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FAST COMMUNICATION

HETEROGENEOUS MULTISCALE METHOD FOR LOCALLY
SELF-SIMILAR PROBLEMS∗

WEINAN E † AND XING Y. YUE ‡

Abstract. We present a multiscale method for a class of problems that are locally self-similar
in scales and hence do not have scale separation. Our method is based on the framework of the
heterogeneous multiscale method (HMM). At each point where macroscale data is needed, we perform
several small scale simulations using the microscale model, then using the results and local self-
similarity to predict the needed data at the scale of interest. We illustrate this idea by computing
the effective macroscale transport of a percolation network at the percolation threshold.

1. Introduction and HMM Upscaling
In the last several years, there has been a tremendous growth of activity on

developing multiscale methods in a number of application areas. For some reviews
and perspectives, we refer to [4, 5, 8]. The primary goal is to develop computational
techniques that can extract accurately the macroscale behavior of the system under
consideration, at a cost that is substantially less than the cost of solving the microscale
problem. Obviously this can only be done if the problem under consideration has some
special features that can be taken advantage of. Up to now, with the exception of
renormalization group methods [1], all other existing multiscale techniques assume
that there is scale separation in the problem, and this property is used in an essential
way in order to design efficient multiscale methods [5, 8].

While many problems, particularly problems with multi-physics, do have scale
separation, there are other important problems with multiscales that do not have
this property. The most well-known example is the fully developed turbulent flow
whose active scales typically span continuously from the large energy pumping scale
to the small energy dissipation scale, the ratio of these two scales was estimated by
Kolomogorov to be of O(Re3/4) [2, 6]. Here Re is the Reynolds number of the flow
which can easily reach 109 for atmospheric turbulence.

In the absence of scale separation, we must seek other special features of these
problems in order to develop efficient computational methods. The special feature
that we will focus on in this paper is (statistical) self-similarity in scales, namely that
the averaged properties of the system at different scales are related to each other by
simple scaling factors. This feature is approximately satisfied by many important
problems such as turbulent flows and sub-surface transport in the inertial range of
scales. We will call these type D problems (for the definition of type A, type B and
type C problems, see [3]).

To develop an efficient computational technique, it is most convenient to use the
framework of the heterogeneous multiscale method (HMM) [3]. HMM has two main
components:

• Selecting the macroscale solver;
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• Estimating the needed data for implementing the selected macroscale solver
using the microscale model.

For clarity, we will present the proposed method for a specific problem, namely
transport over a two-dimensional bond percolation network at the percolation thresh-
old.

In the standard two dimensional bond percolation model with parameter p, 0 ≤
p ≤ 1, we consider a square lattice, each bond of the lattice is either kept with
probability p or deleted with probability 1−p. Of particular interest is the size of the
percolation clusters formed by the remaining bonds in the network (see Figure 1.1 for
a sample of bond percolation). The critical value for this model is at p = p∗ = 0.5.

Fig. 1.1. Bond percolation network on a square lattice at p = 0.5

For an infinite lattice, if p < p∗, the probability of having infinite size clusters is zero.
For p > p∗, the probability of having infinite size clusters is 1. Given the parameter
value p, the network has a characteristic length scale – the correlation length, denoted
by ξp. As p → p∗, ξp diverges as

ξp ∼ |p − p∗|α, (1.1)

where α = −4/3 (see [9]). At p = p∗, ξp = ∞. In this case, the system has a
continuum distribution of scales, i.e. it has clusters of all sizes. In the following we
will consider the case when p = p∗.

To study transport, say of some pollutants whose concentration density will be
denoted by c, we embed this percolation model into a domain Ω ∈ R2. We denote
by ε the bond length of the percolation model, and L the length scale for the domain
Ω. We will consider the case when ε/L is very small. In our numerical example, we
set Ω = [0, 1]2. In order to introduce interesting macroscale behavior, we assume that
the lower- and upper-left corners of the domain are impermeable (see Figure 1.2).
We will consider the following boundary condition: No-flow at the upper boundary
(y = 1) and lower boundary (y = 0), c = 1 at the left boundary (x = 0), c = 0 at
right boundary (x = 1).

Denote by Si,j , i, j = 1, · · · , N the (i, j)-th site of the percolation network, and
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Fig. 1.2. Microstructure and the macro domain

ci,j the concentration at that site. Define the fluxes

the flux from right f r
i,j = Bx

i,j(ci+1,j − ci,j),
the flux from left f l

i,j = Bx
i−1,j(ci−1,j − ci,j),

the flux from top f t
i,j = By

i,j(ci,j+1 − ci,j),
the flux from bottom f b

i,j = By
i,j−1(ci,j−1 − ci,j).

Here the various B’s are bond conductivity for the bond specified by the difference in
the parenthesis. The bond conductivity B is zero if the corresponding bond is deleted,
and 1 if the bond is retained. At each site Si,j , from mass conservation, we have

f t
i,j + f b

i,j + f r
i,j + f l

i,j = 0, (1.2)

i.e. the total flux to this site is zero. This will be our microscale model.
For the macroscale solver, we will choose a finite volume scheme over a macroscale

grid ΩH where H is the size of the finite volume cell (see Fig 1.3). The data that
we need to estimate from the microscale model, here the percolation model, are the
fluxes at the mid-points of cell boundary. Since the present problem is linear, we only
need to estimate the effective conductivity for a network of size H . We note that
since p = p∗, the effective conductivity is strongly size-dependent. In fact there are
strong evidences that the following relation holds [7]:

κL = C0L
β (1.3)

where κL is the mean effective conductivity at size L.
Our basic strategy is to make use of such relations in estimating the effective

fluxes in the case when ε << H .
For this purpose, we perform a series of microscopic simulations on systems of

size L1 and L2 where ε << L1 < L2 << H . From the results we estimate κL1 and
κL2 . We next use these results to estimate the parameter values C0, β in (1.3). Once
we have these parameters, we can use (1.3) to predict κH .



