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We present a numerical test for determining whether a given set
of numbers is the set of Fourier coefficients of a Maass form,
without knowing its eigenvalue. Our method extends directly
to consideration of holomorphic newforms. The test is applied
to show that the Kloosterman sums £S5(1, 1;p)/\/§ are not the
coefficients of a Maass form with small level and eigenvalue.
Source code and the calculated Kloosterman sums are available
electronically.

1. INTRODUCTION

Consider the Kloosterman sums, defined for primes
p and «, § relatively prime to p by

ax + 0%
S = Y o).
zz=1 (p) p
By a theorem of Weil, |S(a,3;p)| < 2,/p. More-
over, Katz [1980] proved that S(«,1;p)//p asymp-
totically follows the Sato—Tate measure

1
dp = —4/1 — a2 dz,
™

as «a varies over relatively prime residue classes (mod
p), and p — oo. He conjectured that the same
holds as the prime p varies, with « held fixed. (This
conjecture is substantiated by our calculated data;
see Section 3.) On the other hand, the Sato-Tate
conjecture, first formulated independently by Sato
and Tate in the context of elliptic curves and refor-
mulated by Serre [1968], predicts this behavior of
the Fourier coefficients of “typical” GL,-eigenforms.
(See [Hejhal and Arno 1993] for some numerical ev-

idence for the Sato—Tate conjecture.)
Now, the S(a, 3;p) can not be the Fourier coeffi-
cients of a holomorphic form, since they do not lie
(© A K Peters, Ltd.
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in a fixed number field. To see this, suppose that for
some a and (3, S(a, 3;p) were contained in a fixed
(necessarily abelian) finite extension K/Q, for all p.
Then K is contained in some cyclotomic extension
Q(&m)- Choose a prime p > 3 not dividing m. Then
S(a, B5p) € Q(Cp) NQ(¢m) = Q, where G = e(1/p).
Rearranging the series for S(a, 3;p) we find

S(a, B;p) = 2(1 + (H‘T‘M))g.

t=0

However, this series has at least ”2;1 zero terms,
which is impossible since the minimal polynomial
for ¢,, 1+ X +---+ X? ! has only non-zero coeffi-
cients.

In view of these facts, Katz asked [1980, Question
1.2.5.3] whether the numbers S(a, 8;p)/ /P, With
€ = =1, could be Fourier coefficients of a Maass
form [Maass 1949; Bump 1997]. More precisely, is
there a Maass cusp form and newform of some level

N whose L-function has local factor

(1—eS(a,B;p)p = 2 +p7%)

for all primes p not dividing N7 Actually, Katz only
posed this question for ¢ = 1, but it is not clear
that the sign should not be —1. Indeed, Li [1999]
has shown that an analogue of Katz’s question, with
€ = —1, holds over function fields.

In Section 3 we present a test for determining nu-
merically when a set of numbers are the Fourier co-
efficients of a Maass form, and apply it to as(p) =
+5(1,1;p)//p, yielding the following partial nega-
tive answer to the question above:

-1

Theorem 1.1. If a Katz eigenform with coefficients
a+(p) of level N = 2" and eigenvalue \ exists, then
N(A+3) > 18.3 x 10°.

First, we recall some properties and state a general
theorem about Maass forms.

2. A THEOREM ON MAASS FORMS

If f is a Maass cusp form of eigenvalue A = r2+i and
a newform of level N then it has a Fourier expansion
of the following form [Bump 1997, §1.9]:

> A(n) VYK (2w |n|y) e,

neZ\{0}

flz+iy) =

where K, is the K-Bessel function. We have either
Ar(—n) = A¢(n), in which case f is called even, or
Ar(—n) = —A¢(n), in which case f is odd. The L-
function of f, defined by

extends to be entire. Further, the function

A(S,f):NS/ZFSF(S+€+iT> F(s+5—ir) L(s, f),

2 2

where ¢ = 0 is f is even and 1 if f is odd, is entire
and satisfies a functional equation of the form

A(Saf) =

(The sign of the functional equation does not con-
cern us.)
Now, let F(z) = z?e . For a large parameter YV’

we form the sum
= 2 MmE(y).

