgroups we
have been able to construct for M, using the method
we described in this section.

Example 6.1. Q = S;.

There are 60 normal subgroups of quotient S; in
M,. The action of M, on these 60 subgroups is
a transitive permutation group. The stabilizer of
one of these subgroups is a subgroup H of index 60
in M, generated by 7 elements. A presentation on
11 generators and 165 relations of total length 3496
can be constructed for H. The nontrivial invariant
divisors of H/H' are 2, 2, 0, 0. Hence

H'(H)=Z&L.
Example 6.2. ) = Ds.

There are 180 normal subgroups of quotient Dg in
M. The action of M, on these 180 subgroups has
2 orbits of equal length 90. The stabilizer of one
of these subgroups in the first orbit is a subgroup
H, of index 90 in M, generated by 8 elements. A
presentation on 35 generators and 391 relations of
total length 6675 can be constructed for H;. The
nontrivial invariant divisors of H;/H; are 2, 2, 2, 0,
0, 0. Hence

H'(H)=Z®Z®L.

The stabilizer of one of the subgroups in the second
orbit is a subgroup H, of index 90 in M, generated
by 7 elements. A presentation on 36 generators and
393 relations of total length 6682 can be constructed
for H,. The nontrivial invariant divisors of H,/H,
are 2, 2, 8, 0, 0. Hence

H'(H,)) =7Z 7.
Example 6.3. ) = Qs.
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There are 60 normal subgroups of quotient Qg in
M,. The action of My on these 60 subgroups is a
transitive permutation group. The stabilizer of one
of these subgroups is a subgroup H of index 60 in
M, generated by 11 elements. A presentation on
24 generators and 263 relations of total length 4562
can be constructed for H. The nontrivial invariant
divisors of H/H' are 2, 2, 4, 0. Hence

H'(H)=17.
Example 6.4. () = D.

There are 90 normal subgroups of quotient D;q in
M,. The action of M, on these 90 subgroups is
a transitive permutation group. The stabilizer of
one of these subgroups is a subgroup H of index 90
in M, generated by 7 elements. A presentation on
15 generators and 245 relations of total length 5063
can be constructed for H. The nontrivial invariant
divisors of H/H' are 2, 2, 4, 0, 0. Hence

H' (H)=Z&Z.
Example 6.5. Q = T7,.

There are 480 normal subgroups of quotient T}, in
My. The action of M, on these 480 subgroups is
a transitive permutation group. The stabilizer of
one of the these subgroups H is a subgroup of index
480 in M, generated by 11 elements. A presentation
on 68 generators and 1370 relations of total length
23395 can be constructed for H. The nontrivial in-
variant divisors of H/H' are 2, 2, 2, 0, 0, 0. Hence

H'H) =ZoZ&L.

7. FINAL REMARKS

As mentioned in the introduction, almost all of the
calculations have been performed in the program-
ming language GAP. The programs were written by
the author, except for the following two cases, where
some new programs, that at the time of writing this
paper were not yet implemented in GAP’s library,
were needed in:

1. calculating a presentation for a finite permuta-
tion group (see Theorem 4.5), and

2. producing a presentation on a given set of gener-
ators (see Section 5).

My special thanks goes to T. Brauer from RWTH-
Aachen, not only for providing the programs in ad-
vance, but also for his valuable help and advice.

The first machine we have used for the purpose of
our calculation was an Sun Ultrasparc 1 Model 170
(170 MGHz, and 128 Mbytes of RAM). The calcula-
tions for the groups S3, Qs and Dg were carried out
using this machine. The three major parts of the
calculations involve

1. calculating Epim(7,, @) (Section 4),
2. evaluating ®, o (Section 4),

3. producing the presentations for H and K (Sec-
tion 5).

Part 3 is the most time consuming. The first two
parts together take only about 20 percent of the
total computing time. Here are the times needed
for Examples 4.6, 5.1 and 5.2:

1. @ =853, 52 min,
2. @ = Qg, 283 min,
3. @ = Dg, 415 min.

The other groups were handled with a faster ma-
chine: a 400 MGHz Pentium II with 256 Mbyte of
RAM.

Although we have been able to construct only a
few number of subgroups inside M3, all of them have
turned out to have a trivial first cohomology group.
Unfortunately, the fact that almost all of them (ex-
cept for Q = S3) contain the Torelli subgroup makes
it very difficult for us to guess whether M3 has the
Kazhdan property. Considering that in our calcula-
tion ) has always been a solvable group, the choice
of a simple group for () would be an interesting case
that deserves attention. Although the calculations
for a simple ) might shed some light on this prob-
lem, even the smallest choice A; (the alternating
group on 5 elements) of order 60 turns out too big
for the current methods.

ELECTRONIC AVAILABILITY

The GAP programs used in our calculations are
about 2300 lines long and can be found at http://
www.math.msu.edu/~ferry.
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