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MODELING VISCOELASTIC FLOWS USING REFLECTED
STOCHASTIC DIFFERENTIAL EQUATIONS∗

A. BONITO† , A. LOZINSKI‡ , AND T. MOUNTFORD§

Abstract. A reflected diffusion process is proposed for modeling of viscoelastic fluids. In order
to define the viscoelastic stress tensor, the reflected diffusion process is approximated by Itô diffusions
with a penalization factor in the drift term. Convergence of the stress tensor approximation is proved
and an expression for the limiting stress tensor in terms of the reflected process itself is provided.
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1. Introduction
In this article, we are concerned with a question related to the modeling of non-

Newtonian fluids. In general, the modeling of fluid motion is based on a relation
between the velocity field and the Cauchy stress tensor T . The simplest example of
such a relation is the Newtonian one, T =η(∇u+(∇u)T )−pI, where η, u, p are the
viscosity, velocity, and pressure in the fluid and .T denotes the matrix transposition
operator. However, some fluids with complex internal structure may require more
complicated relations, in which the stress may depend on the history of the velocity.
More specifically, we shall consider here polymer solutions in which the contribution
of interactions inside the long polymer molecules and their bombarding by the sur-
rounding molecules should be taken into account. The simplest modeling of such a
fluid consists in representing the polymeric molecules by “dumbbells”, i.e. two beads
connected by a spring and subject to random Brownian forces; refer to [2]. The dis-
tribution for the orientation and extension of the dumbbells is given by a stochastic
process Xt representing the vector connecting the two beads of the dumbbell. In
the case of dilute solutions, when the interactions between the molecules of the poly-
mer can be disregarded, the evolution of Xt is governed by the following stochastic
differential equation (SDE) (see [10]),

dXt=
(
κ(t)Xt−

1
2λ
F (Xt)

)
dt+

√
1
λ
dBt, (1.1)

where κ is the velocity gradient tensor (κij =∂ui/∂xj), λ is the relaxation time of
the fluid, and Bt is the Brownian motion. F (.) in (1.1) is the the force of the spring
connecting the beads. The Cauchy stress tensor T is the sum of a Newtonian contribu-
tion ηs(∇u+∇uT )−pI with the solvent viscosity ηs and the polymeric contribution
τ known as the extra-stress tensor that can be computed by the Kramers expression
(see [2, p. 69, vol. II])

τ(t) =
ηp
λ

(−I+IE(Xt⊗F (Xt))), (1.2)
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where the symbol ⊗ denotes the tensor product of two vectors and IE(·) is the expec-
tation. The parameter ηp is referred to as the polymeric viscosity.

The choice of the function F (.) should be done in principle by a more detailed
description of intermolecular forces in the polymer. One usually starts from repre-
senting the polymer by a chain consisting of a great number of links, each of a fixed
length, which can be either completely independent of each other (Freely Jointed
Chain) or have random directions while keeping a fixed angle between the adjacent
links (Freely Rotating Chain). In both cases, the random vector Xt in (1.1) should
represent approximately the end-to-end vector of the long chain, and one can show
by considering the equilibrium distribution and applying the Central Limit Theorem
that the force law should be linear F (X) =X for small extensions X. However, such a
law is certainly unrealistic when the chain is almost completely extended as it allows
the dumbbells to be extended infinitely. A mathematically attractive option ensuring
the finite extensibility is to introduce the force as the subdifferential of the potential

Π(X) =
{

1
2 |X|

2, if |X|<R
+∞, otherwise (1.3)

for some fixed R. It means physically that the force F (.) is supposed to be linear
F (X) =X for the extensions |X|<R, but when |X|=R the magnitude of the force
becomes such that it prohibits the dumbbell to extend further. The SDE with the
drift being a subdifferential of an infinite potential is well known in the mathematical
literature as the Skorohod problem; see for instance [1]. The SDE (1.1) with the force
derived from (1.3) can be thus written as

dXt=
(
κ(t)Xt−

1
2λ
Xt

)
dt−dµt+

√
1
λ
dBt, (1.4)

where µt is an unknown stochastic process imposing to the process to remain in the
ball B(0,R). A precise definition in the mathematical viewpoint will be provided in
the next section.

The interpretation of the stress tensor (1.2) is now not straight forward since the
force is no longer given as a function of X. We therefore propose to approximate the
force ∂Π by a penalized one

F ε(X) =X+
1
ε
β(X), (1.5)

where β(X) =X−π(X) and π(X) is the projection of X on B(0,R), i.e.,

π(X) =
{
X, if |X|≤R
R
|X|X, otherwise.

The solution of (1.4) is thus approximated by the processes Xε
t that satisfy

dXε
t =
(
κ(t)Xε

t −
1

2λ
Xε
t −

1
2λε

β(Xε
t )
)
dt+

√
1
λ
dBt. (1.6)

Such a penalized version of reflected SDEs was studied in [9] in order to prove the
existence of reflected diffusions in arbitrary convex bounded domains. We rather use
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(1.6) to define the extra-stress tensor corresponding to (1.4) as the limit of the stresses
calculated for Xε

t via (1.2) with the penalized force (1.5) as ε goes down to 0:

τ(t) =
ηp
λ

(
lim
ε→0

IE
(
Xε
t ⊗Xε

t +
1
ε
Xε
t ⊗β(Xε

t )
)
−I
)
. (1.7)

To our best knowledge such a force law was not explored yet in the context of the
modeling of polymeric fluids.

