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EXPONENTIAL DECAY FOR THE
GROWTH-FRAGMENTATION/CELL-DIVISION EQUATION∗
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Abstract. We consider the linear growth-fragmentation equation arising in the modelling of cell
division or polymerisation processes. For constant coefficients, we prove that the dynamics converges
to the steady state with an exponential rate. The control on the initial data uses an elaborate L

1-
norm that seems to be necessary. It also reflects the main idea of the proof, which is to use an
anti-derivative of the solution. The main technical difficulty is related to the entropy dissipation
rate, which is too weak to produce a Poincaré inequality.
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1. Introduction
We consider the growth-fragmentation (or cell division) equation











∂

∂t
n(x,t)+

∂

∂x
n(x,t)+kBn(x,t)=B

∫ ∞

0

κ(x,y)n(y,t)dy,

n(x=0,t)=0,

(1.1)

together with an initial condition n(x,t=0)=n0(x)∈L1(0,∞). Here, the number k >
1 represents the average number of pieces after fragmentation, while B >0 measures
the relative intensity of the fragmentation process versus the growth process and
x 7→κ(x,y) gives the size repartition after fragmentation of a polymer (or division of a
cell) of size y. Throughout this paper, the fragment distribution function κ is assumed
to have the following properties:

κ(x,y)=0 for 0<y <x, (1.2)

∫ y

0

κ(x,y)dx=k,

∫ y

0

xκ(x,y)dx=y. (1.3)

These assumptions are usual in modelling fragmentation phenomena [14] and lead
to two balance laws for the number of fragments

∫ ∞

0
n(x,t)dx and the total mass

∫ ∞

0
xn(x,t)dx, namely

∫ ∞

0

n(x,t)dx=̺ :=

∫ ∞

0

n0(x)dx for all t≥0, (1.4)

d

dt

∫ ∞

0

xn(x,t)dx+(k−1)B

∫ ∞

0

xn(x,t)dx=

∫ ∞

0

n(x,t)dx=̺ (1.5)
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‡Université Pierre et Marie Curie-Paris 6, UMR 7598 LJLL, BC187, 4, place Jussieu, F-75252

Paris cedex 5, and Institut Universitaire de France (benoit.perthame@upmc.fr).

503
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for all t≥0. These are instrumental for the existence theory of weak solutions.
The evolution Equ. (1.1) is already renormalized so that zero is the first eigenvalue

of the underlying linear integro-differential operator. Indeed, recall that, under fairly
general assumptions on κ that were stated for instance in [11, 14], there exists a unique
steady state N ∈L1(0,∞) satisfying















∂

∂x
N(x)+kBN(x)=B

∫ ∞

0

κ(x,y)N(y)dy,

N(x=0)=0, N >0,

∫ ∞

0

N(x)dx=1.

(1.6)

In addition, convergence of solutions n to (1.1) with initial number of fragments
̺ towards ̺N is established in [12, Sec. 4] under suitable assumptions on κ but
without providing a rate of convergence (see also [14, Chapter 4]). These convergence
results are based on the analysis of the entropy dissipation that we recall in section 2.
However, an estimate on the time needed to reach the steady state is of importance:
in particular, an exponential rate of convergence guarantees that the steady state is
reached fast enough to be observed in practice. Another motivation to investigate the
rate of convergence is the study of the stability of steady states in nonlinear cases, at
least in weakly nonlinear regimes. Such nonlinear models are met for example in prion
dynamics [2, 6, 9], cell division with finite resources [10, 14], network communications
[1], and many other fields.

There are two particular cases where an exponential decay is proved. The first
is equal mitosis equations (each cell divides in two cells of the same size) which
corresponds to the choice κ(x,y)=4δ(y−2x) (see section 2), and the method of proof
in [14, 15] is extended here. The second is the case of age structured equations, which
is very particular and more classical because it corresponds to usual modelling; it
corresponds to the formal limit σ→0 in the case of general mitosis below in section 2,
and the exponential decay rate is known even in the case of non-constant coefficients,
see [4, 7, 10].