(n,N)=

Assuming the Ramanujan conjecture, the A;(n)’s in
this sum are O.(n®) for all £ > 0. Anyway, one
may show using the Rankin—Selberg method [Bump
1997] that this holds on average, so the terms in the
sum are significant for n up to a small constant times
YlogY. If the A\¢(n)’s were “random” £1 then Sy y
would typically be of size VY. On the other hand,
Sy.n may be written as an integral involving L(s, f)
and the Mellin transform of F'. Using the functional
equation, we will see that this integral affords much
cancellation, making Sy.y very small. This is made
precise by the following proposition, whose proof is
postponed until Section 5.

+A(1-s, f).

Proposition 2.1. Set ¢ =[]y ,2yn(1 +p). Then
Sy;:n

NO+3)Y
VY < 42.88Y ) )
Remark. The exponent 2 in the right-hand side is
the same as the order of vanishing of F'(x) at 0. By
choosing a different F', it could be replaced by any
higher power with different constants. However, in
practice this is not useful; it is more important that

F(z) be easy to compute and that the constant in
the denominator be large and easy to estimate.
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FIGURE 1. Histogram of a(p) for p < 41161751, compared with the Sato-Tate measure.

3. APPLICATION TO KLOOSTERMAN SUMS

We return to the numbers a4 (p) = £5(1,1;p)//p-
Suppose as(p) = A¢(p), the Fourier coefficients of
a Maass cusp form f, for all primes p not dividing
some N. If we extend a.(p) to n € Z" relatively
prime to N by means of the Hecke relations

ax(mn) = ax(m)as(n), for (m,n)=1,

at(p*) = ar(p)as(P* ) —as(p*?),

and compute the sum Sy, assuming a particular
value of IV, then Proposition 2.1 gives a lower bound
for the eigenvalue A of f. If the ay(p) are not the
coefficients of a Maass form, we expect Sy.y/ VY to
be on the order of 1, thus giving a lower bound for
A on the order of Y. Clearly the larger we choose YV
the better, for a large lower bound makes it unlikely
that any such form could exist.

To perform the test, the numbers a4 (p) were cal-
culated for p < 41161751 (the first 2.5 x 10° + 1
primes), using a network of 46 Linux PCs. The
code for these calculations was written in assem-
bly language and utilized the pentium processor’s
internal 80-bit (64-bit mantissa) floating point type
to avoid excessive precision loss. This allows ac-
curate calculation of Sy,y for Y < 2 x 10°. Fig-
ure 1 shows a histogram of the calculated values of
a. (p); they evidently follow the Sato-Tate measure
dp = 1\/1—a?/4dx. As further evidence, we list

the first few moments in Table 1.

Figure 2, top part, is a plot of Sy;l/\/? for a, and
a_ as Y varies between 1 and 2 x 10°. Similarly, the
bottom part shows Sy.5/ VY. The plots show clear
oscillatory behavior, with the width of oscillation
growing roughly in proportion to Y. More impor-
tantly, there is no observed decay as Y grows. Cor-
respondingly, we obtain good lower bounds (roughly
proportional to Y') for most values of Y, as shown
in Figure 3. The highest peaks are listed in Table 2.

Note that values of Sy, yield information for NV
any power of 2. For example, assuming \ = i (which
is expected to be the only value for which the coeffi-
cients are algebraic; see [Casselman 1977]), we find
N > 2% for a, and N > 224 for a_. In general we
have Theorem 1.1.

n  n-th moment of ax  n-th Sato—Tate moment
1 0.00027391 0
2 1.00064651 1
3 0.00227780 0
4 2.00145955 2

TABLE 1. Kloosterman sum moments.

Coefficients N Y A
ay 1 1.33x10% 30.9x 10°
2 1.04x10% 9.35 x 108
a_ 1 1.12x10% 27.5 x 108
2 2.00x10% 23.9x10°

TABLE 2. Eigenvalue lower bounds.
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FIGURE 2. Sy.;/VY (top) and Sy.2/vY (bottom) for Y between 1 and 2 x 10%. The full curves represent a

and the dashed curves a_.

4. EXTENSIONS

There was nothing special about the use of Maass
forms in Proposition 2.1. A similar analysis shows:

Suppose we start with a newform
Then the resulting sum Sy.ny must

Y. (N(k2+2k+9)>2‘

Proposition 4.1.
f € Si(Ty(N)).
satisfy

SY;N
VY

This statement is essentially the same as Proposi-
tion 2.1, with A replaced by 1k(k 4 2). We omit the
proof, which is almost identical to that of Proposi-
tion 2.1.