Let us mention another popular choice of F (.), namely the FENE (Finitely Ex-
tensible Non-linear Elastic) force [14]

FFENE(X) =
X

1−|X|2/R2
. (1.8)

The existence of the solution Xt to (1.1) with FENE force is proven in [7] and it
is also shown that the process Xt never leaves the ball B(0,R) with probability 1
in the case R≥

√
2. FENE force is a convenient approximation for a more complex

inverse Langevin force law [13]. The latter is justified by considering the equilibrium
distribution function for a Freely Jointed Chain. We argue however that the force
derived from the potential (1.3) deserves also attention at least as a toy model since
it can take into account the forces inside the rigid rods of a Freely Jointed Chain.
Such a modeling can be found in [6, 5] where the rigid rods are replaced by very stiff
(quasi-rigid) springs keeping the length almost constant. The force corresponding to
(1.3) can be also an interesting alternative to the FENE one in applications of the
dumbbell models in situations different from the dilute polymeric solutions. We cite
for example the blood rheology model [11] where the dumbbells are used to represent
the red blood cells and so a FENE force is not necessarily appropriate since the
modeling is no longer based on a coarse graining procedure.

The main result of this article is the proof of the existence of the limit in (1.7) in
the special case κ= const. We give also a formula for this limit in terms of the solution
to (1.4). The precise mathematical definitions and the statement of our Theorem are
given in the next section. Section 3 contains the proof of our result. Finally, some
preliminary numerical simulations illustrating our approach are given in section 4.

2. Formulation of the problem and main result
We start with making precise definition of the problem. Let R>0 be the radius

of the sphere B(0,R) in Rd, where the process Xt will remain and let T >0 be a final
time. In order to simplify the notations we denote κ− 1

2λI by Γ and 1/λ by σ2. The
Skorohod problem is stated as follows (see [9]): given an initial condition x∈B(0,R)
and a d×d real matrix Γ, find continuous and progressively measurable Rd-valued
processes Xt and µt such that

• dXt= ΓXtdt−dµt+σdBt, X0 =x,

• Xt∈B(0,R),
• µt has bounded variation on [0,T ] and µ0 = 0,
• for all Zt continuous an progressively measurable process taking

values in B(0,R) we have∫ T
0

(Xt−Zt)dµt≥0, ∀T >0.


(2.1)

Using the new notations, the penalized problem (1.6) reads (replacing 2λε by ε):
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Given ε>0 and an initial condition x∈B(0,R), find Xε
t satisfying

dXε
t =
(

ΓXε
t −

1
ε
β(Xε

t )
)
dt+σdBt, Xε

0 =x. (2.2)

As already mentioned, system (2.1) and equation (2.2) has been studied in [9], where
the two following results used in this paper are proven. For each 1≤p<∞, there
exists a constant C independent of ε such that

IE

(
sup
t∈[0,T ]

|Xε
t |
p

)
≤C (2.3)

and for each 1≤p<∞ and 0<T <∞ we have

lim
ε→0

IE
(

sup
0≤t≤T

|Xt−Xε
t |
p

)
= 0. (2.4)

We can now state the main theorem.

Theorem 2.1. Let R>0 be the radius of the spherical domain and T >0 be a final
time. Let x∈B(0,R) be an initial condition and Γ∈Rd×d. Let (Xt,µt) be the solution
of the reflecting SDE (2.1) and Xε

t be the solution of (2.2). Then limε→0 IE(Xε
t ⊗

1
εβ(Xε

t )) exists for all t∈ [0,T ] and is continuous in t. Moreover,
∂

∂t
IE(Xt⊗Xt) exists

a.e. in [0,T ] and we have

lim
ε→0

1
ε

IE(Xε
t ⊗β(Xε

t )) =−1
2
∂IE(Xt⊗Xt)

∂t

+
1
2

IE((Xt⊗Xt)ΓT +Γ(Xt⊗Xt))+
σ2

2
I, (2.5)

a.e. in [0,T ].

The proof of this theorem is postponed to the next section. We note here only
that a weak form of this result, i.e. the corresponding formula for limε→0

∫ t
0

1
ε IE(Xε

s ⊗
β(Xε

s ))ds, is a simple consequence of Itô’s rule applied to Xε
t ⊗Xε

t and (2.4). The
core of the proof will be thus to make sure that it is possible to change the order of
limit and integration in this formula.

Corollary 2.2. Let R>0 be the radius of the spherical domain and T >0 be a
final time. Let x∈B(0,R) be an initial condition, κ∈Rd×d, λ>0 and ηp>0. Let
(Xt,µt) be the solution of (1.4) in the sense of (2.1), Xε

t be the solution of (1.6), and

τε=
ηp
λ

(
IE
(
Xε
t ⊗Xε

t +Xε
t ⊗

1
ε
β(Xε

t )
)
−I
)
.