140 HETEROGENEOUS MULTISCALE METHOD

0 1
0

1

Fig. 1.3. Finite volume mesh with size of H

2. Numerical Results
In the following, we present some numerical results. In order to test the accuracy

of such a procedure, we compare the κH values predicted in this way, and the κH values
that are computed directly on a system of size H . We then present one example in
which we perform the full HMM computation.

Validation of self similarity. We consider bond percolation on the domain
Ω = [0, 1]2 with bond length ε = 1/1024 (see Figure 1.1 for a sample). In Figure 2.1
we show a log-log plot of the effective conductivity as a function of scale. One sees
clearly that the power law behavior is validated.

To see how much statistical fluctuation there is, we compare the actual and pre-
dicted (using self-similarity) values of the conductivity for a number of realizations of
the percolation network. The results are shown in Figure 5. In this figure L = 128 and
the predicted values are computed using simulated values from lattices with L = 16
and L = 32.

Validation of the HMM upscaling procedure. Next we test the HMM
procedure for a problem shown in Figure 2. To establish the microstructure, a bond
percolation network on the domain Ω = [0, 1]2 with bond length ε = 1/2048 and
p = 0.5 was first generated, then the bonds in the squres of size 1/3 at the lower- and
upper-left corners were all removed (see Figure 1.2 for a sample).

At the macroscale, the finite volume method was used on a uniform grid with
grid size H = 1/16 = 128ε (see Figure 1.3). The “exact” solution for this problem
is shown in Figure 2.3 which was obtained by using the actual computed effective
conductivity κH . Results using the method presented in this paper are shown in
Figures 2.4 and 2.5. These are obtained by the following procedure. For each macro
cell boundary, instead of the actual effective conductivity, we use the value predicted
by (1.3) from the averaged values of κL1 and κL2 with L1 = 16ε and L2 = 32ε. The
difference between Figure 2.4 and Figure 2.5 is in how the ensemble averages are taken
to compute the effective conductivity. In Figure 2.4, κL1 and κL2 were obtained by
averaging the effective conductivities on 16 different nearby L1 × L1 and L2 × L2

blocks respectively . In Figure 2.5, only 4 different blocks were used to compute the
average values. We see that the results in Figure 2.4 is smoother.
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Fig. 2.1. Effective conductivity at different scale L = (16, 32, 64, 128, 256)ε for a realization of
the percolation network with p = p∗ = 0.5.
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Fig. 2.2. Effects of fluctuaton: Effective conductivity at scale L = 128ε for different realizations
of the percolation network with p = 0.5. Left: the actual values and values predicted from L = 16ε
and 32ε; Right: relative error between predicted and computed values.
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Fig. 2.3. Results of flux and concentration distribution at the macro scale. Actual values of the
effective conductivity were used.
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Fig. 2.4. Results of flux and concentration distribution at the macro scale. Effective conduc-
tivity κH was predicted by ensemble averaged values of κL1 and κL2 with L1 = 16ε and L2 = 32ε
over 16 blocks at each macro cell boundary.

As far as efficiency is concerned, for the present example there is not much savings
in the HMM procedure compared with direct computation. This is because the fine
scale problem is not that large. Imagine a case where the fine scale problem is 100
times larger in each direction (i.e. the bond length is 100 times smaller), then direct
computation with the microscale model becomes impossible, but the HMM procedure
will have the same cost as the present example, since the macro domain has not
changed.

The present example can be treated by a sequential coupling procedure, namely
that the effective conductivity at the scale H can be computed beforehand from the
microscale model using the procedure we described since it is just a fixed number.
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Fig. 2.5. Results of flux and concentration distribution at macro scale. Effective conductivity
κH was predicted by ensemble averaged values κL1 and κL2 with L1 = 16ε and L2 = 32ε over 4
blocks at each macro cell boundary.

But one can easily imagine other problems for which the needed data depend on more
parameters. In these cases, a “on the fly” coupling procedure might be more efficient.

3. General Strategy
These examples illustrate very well the overall strategy for data estimation. As

was discussed in [3], the general strategy is to extract the information at the scale
of interest by performing constrained microscopic simulations on systems of much
smaller sizes. If there is scale separation in the system, then the needed quantities
should be quite independent of the size of the microscopic system, e.g.

κL = Const

as long as the size of that system is much larger than some characteristic scale of the
microscopic model, which might just be the correlation length. But this is certainly
not the only situation for which the general philosophy outlined in [3] works. As long
as the size dependence is of a simple form, e.g.

κL = f(L) (3.1)

where f depends on few parameters, we can make use of this simple relationship by
performing a few (not just one as was done for problems with scale separation) small
scale simulations and use the results to predict the needed quantities at a much larger
scale. One example of such a situation is when the system exhibits local self-similarity.
In this case the dependence in (3.1) is of the form f(L) = C0L

β and we can use results
of microscopic simulations at two different scales to predict the result at a much larger
scale, namely H , as was done earlier.

The efficiency and accuracy of this procedure depends crucially on how accurate
and complex (3.1) is. For many problems, (3.1) only holds in statistical sense, i.e. the
data in the left hand side are ensemble averaged quantities. In this case, a crucial point
is the size of the fluctuations which will depend on how we sample the microscopic
problems. We have done some preliminary study of this problem but it certainly
should be investigated more thoroughly in future work.
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Fig. 3.1. Data estimation for systems with scale separation (straight line) and systems with
self-similarity in scales (curved line).
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