171.5Y

For example, we test this inequality for the nor-
malized newform in S5(I'y(11)), whose Fourier coef-
ficients are calculated by counting points on the el-
liptic curve E : y*+y = z*—2? over F, [Knapp 1992,
§ X1.1]. (Specifically, a(p) = (p+1—#E(F,))//p.)
Choosing Y = 10%, the right-hand side is approxi-
mately 1.31 x 107, while we compute the left-hand
side to be approximately 1.69 x 107'°. (In this case
we can not choose Y as large as before without run-
ning into precision problems; such factors must be
taken into account when calculating the sum Sy.y.)
Thus, the test correctly predicts that the numbers
a(p) could be coefficients of a (holomorphic) cusp
form of level 11.
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FIGURE 3. Eigenvalue lower bounds, N = 1 (top) and N = 2 (bottom). The full curves represent a; and the

dashed curves a_.

More generally, in examining the proof of Propo-
sition 2.1, we see that the Euler product of our form
f was not used in an essential way. In other words,
we may apply the same techniques to a form given
in the additive form f(q) = > °~, a(n)q", as long as
we have a priori bounds on the coefficients a(n).

5. PROOF OF PROPOSITION 2.1

By Mellin inversion we have

F(z) = —/R , I'(s+2)z °ds.

Thus,
1 ny\ s
= Ap(n)— (s +2 (—) d
Svv= X Mge [ Ter2) () ds
(n,N)=1
1 5
= — L I 2)Y?*d
27TZ Re s—2 (87f) (S+ ) 87

where we have defined
L. f)=Lsf) [ (xp),
p|N,p? /N

that is, L(s, f) with the local factors for primes p| N
removed. (Again, the sign of the local factors does
not matter.)
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Now shift the line of integration to Res = —%.
The integrand has no poles to the right of s = —2,
SO

1 ~
Sy N = — L(S, f)F(S + 2)YS ds.

271 JRe s=—3/2

Replacing L(s, f) by its definition and using the
functional equation for L(s, f), we have

1
Sy N =E—
2m1 Res=-3/2

F<1—3+e+ir> F(l—s—i-s—ir)

['(s+2)Y? (Wﬁlx/ﬁ) e

2 2
F(s-{—a-{—ir) F(s—l—e—ir)
2 2
L(1-s,f) H (1£p=1/2) ds.
pIN,p?fN
Hence
Sy-N N? i 1
’ r3+)
VY _27r5Y2/oo 2
5 ¢ i(r—t) 5 ¢ i(r+1t)
s )
" <4+2+ 2 17277
3 e i(r—1t) 3 ¢ i(r+1t)
(s ) 5o )
4+2 2 4 2 2
<|L(3—it)| [ [1+p""|dt
pIN, p?IN

We treat the terms in absolute values separately.
First, if p is a prime not dividing N then we may

write A;(p) = 2cos . (This again assumes the Ra-

manujan conjecture.) The Hecke relations yield

A (0")] = sin(k + 1)
0N = ——F

sin 0
For primes p|N, ‘)\f (pk)‘ = p~*/2 5o the preceding
bound is trivially true. Thus, |A¢(n)| < d(n) for all
n, and the factor |L(5/2 — it)| may be bounded by

<k+1.

2

n=1
Second,
I‘5 e 1t
(G+3+3) | |1 e |3, i
4202 42 2

3 & it
TEREy
4+2 2

Thus,
5 ¢ i(r—t) 5 €
4+2+ 2 4+2

i
3 ¢ i(r—t) 3 €
o
4+2 2 4+2+
<

(r+t)
)
i(r+t)
)
(=r)?+3) (t+r)?+3)
ziﬁ(r + 2 —|—t2+1) — 4t (r* 4+ 1) + t%)
(X

=1 — )+ (¢ + 32 +1)).

1
16

—_

[

6

Finally, [y, o [1 £ pl’“| < q and

|F( —{—zt)‘ = Vmsechrt.