Then the following limit is well-defined:

τ := lim
ε→0

τε∈C0([0,T ];Rd×d). (2.6)

Moreover,

τ =−ηp
∂IE(Xt⊗Xt)

∂t
+ηpIE((Xt⊗Xt)κT +κ(Xt⊗Xt)) (2.7)
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a.e. in [0,T ].

Proof. Set Γ =κ− 1
2λI, σ= 1√

λ
and apply Theorem 2.1 with ε replaced back by

2λε.

We note that (2.7) is the well known Giesekus expression for the stress tensor in
terms of the conformation tensor IE(Xt⊗Xt); see [2, p. 69, vol. II], for example. On
the other hand, it is not clear how to directly write down the Kramers expression (1.2)
of the stress in the model (1.6). Indeed, comparing (1.6) with the governing equation
(1.1) of a general dumbbell model, we should interpret the spring force formally as

F (Xt) =Xt+2λ
dµt
dt

so that a plausible expression for the stress inspired by (1.2) would be

τ =
ηp
λ

(
IE(Xt⊗Xt)+2λ lim

∆t→0

1
∆t

IE(Xt⊗(µt+∆t−µt))−I
)
. (2.8)

Whether this expression makes sense and whether it coincides with (2.7) is an open
question.

3. Proof of Theorem 2.1
The proof of Theorem 2.1 will be presented as a sequence of lemmas, in which

the crucial ingredient is the equicontinuity in t of 1
ε IE(Xε

t ⊗β(Xε
t )) with respect to ε.

More precisely, it will be shown in Lemma 3.4 that

lim
h→0+

sup
ε>0

sup
0≤t≤T−h

IE(Xε
t+h⊗

1
ε
β(Xε

t+h)−Xε
t ⊗

1
ε
β(Xε

t )) = 0. (3.1)

Remark 3.1. Note that without Brownian motion, (3.1) does not hold in general.
Indeed, let us consider the 1-dimensional variant (d= 1) of (2.2) with R= 1, Γ=γ∈R,
γ>0, σ= 0, and x∈]0,1[. Its solution can be written for ε<1/γ as

Xε
t =

{
xeγt, t< t̃,(

1− 1
1−εγ

)
e(γ−1/ε)(t−t̃) + 1

1−εγ , t≥ t̃,

where t̃= 1
γ ln
(

1
x

)
. Let h>0, then it follows that

1
ε
Xε
t̃+hβ(Xε

t̃+h)− 1
ε
Xε
t̃ β(Xε

t̃ ) =
1
ε

(Xε
t̃+h−X

ε
t̃ )(Xε

t̃+h+Xε
t̃ −1)

and since limε→0
1
ε (Xε

t̃+h
−Xε

t̃
) =γ, limε→0(Xε

t̃+h
+Xε

t̃
) = 2 we obtain

lim
h→0+

sup
ε>0

sup
0≤t≤T−h

∣∣∣∣1εXε
t+hβ(Xε

t+h)− 1
ε
Xε
t β(Xε

t )
∣∣∣∣≥γ>0.

Without loss of generality we now assume that R= 1 and σ= 1.
We shall need in what follows a special case of (2.2) where Γ =γI, γ∈R. Let

y∈B(0,1) and consider the equation

dY εt = (γY εt −
1
ε
β(Y εt ))dt+dBt, Y ε0 =y, (3.2)
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where

γ= sup
|X|=1

X ·ΓX.

We establish first a comparison principle for the solutions of (2.2) and (3.2).

Lemma 3.1. Let Xε
t and Y εt be solutions of (2.2) and (3.2) with |x|≤ |y|. Then, for

any nondecreasing function g : [0,∞[→R

IEx(g(|Xε
t |))≤ IEy(g(|Y εt |)), ∀0≤ t≤T. (3.3)

Proof. Let S(X) for any X ∈Rd, X 6= 0, X 6=e1, be the orthogonal matrix that
maps X to |X|e1 and leaves all the vectors orthogonal to (X,e1)-plane unchanged. We

set also S(0) =S(e1) = I. It is easy to see that B̃t=
∫ t

0
S(Xs)dBs and ˜̃Bt=

∫ t
0
S(Ys)dBs

are Brownian motions. Substitution to (2.2) and (3.2) gives

dXε
t = (ΓXε

t −
1
ε
β(Xε

t ))dt+ST (Xt)dB̃t, (3.4)

dY εt = (γY εt −
1
ε
β(Y εt ))dt+ST (Yt)d

˜̃
Bt. (3.5)