Altogether, we have the estimate

Sy | _ ¢(5/2)*qN?
VY 1679/2Y2
x/ (A +2 (1—¢%) A4 (t*+3t°+1) ) Vsech 7t dt.
0
Now, put
° 1
= / vsechntdt = —— = 0.834627,
0 M(\/Ea 1)

B = / 2 (1 —t?) Vsech 7t dt &~ 0.214955,
0

C = / (t* +3t* + 1) Vsecht dt ~ 6.564697.
0

‘We then have

S\;%V < Cgr 29)/2‘;]\27 (AN + BA+C)
¢(5/2)%¢A (N(A+3)\°
167972 Y

Proposition 2.1 follows on noting that

¢(5/2)”

< (42.88)7
1679/2M (v/2,1) ( )

APPENDIX

It was established in [Sarnak 1987] that the Fourier
coefficients of GLs-cusp forms are dense in ) =
[—2,2]. (Implicit in this is the assumption that the
coeflicients are normalized appropriately so as to lie
in Q.) The goal of this appendix will be to prove
the following theorem, a kind of converse to Propo-
sitions 2.1 and 4, for the case of holomorphic forms.
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Theorem A.1. Suppose angles o, € ' = [0, 7] are
given for primes p < P. There is an absolute con-
stant ¢ > 0 such that, for any € > 0, there exists a
Maass cusp form of level 1 and eigenvalue at most

. cP? log(1+1/e)
X
P log P €

and whose Fourier coefficients A\, = 2cosf, satisfy
|0, — ap| < e for all p < P. The same is true with
“Maass cusp form” replaced by “holomorphic cusp
form” and “eigenvalue” replaced by “weight”.

Remarks. 1. The theorem shows that it impossible
to completely disprove Katz’s question numeri-
cally; for any given finite set of numbers in €,
there is a Maass form whose Fourier coefficients
are equal to those numbers to within the preci-
sion of our computer. Moreover, we get an idea
of how sharp Proposition 2.1 is. Given a number
P, the proposition says that there is some Maass
form with eigenvalue on the order of about e ’
with all coefficients below P greater than %, say.
On the other hand, using the same coefficients,
Proposition 2.1 gives a lower bound for the eigen-

value essentially on the order of P.

2. The proof for Maass forms is similar to the one for
holomorphic forms, but is more complicated since
the splitting of the trace formula is not as clean in
the Maass form case; one must consider weighted
averages of the trace over all Maass forms. We
present the simpler proof only.

3. The result is effective. That is, one could deter-
mine an explicit value for the constant c.

More generally, let S = {p;,...,p.} be a set of r
prime numbers, and suppose «, € ' is given for
each p € S. We will prove that there is a holo-
morphic form of the required type with weight k
satisfying

1 1
logk:O( og(1 + /6

210
peS
(Unless otherwise noted, the constants implied by
all O-notations are absolute.) The stated result then
follows from the prime number theorem.

Our main tool will be the Selberg trace formula,
which allows one to calculate the trace of the Hecke
operator T,,(k) acting on Si(SLy(Z)). We follow

closely the exposition of Serre [1997], with some sim-
plifications thanks to the restriction to level 1 (which
does not significantly affect the upper bound). First,
we set some notation and recall a few facts; see
[Serre 1997] for proofs.

Let po, denote the Sato—Tate measure on (2,

1 2
ditee = —4/1 — iﬁdm = Zsin* 0 db,
™ T

where x = 2cosf for 8 € (V.
Let (f,u) denote [ fdu. The space over which
the integral is taken will be clear from context.

The polynomials X,, defined on 2 by
sin(n + 1)0
sin 6

Xn(x) =

are the orthonormal polynomials with respect to
loo- In other words, (X, X, hoo) = Opm- Let

T (k) = T, (k) fn* )/

denote the n-th Hecke operator, normalized so that
its eigenvalues lie in 2. In this context, the Hecke
relations may be written ). (k) = X,,,(T,(k))-

For ¢ > 1, we have the family of unit measures

. qg+1
dpg = (¢'/2 + g~ 1/2)2 — g2 dptoo

For a prime p, we will see from Lemma A.3 that u,
gives the the limiting distribution (as k& — o0) of
eigenvalues of T} (k). As ¢ — 00, fi; — [oo, Which
is the limiting distribution of the eigenvalues of all
T, (k) taken together. For ¢ =1,

dis — dz _df
R e T
For ¢ > 1, p, is comparable to ji in the sense that

q+1 q+1
(q1/2+q71/2)2 /’[/OO(E) S:uq(E) S (ql/z—q*1/2)2 IU/OO(E)

for any measurable set E C Q. Also, (X, p,) =
g ™% if m is even, and 0 if m is odd.

Define s(k) = dim Si(SL2(Z)). Let 0., be the
measure on " that assigns weight 1/s(k) at each
r-tuple of simultaneous eigenvalues (Aq,...,A,) of
T, (k),...,T, (k) and 0 everywhere else. Let g be
the measure pug = p,, X -+ X p, . For an integer
n =pi"*---p", define

Yn(ajla <o ,QZT) = X, (ml) o X, (xr)§
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the Y,, are the orthonormal polynomials on 2" with
respect to pX” (the product of r copies of p). Also,
T, (k) = Yu(T, (k),..., T, (k)).

Now, for each p € S, let I, be the interval {z =
2cos6 € Q: 10 —a,| < e}. Define Is =1, x--- X
I, C Q. For a function f on ()" we have

1
IRy

where the sum is taken over all r-tuples of simul-
taneous eigenvalues of T}, ,...,T),, lying in I5. On
the other hand, the trace formula allows us to calcu-
late [, f dds,, when f is a product of polynomials.
Thus, it suffices to find such a function f which is
small outside of Is, yet with (f,ds.,) large to show
that fIS fdds > 0. Ultimately, the upper bound
for k£ will come from a bound on the degree of the
constructed function.

To accomplish this, we need a few lemmas.

f(>‘17"'a>‘7“)7

Lemma A.2. Define §,—q as 1 if n is a square and 0
otherwise. Then

k 3
/2
12n1/2 + O( )
Proof. Using the notation of [Cohen 1977; Schoof

and van der Vlugt 1991], the Selberg trace formula
is written

TeT! (k) =6,

TI'Tn(k?) = A1 + AQ + A3 + A4,

where the A; = A;(n, k) are expressions depending
on n and k, as follows:

k—1
A_
5"D12

nk/2-1
is the principal term;
-1 gl 2
p — t* —4n
S X (SR

t2 <4n f

where

e ¢t runs through all integers such that t* < 4n;
e p and p are the roots of the polynomial

X% —tX +n;

e f runs through the integers > 1 such that f2
divides t? — 4n with

(t* —4n)/f*> = 0,1 (mod 4);

o h,((t*—4n)/f?) is the class number of the imag-
inary quadratic field of discriminant (t*—4n)/f?2,
divided by 2 if this discriminant is —4 and by 3
if it is —3.

To bound this term, first note that |p| = n'/? and

lp — p| = (4n — t?)'/2 > 1, so that

k—1 —k—1

Pt —p
p—7

‘ < 20172

Next, by Dirichlet’s class number formula,

hu(D) = |5 Z( )i| = oup.
Thus,
> S (S5") o),
t2<4n f
and |A,| = O(n*/?*1). (One can get the sharper es-

timate O, (n(*+1/2*¢) by using a better bound for
the class number, as was done in [Brumer 1995,
Lemma 4.1]; this won’t be necessary here.) Further,

1 . - -
Ag=—3 ;lnf(d, n/d)*~ = O(n*"%d(n)),

L0 ifk=2
* 7 1d(n) otherwise,

In all, we have O(n*/?*'). The lemma follows

upon dividing by n*~1/2, O

n3/2
0
Proof. We have
Y, (T, (), ..., T, (k)
s(k)
T} (k) is the identity map, so s(k)
applying Lemma A.2 twice,
Sn=o(k—1)/(12n?) + O(n*/?)
(k—1)/12+ O(1)
Snean Y2 + O(n*? k)
1+ O(1/k)

= 0,_an"M? + O(

O(d(n)).

Lemma A.3. (Y, 0s.x — ps) = O(

_ T T (k)
 s(k)
= TrT](k). Thus,

<Yn7 5S;k:> —

(Yo, 0si) =

3/2
)

But §,_an Y2 = (Y,, us). O
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Lemma A.4. There is a polynomial g(xi,...,z,.) on

Q" with the following properties:

1. (g,ns) > (e/5)™;

2. |g(z1,. .. 2| < (e/10)*" for (z4,...
of Is;

3. (9%, nx) < (¢/10)77;

4. g admits the factorization

, &) outside

9(x1, .5 x) = gy, (T1) - gy, (1)
with deg g, = O(rlog(1 4 1/e)/e) for allp € S.