Since the statement of the lemma involves only the expectations of g(|Xε
t |) and g(|Y εt |)

we are free to change the realizations of the Brownian motions B̃t and ˜̃Bt. We
choose them to be the same Brownian motion, which will be denoted again as Bt=
(B1

t ,. ..,B
d
t ). Itô’s rule gives then

d|Xε
t |2 = 2

(
Xε
t ·ΓXε

t −Xε
t ·

1
ε
β(Xε

t )+
d

2

)
dt+2|Xε

t |dB1
t , (3.6)

d|Y εt |2 = 2
(
γ|Y εt |2−Y εt ·

1
ε
β(Y εt )+

d

2

)
dt+2|Y εt |dB1

t . (3.7)

We denote ∆t= |Xε
t |2−|Y εt |2 and reproduce the proof of [8, Chapter 5, Proposition

2.18]. Choose a nondecreasing sequence of functions φn∈C2(R) such that suppφn∈
(0,∞) and for all z>0 we have limn→∞φn(z) =z, 0≤φ′n(z)≤1, and |φ′′n(z)|≤2/(nz).
We have from (3.6), (3.7) by Itô’s rule that

IE(φn(∆t)) = IE
∫ t

0

(2φ′n(∆s)(Xε
s ·Γ(s)Xε

s −γ|Y εs |2−fε(|Xε
s |2)+fε(|Y εs |2))ds

+IE
∫ t

0

φ′′n(∆s)(|Xε
s |−|Y εs |)2)ds

where fε(z) = 1(1,∞)(z)(z−
√
z)/ε is Lipschitz with constant 1/ε. Noting that

|φ′′n(∆t)|(|Xε
t |−|Y εt |)2)≤|φ′′n(∆t)||∆t |≤2/n we obtain

IE(φn(∆t))≤ IE
∫ t

0

(γ+
1
ε

)∆+
s ds+

2t
n
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where ∆+
t = ∆t∨0. Taking the limit and applying Gronwall lemma gives ∆+

t = 0,
hence |Xε

t |≤ |Y εt | a.s. and (3.3) holds.

The following uniform bound in ε on the approximated stress tensor is crucial to
prove Theorem 2.1.

Lemma 3.2. For all r∈ [0,1) there exists finite C(r) so that for Xε
t the solution of

(2.2) for any x∈B(0,r) and t∈ [0,T ], we have

IEx(Xε
t ·

1
ε
β(Xε

t ))≤C(r),

where C(r) is a constant only depending on r and γ.

Proof. Denote πε to be the stationary distribution of (3.2) and πε∩I+ to be
the distribution πε conditioned on the set I+ ={z∈Rd : |z|>r}. Lemma 3.1 with
g(X) =X · 1εβ(X) entails

IEx(Xε
t ·

1
ε
β(Xε

t ))≤ IEπε∩I+(Y εt ·
1
ε
β(Y εt ))≤

IEπε(Y εt · 1εβ(Y εt ))
πε(I+)

. (3.8)

Itô’s rule for |Y εt |2 gives

IEπε(Y εt ·
1
ε
β(Y εt )) =γIEπε(|Y εt |2)+

d

2
. (3.9)

The stationary distribution is easily found as πε(Y ) = 1
Cε
φε(Y ) with

φε(Y ) =

{
eγ|Y |

2
, |Y |<1

eγ|Y |
2− (|Y |−1)2

ε , otherwise

and Cε=
∫

Rd φε(Y )dY . We see now by the dominated convergence theorem that
the limits limε→0 IEπε(|Y εt |2) and limε→0πε(I+) exist and are finite. Hence IEx(Xε

t ·
1
εβ(Xε

t )) is bounded uniformly in ε by (3.8) and (3.9).

Corollary 3.3. Take any x∈B(0,1) and any time t∈ [0,T ]. The following
estimates for the solution Xε

t of (2.2) hold for all 1≤ i, j≤d

IEx
(∣∣∣∣(Xε

t )i
1
ε
β(Xε

t )j

∣∣∣∣)≤C(|x|)

with C(|x|) independent of ε.

Proof. Immediate since |Xi(β(X))j |≤X ·β(X) for any X ∈Rd.

We now prove (3.1) in a more general case.

Lemma 3.4. Let Xε
t be the solution of (2.2) with x∈B(0,1) and φ :Rd→R+ such

that φ(z) = 0 for all z∈B(0,1). Suppose that for all t∈ [0,T ] it holds that

IEx
∣∣∣∣1εφ(Xε

t )
∣∣∣∣≤C(|x|) (3.10)

with C(|x|) independent of ε. Then we have

lim
h→0+

sup
ε>0

sup
0≤t≤T−h

∣∣∣∣IEx(1
ε

(φ(Xε
t+h)−φ(Xε

t ))
)∣∣∣∣= 0. (3.11)
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Proof. Fix any number r so that |x|<r<1. Using the Markov property we have
for any h>0, t≥hα with α∈ (0,1) to be chosen later

IEx
(

1
ε
φ(Xε

t )
)

=
∫
B(0,r)

pX
ε

hα (z)IEz
(

1
ε
φ(Xε

t−hα)
)
dz

+
∫

Rd\B(0,r)

pX
ε

hα (z)IEz
(

1
ε
φ(Xε

t−hα)
)
dz, (3.12)

where pZa denotes the probability density of a process Z at time a. We introduce the
stopping time σ= inf{s>0 : |Xε

s |= r}. The second integral in the above equality can
be now rewritten using the strong Markov property and hypothesis (3.10) as

IEx
(

1
ε
φ(Xε

t )1|Xε
hα
|≥r

)
≤ IEx

(
1
ε
φ(Xε

t )1σ≤hα
)

= IEx
(

IEx
(

1
ε
φ(Xε

t )1σ≤hα |Fσ
))

= IEx
(

IEX
ε
σ

(
1
ε
φ(Xε

t−σ)
)

1σ≤hα
)
≤C(r)P(σ≤hα). (3.13)

Consider now the unconstrained processes X

dXt = ΓXtdt+dBt, X0 = x.