Proof. It will be convenient to work with the variable
¢ € (. For each p € §, let I, be the image of I, in
this variable, that is

I;={0€Q':|07ap| < e}
Note that I has length at least €. Let ¢, be the
center of I (which is just a, unless a,, is close to
the boundary of ).
Let hg be the “triangle” function on [—m, 7] given
by the convolution

2
8T
ho = (?) X[—c/8,e/8] * X[—e/8,¢/8]-

In this context, convolution is defined by

s da/
(Fe9)O) = [ 1090605
. s
For an even integer parameter m to be specified
later, let ¢,, be the smoothing kernel

4rm\™
Pm = (T) \X[—€/4m,s/4m} Ko X X[—e/am,e/4m] -

-
m times

Then the function h,, = hg * @, lies in C™([—m, 7]),
is supported on [—&/2,¢/2], and has the absolutely
convergent Fourier expansion

h(0) = hu(n)e™

nez
= Z sinc? <%) sinc™ <%> el
Now, for each prime p € S, define
hm(0 —c,) + hp (0 +c
fp(g) — ( P) 2 ( p) .
Then f, has Fourier coefficients fp (n)=hm(n) cos cpn.
Next, let g, be the partial sum

9(0) = D fu(n)e™,

In|<N

where N is to be chosen later. Since g, is even, it
may be written as a cosine series, and hence is a
polynomial of degree N in x = 2cosf. Put

f(91, s 797‘) = fpl(el) Tt fpr(er)’

9(017 s 797‘) = gp1(91) n 'gpr(ar)‘
Having completed this construction, all that re-
mains is to choose the parameters m and N so that

g satisfies the required properties. First, the error
in approximating f by ¢ is bounded by

|g(91, - ,07,) — f(@l, - ,97.)

<

(n1 ) €T” =1
M1seeey nre[_NJV}

DI 0

(n1,eeymp)€LZ" =1
Miseeey nr¢[7NvN}

— i (0) — (hm(o) -y Bm(n)y

[n|>N
< rhy (0 h(n)
[n|>N
_ ® sxeN"2/xE\N"™
< rho(0)" -2 /N (5) () @

B 7"(8—7T>T_1 128(4m)™
- \¢ emt2(m + 1)Nm+1-

Now choose m to be the smallest even integer >
rlog(1+1/¢), and choose N to be the smallest inte-
ger which makes the last line < (£/10)*". We see
that N = O(rlog(l + 1/e)/e). This establishes
properties 2 and 4.

Property 3 follows easily since

2 T
(0* 1) =[(o8 1) < ] ;/ g2 df
0

pES pES
T, do T df
_ 2 2
12 ag <12 55
peES pES

_ </ B, %) = (o * T (0)

—T

< (o * ho)(0) = (50)

3¢
< (%5) "
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To prove property 1, we first obtain a lower bound
for (fp, ttoo). We have

(fps Hoo) = %/Oﬂ f,(0) sin® 6 df

:/_ﬂ fp(ﬂ)(l—cos20)g
= fp(o) -

Now, c, is at least %5 away from the boundary of
Q. Thus,

£(2) > 1 — cos2¢, = 2sin®c,.

(fp) Hoo) > 2 sin? ( ) > %6

Next,

Fopty) > —F T2

(pY/24p~1/2)2
Finally, (g, us) = (f,us)
2r 2r
(f56)" > (5¢)
We now have what we need to finish the proof of
the theorem. Let g be the function given by Lemma

A.4 and put
M = deeggp‘

pES

2 2
Fez > (Ze)".

2r
+{g—f, ns) > (He)" —
. This completes the proof. O

OJII.\D

5 (for Hoo) >

Since g is a polynomial, we have the expansion

g(x1,...,x Zan (1,5 @r),
n|M
where a, = <gYn,p§oT>. Also, g < (1—106) *" outside of
Ig, so that
2r
/ gdésy > (9,0s) — (5¢)
Is

= (g, s) — (%5)% + (9, 055 — Hs)
> (%6)% - (%6)27‘ + (9, Os;k — ps)-

We use Lemma A.3 to bound the last term. We
have, for an appropriate constant ¢,

Z an<Yn7 55’;1@ - ,U’S>

n|M

< (Zaz)w(z ey

(g, s — ms)| =

Altogether,
2
[ oo > o)™ - (Ghe) G
Is k

Now, the right-hand side is positive as long as
k > ¢; M?(e)°/2. Thus, we may take

logk = O(log M + rlog(1 + 1/¢))

:O( log( 1+1/5 HP)

peES

which was to be proved.
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ELECTRONIC AVAILABILITY

Source code implementing the algorithms described
here and the calculated Kloosterman sums are avail-
able at http://www.math.princeton.edu/~arbooker/
klsum/.
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