We see that Xε
t and Xt coincide for time t up to σ, hence this stopping time can

be redefined as σ= inf{s>0 : |Xs|= r} and the probability P(σ≤hα) is obviously
independent of ε and moreover vanishes in the limit h→0. Indeed, this is easy to
see in the special case Γ = 0 when Xt is just a Brownian motion started at x, see for
instance [8, Equ. (6.3) p. 80]. To prove that P(σ≤hα)→0 as h→0 for Xt with
arbitrary Γ one can invoke the Girsanov theorem to pass from Bt to Xt. We will
denote the quantities that can be bounded by a function of h independent of ε and
vanishing as h→0 by o(1). Hence, owning (3.13), we can rewrite (3.12) as

IEx
(

1
ε
φ(Xε

t )
)

=
∫
B(0,r)

pX
ε

hα (z)IEz
(

1
ε
φ(Xε

t−hα)
)
dz+o(1).

We now apply similar ideas to estimate the first integral in (3.12) via the same integral
in which the probability density of Xε is replaced by that of X. We do it first on only
a part of B(0,r): B+

r ={z∈B(0,r) :pX
ε

hα (z)>pXhα(z)}.∣∣∣∣∫
B+
r

pX
ε

hα (z)IEz
(

1
ε
φ(Xε

t−hα)
)
dz−

∫
B+
r

pXhα(z)IEz
(

1
ε
φ(Xε

t−hα)
)
dz

∣∣∣∣
≤
∫
B+
r

(pX
ε

hα (z)−pXhα(z))IEz
∣∣∣∣1εφ(Xε

t−hα)
∣∣∣∣dz≤C(r)

∫
B+
r

(pX
ε

hα (z)−pXhα(z))dz

=C(r)[P(Xε
hα ∈B+

r )−P(Xhα ∈B+
r )]

=C(r)[P({Xε
hα ∈B+

r }∩{σ≤hα})−P({Xhα ∈B+
r )}∩{σ≤hα}

+P({Xε
hα ∈B+

r }∩{σ≥hα})−P({Xhα ∈B+
r )}∩{σ≥hα}]

(using the fact that Xε
t and Xt are the same for t≤σ)

=C(r)[P({Xε
hα ∈B+

r }∩{σ≤hα})−P({Xhα ∈B+
r )}∩{σ≤hα}]

≤C(r)P(σ≤hα) =o(1).
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Applying the same arguments to the integrals over B−r =B(0,r)\B+
r yields∫

B(0,r)

pX
ε

hα (z)IEz
(

1
ε
φ(Xε

t−hα)
)
dz=

∫
B(0,r)

pXhα(z)IEz
(

1
ε
φ(Xε

t−hα)
)
dz+o(1).

Hence

IEx
(

1
ε
φ(Xε

t )
)

=
∫
B(0,r)

pXhα(z)IEz
(

1
ε
φ(Xε

t−hα)
)
dz+o(1).

We now rewrite the last relation with t replaced by t+h and hα replaced by
hα+h and take the difference of the two. This yields∣∣∣∣IEx(1

ε
φ(Xε

t+h)
)
− IEx

(
1
ε
φ(Xε

t )
)∣∣∣∣

=

∣∣∣∣∣
∫
B(0,r)

(pXhα+h(z)−pXhα(z))IEz
(

1
ε
φ(Xε

t−hα)
)
dz

∣∣∣∣∣+o(1)

≤C(r)
∫
B(0,r)

|pXhα+h(z)−pXhα(z)|dz+o(1).

A direct calculation of pXt allows us to show that

|pXhα+h(z)−pXhα(z)|≤Chδ for z∈B(0,1), 0≤h≤1 (3.14)

for any 0<α< 2
d+2 , δ= 1− α(d+2)

2 >0 and a constant C that depends only on Γ and
α. Indeed, Xt is a Gaussian process with the mean mt= exp(Γt)x and the covariance
matrix Σt satisfying the differential equation

Σ′t= ΓΣt+ΣtΓT +I, Σ0 = 0.

Thus,

pXt (z) =
1

(2π)d/2
√

det(Σt)
exp

(
−1

2
(z−mt) ·Σ−1

t (z−mt)
)
.

The differential equation above implies

Σt= tI+o(t), t→0 and Σhα+h= Σhα(I+h1−αI+o(h1−α)), h→0

so that

1√
detΣhα

− 1√
detΣhα+h

=
1√

det(Σhα)

[
1−
√

det(Σ−1
hα+hΣhα)

]
=O(h1−α−α d2 ).

Similar calculations show that

mhα+h= (Γh+o(h))mhα and Σ−1
hα+h= (I−h1−αI+o(h1−α))Σ−1

hα ,

hence

exp
(
−1

2
(z−mhα+h) ·Σ−1

hα+h(z−mhα+h)
)

= exp
(
−1

2
(z−mhα) ·Σ−1

hα (z−mhα)
)

+O(h1−α).
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The symbol O(hs) stands here for a function of h and z bounded by Chs on (h,z)∈
[0,1]×B(0,1). Combining these estimates gives

pXhα+h(z)−pXhα(z) =O(h1−α−α d2 ) =O(hδ).

This is exactly (3.14), therefore the Lemma is proved.

We are now able to prove Theorem 2.1.

Proof. (of Theorem 2.1.) Let (εn)n≥1⊂R be a sequence with limn→∞εn= 0 and
1≤ i,j≤d. We denote fn(t) = 1

εn
IE((Xεn

t )i(β(Xεn
t ))j) to be the ij-th component of

the tensor 1
εn

IE(Xεn
t ⊗β(Xεn

t )). Itô’s rule gives that for all t∈ [0,T ] and for all n≥1

∫ t

0

fn(s)ds=−1
2
(
IE
(
(Xεn

t )i(Xεn
t )j

)
−xixj

)
+

1
2

(∫ t

0

IE(Xεn
s ⊗Xεn

s )ΓT +Γ(Xεn
s ⊗Xεn

s ))ds
)
ij

+
1
2
tδij .

Let

g(t) =−1
2
(
IE
(
(Xt)i(Xt)j

)
−xixj

)
+

1
2

(∫ t

0

IE(Xs⊗Xs)ΓT +Γ(Xs⊗Xs))ds
)
ij

+
1
2
tδij .

Using (2.4) we obtain

lim
n→∞

∫ t

0

fn(s)ds=g(t). (3.15)

On the other hand, Corollary 3.3 implies that the sequence (fn(t))n≥1 is equibounded.
Then Lemma 3.4 applies with φ(X) =Xiβ(X)j (cf. Corollary 3.3) and ensures that
the sequence (fn(t))n≥1 is equicontinuous. By Ascoli-Arzelà’s theorem, there exists
a subsequence (fnk)k≥1 converging in C0([0,T ];R). Let us denote this limit by f ∈
C0([0,T ];R) and note that the uniform convergence implies

lim
k→∞

∫ t

0

fnk(s)ds=
∫ t

0

f(s)ds=g(t).

Hence, g′(t) exists in [0,T ] and f(t) =g′(t) for all t∈ [0,T ]. Going back to (3.15),
we see that this reasoning is independent of the choice of the sequence (εn)n≥1 and
in particular the limit of any subsequence converging in C0([0,T ];R) is f(t) =g′(t).
This means that limε→0 IE((Xε

t )i(β(Xε
t ))j) exists in C0([0,T ];R) and is equal to g′(t),

which proves (2.5) a.e in [0,T ].

4. Numerical simulations
In this section we present and computationally study three numerical schemes

for the model (2.2) leading to a stochastic approximation of the extra-stress tensor
τ given by (2.6) or (2.7). We note that no theoretical analysis has been done yet
for the validity of these approximations. Hence we should compare them with some
more reliable results, which can be provided by simulations based on the PDE for the
probability density function of the process Xt, that is the Fokker-Planck equation.
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The stress tensor provided by the latter is then used as reference solution to compare
the performances of the different stochastic schemes.

The results reported below correspond to the following physical setting: shear
flow in 2D with

κ=
(

0 γ̇
0 0

)
,

and γ̇= 10, λ=ηp= 1, R=
√

20. Moreover, the initial distribution of X is taken in all
our experiments to be the equilibrium one, that is the stationary distribution of the
model (2.2) with κ= 0, which is the normal distribution N (0,1) restricted to the ball
B(0,R).

4.1. The Fokker-Planck method. Let ψ(t,X), X ∈B (B=B(0,R)) be the
probability density of the process Xt. It is well known that ψ satisfies the following
Fokker-Planck equation

∂ψ

∂t
+divX

((
κX− 1

2λ
X

)
ψ

)
=

1
2λ

∆Xψ. (4.1)

with the boundary conditions of probability flux zero:(
−κXψ+

1
2λ
Xψ+

1
2λ
∇Xψ

)
·n|∂B = 0. (4.2)

The expression for the extra-stress tensor can be rewritten in terms of the probability
density and using (4.1)–(4.2) as

τ =−ηp
∂

∂t

∫
B

X⊗XψdX+ηp

∫
B

(
κX⊗X+X⊗XκT

)
ψdX

=
ηp
λ

∫
B

X⊗XψdX+
ηp
λR

∫
B

X⊗Xψds− ηp
λ
I

In order to construct the numerical method we introduce the polar coordinates
r∈ [0,R], θ∈ [0,2π) and perform the change of variables r→η given by r2 = 1+η

2 ,
η∈ [0,1], which takes into account the fact that ψ(t,X) is an even function of X
as long as the initial condition ψ(t,X) is even, which is the case in our numerical
experiments. We introduce the Gauss-Legendre-Radau collocation points on [−1,1]
(including 1 and excluding −1) and denote hi(η) to be the corresponding Lagrange
inerpolating polynomials. We then approximate ψ(t,X) =ψ(t,η,θ) in η,θ by

ψ(t,η,θ)≈
NR∑
i=0

NF∑
j=0

ψ0
ij(t)hi(η)cos2jθ+

NR∑
i=0

NF∑
j=1

ψ1
ij(t)hi(η)sin2jθ.

Note that -1 is not included in the set of collocation points because the boundary
condition at η=−1 (i.e. r= 0) is already satisfied by the choice of η. We plug then
this approximation into the variational formulation of the Fokker-Planck equation and
obtain the linear system for the coefficients {ψ0

ij(t),ψ
1
ij(t)} by the Galerkin method.

The system is then discretized in time by implicit Euler scheme. The numerical
results are presented at figure 4.1. They demonstrate that the method converges
under refinement in space and time. We take the numerical solution at the finest level
as the reference one in the following simulations.
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NR NF ∆t
Level 3 8 4 0.1×2−3

Level 4 12 8 0.1×2−4

Level 5 20 12 0.1×2−5

Level 6 26 16 0.1×2−6
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Fig. 4.1. The left part of the figure describes the numerical parameters corresponding to different
discretization levels. The right part of the figure presents the evolution of τxx (Top: t∈ [0,2], Bottom:
t∈ [1.4,2]).

4.2. Stochastic simulations. We will consider three methods to discretize
(1.4) in time. We introduce the uniform grid in time tn=n∆t and will denote the
approximation for Xtn by X∆t

n . The number of random realizations used to approxi-
mate the expectation is denoted by M . For all the simulations, we impose the relation
M ∝ (∆t)2 to ensure that the stochastic noise does not affect the convergence order
with respect to the time step.

4.2.1. The penalization method. The first method is the algorithm by
penalization, which is a direct discretization of the penalized SDE (1.6)

X∆t
n+1−X∆t

n =
(
κ(tn)X∆t

n −
1

2λ
X∆t
n −

1
2λε

β(X∆t
n )
)

∆t+

√
1
λ

(Btn+1−Btn). (4.3)

The tensor τ at time tn is then approximated by

τ∆t
n =

ηp
λ

IE
(
X∆t
n ⊗X∆t

n +
1
ε
X∆t
n ⊗β(X∆t

n )
)
− ηp
λ
I. (4.4)

The choice of penalization parameter ε is a delicate question. We know from [12]
that the scheme (4.3) has weak convergence of order

√
∆t provided ε≥∆t. This

result is insufficient, however, to conclude the convergence of the approximation of
the stress (4.4). Experimentally, we have tested the two choices for ε, namely ε=√

∆t and ε= ∆t. We found that the convergence with respect to the L2-norm of τ ,√∫ T
0

(τ2
xx+τ2

xy+τ2
yy), is of order

√
∆t and ∆t respectively (see figure 4.5). Therefore,

we adopt the latter choice and report in figure 4.2 the evolution of the xx component
of the extra stress tensor τ along with its variance. The variance is approximated
as follows. The stochastic simulation is performed 100 times, each time using M
samples generated with the independent sets of Brownian increments (Btn+1−Btn).
Each calculation yields an approximation of the extra stress τ∆t,(k)

n where k= 1,...,100
stands for the simulation number. Then, the variance is defined as

Var(τij)(tn) =
1

100

100∑
i=1

(
τ

∆t,(k)
n,ij −τ∆t

n,ij

)2

. (4.5)

where τ∆t
n,ij = 1

100

∑100
k=1 τ

∆t,(k)
n,ij . The convergence of the penalization method to the

Fokker-Planck solution is clearly observed in figure 4.2.
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Fig. 4.2. The penalization method in shear flow with γ̇= 10. Seven different discretization
levels L∈{0,1,2,3,4,5,6} are considered. For each level L, the corresponding numerical parameters
are ∆tL = 0.1×2−L and ML = 250×4L. For comparison, the Fokker-Planck approximation on the
finest discretization level (cf. figure 4.1) is also provided. The left part of the figure corresponds to
the evolution of τxx for levels L∈{0,3,6} (Top: t∈ [0,2], Bottom: t∈ [1.4,2]). The right part of the
figure describes the evolution of the variances defined by (4.5).

4.2.2. The projection method. The second method is the algorithm by
projection, which is based directly on the reflected SDE (1.4). The approximated
solution X∆t

n+1 is calculated on each time step (assuming X∆t
n to be known) via the

formula

X∆t
n+1 =π

(
X∆t
n +

(
κ(tn)X∆t

n −
1

2λ
X∆t
n

)
∆t+

√
1
λ

(Btn+1−Btn)

)
, (4.6)

where π again denotes the projection on B(0,R). This scheme is proven in [4] to be
weakly convergent of order

√
∆t.

The extra-stress tensor can be approximated using expression (2.7). Hence, the
direct approximation of τ(tn) would be

τ∆t
n =− ηp

∆t
IE
(
X∆t
n+1⊗X∆t

n+1−X∆t
n ⊗X∆t

n

)
+ηpIE(κ(tn)X∆t

n ⊗X∆t
n +X∆t

n ⊗X∆t
n κT (tn)).

(4.7)

The evolution of the xx component of the extra stress tensor τ along with its
variance (4.5) are provided in figure 4.3. The convergence to the Fokker-Planck so-
lution is clearly observed. Not however, that the projection method produced much
more noisy solutions than the penalization one. Indeed, the variance in figure 4.3 as
about 10 times larger than in figure 4.2

4.2.3. The symmetric Reflexion method. The third method (proposed in
[3]) is a slight modification of the previous one and has the advantage of converging
weakly with the order of ∆t rather than

√
∆t. The idea is to replace the projection

on the ball by the mirror reflection over its boundary. We will refer to it as to the
algorithm by symmetric reflection. Each time step of this algorithm is thus composed
of the two following sub- steps:

• First update the stochastic process without taking into account the reflecting force
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Fig. 4.3. The projection method in shear flow with γ̇= 10 with the same discretization param-
eters as in figure 4.2 compared to the Fokker-Planck approximation on the finest discretization level
(see figure 4.1). The left part of the figure corresponds to the evolution of τxx for levels L∈{0,3,6}
(Top: t∈ [0,2], Bottom: t∈ [1.4,2]). The right part of the figure describes the evolution of the vari-
ances defined by (4.5).
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Fig. 4.4. The symmetric reflexion method in shear flow with γ̇= 10 with the same discretization
parameters as in figure 4.2 compared to the Fokker-Planck approximation on the finest discretization
level (see figure 4.1). The left part of the figure corresponds to the evolution of τxx for levels
L∈{0,3,6} (Top: t∈ [0,2], Bottom: t∈ [1.4,2]). The right part of the figure describes the evolution
of the variances defined by (4.5).

at the boundary ∂B(0,R), i.e., compute Y ∆t
n+1 by

Y ∆t
n+1−X∆t

n =
(
κ(tn)X∆t

n −
1

2λ
X∆t
n

)
∆t+

√
1
λ

(Btn+1−Btn). (4.8)

• If no reflection occurs, i.e., |Y ∆t
n+1|≤R, we set X∆t

n+1 =Y ∆t
n+1. Otherwise, we set

X∆t
n+1 to be the mirror image of Y ∆t

n+1 with respect to ∂B(0,R), i.e.,

X∆t
n+1 =

2R−|Y ∆t
n+1|

|Y ∆t
n+1|

Y ∆t
n+1.

These two cases can be combined into the single formula

X∆t
n+1 =Y ∆t

n+1−2
|Y ∆t
n+1|−R
|Y ∆t
n+1|

Y ∆t
n+11|Y ∆t

n+1|>R. (4.9)
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Fig. 4.5. Log-plot of the L2-error using the Fokker-Planck simulation (NR = 26, NF = 16,
∆t= 0.1×2−6) as reference solution. Seven different discretization levels L∈{0,1,2,3,4,5,6} are
considered. For each level L, the corresponding numerical parameters are ∆tL = 0.1×2−L and
ML = 250×4L. The “Penalization 1” method corresponds to the choice ε= ∆t while “Penalization
2” corresponds to ε=

√
∆t. Slope 1 indicates an order of converge of O(∆t) and slope 1/2 indicates

an order of converge of O(
√

∆t). Only the Penalization method 1 and the symmetric reflexion
method exhibit an optimal order of convergence O(∆t).

The extra-stress tensor can be approximated as in the projection method using
(4.7). The evolution of the xx component of the extra stress tensor τ along with
its variance (4.5) are provided in figure 4.4. The convergence to the Fokker-Planck
solution is again observed. The stochastic noise of this method is about the same as
of the projection one, cf. figure 4.3.

4.3. Comparison of numerical schemes. We study in figure 4.5 the con-
vergence of the three stochastic methods described above toward the reference Fokker-
Planck solution of Subsection 4.1 with respect to the refinement in time. The error

is measured in the L2-norm in time, namely ||τ ||0 :=
√∫ T

0
(τ2
xx+τ2

xy+τ2
yy). On one

hand, it turns out that penalization method with ε= ∆t and the symmetric reflexion
method demonstrate an optimal order of convergence of O(∆t) (slope 1 in figure 4.5).
On the other hand, the penalization method with ε=

√
∆t and the projection method

suffer a loss of convergence order and seem to exhibit an order of O(
√

∆t) (slope 1/2
in figure 4.5). We also note that according to evolution of the variances reported in
figures 4.2–4.4, the penalization method exhibits significantly less noise than the two
other methods in the approximation of the stress tensor.
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