The aim of this note is to show that such an exponential decay is actually valid
for a broader class of fragment distribution functions κ, namely those satisfying the
positivity condition

β(x,y) :=−
∂

∂y

∫ x

0

κ(z,y)dz≥0, (1.7)

in addition to (1.2) and (1.3). Below we give several examples for which these prop-
erties are met. Our result not only extends the exponential trend to equilibrium to a
wider class of data but also explains the general structure by the positivity property
in (1.7). The semi-norm on the initial data that results from our analysis is defined
by

|||n||| :=

∫ ∞

0

∣

∣

∣

∣

∂M

∂x
(x)+kBM(x)−B

∫ ∞

0

β(x,y)M(y)dy

∣

∣

∣

∣

dx

+(k+1)B

∫ ∞

0

|M(x)|dx (1.8)

with M(x)=
∫ x

0
(n(z)−̺N(z))dz and ̺=

∫ ∞

0
n(y)dy (following the notation intro-

duced in (1.4)).
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Theorem 1.1. With assumptions (1.2), (1.3), (1.7) and an initial condition satisfy-
ing |||n0|||<∞, the corresponding solution n to (1.1) satisfies

∫ ∞

0

|n(x,t)−̺N(x)|dx≤|||n0|||e−(k−1)Bt for all t≥0. (1.9)

Up to our knowledge it is not possible to obtain exponential decay with only
control of Lp-norms on the initial data (even though we are not aware of an explicit
counterexample). This is related to the main difficulty in analysing the decay rate;
the entropy dissipation is too weak to produce a Poincaré inequality. We explain this
in more detail in section 2. This is usual and the case of Fokker-Planck equations and
“hypocoercive” equations are other examples [3, 16].

The outline of the paper is as follows. In the next section, we give some examples
where the Assumptions (1.2), (1.3), (1.7) are satisfied. Then we prove Theorem 1.1.
The proof uses an integral change of unknown which has already been used in [8, 14, 15]
for similar purposes (see also [5, 9, 13] where it is applied to the uniqueness issue for
related models). More precisely, we study the equation solved by an anti-derivative
of the solution to (1.1). A crucial point here is that it satisfies a closed equation, a
property due to the constant fragmentation coefficient kB. We gather several remarks
in the last section.

2. Examples and entropy dissipation

Here we present several standard examples of coefficients κ(x,y) that our method
is able to handle. We also recall the relative entropy associated with the equations at
hand and indicate why a Poincaré inequality cannot hold true.

Equal mitosis. The most general model describing cell division relies on the
choice

κ(x,y)=4δ(y−2x)=2δ(x−y/2), k =2, (2.1)

that is, each cell divides in two cells of equal sizes. Assumptions (1.2) and (1.3) are
obviously satisfied. Furthermore, we can compute

∫ x

0

κ(z,y)dz =21I{x≥y/2} =21I{y≤2x}, β(x,y)=2δ(y−2x)= δ(x−y/2),

and (1.7) is satisfied.

Uniform fragmentation. This is the simplest and most standard model for
(physical or biological) polymers. It assumes uniform distribution of the fragments
after each fragmentation event, i.e.,

κ(x,y)=
2

y
1I{x≤y}, k =2. (2.2)

Assumptions (1.2) and (1.3) are again obviously satisfied. In addition,

∫ x

0

κ(z,y)dz =2
min{x,y}

y
, β(x,y)=2

x

y2
1I{y>x},

and (1.7) is also satisfied.
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General Mitosis. An extension of equal mitosis is to take, for some parameter
σ with 0<σ≤1/2,

κ(x,y)=
1

σ
δ
(

y−
x

σ

)

+
1

1−σ
δ

(

y−
x

1−σ

)

= δ(x−σy)+δ(x−(1−σ)y). (2.3)

Assumptions (1.2) and (1.3) are clearly fulfilled, still with k =2, and

∫ x

0

κ(z,y)dz =1I{x≥σy}+1I{x≥(1−σ)y} =1I{y≤x/σ}+1I{y≤x/(1−σ)},

β(x,y)= δ
(

y−
x

σ

)

+δ

(

y−
x

1−σ

)

=σδ(x−σy)+(1−σ)δ(x−(1−σ)y).

Therefore (1.7) is again satisfied.

Homogeneous fragmentation. This generalisation of uniform fragmentation
consists in using

κ(x,y)=(2+α)
xα

y1+α
1I{x≤y}, k =

2+α

1+α
, (2.4)

for some α>−1 and satisfies (1.2) and (1.3). Also

∫ x

0

κ(z,y)dz =k
min{x,y}1+α

y1+α
, β(x,y)=(2+α)

x1+α

y2+α
1I{y>x},

and (1.7) is again fulfilled.
All these examples illustrate the main difficulty in proving the exponential decay

of solutions and why entropy methods are not enough. We recall from [12, 14, 16]
and the references therein that the relative entropy inequality for Equ. (1.1) reads as

d

dt

∫ ∞

0

N(x)H

(

n(x,t)

N(x)

)

dx=−DH [n(t)]

DH [n] :=B

∫ ∞

0

∫ ∞

0

κ(x,y)N(y)

[

H

(

n(y)

N(y)

)

−H

(

n(x)

N(x)

)

−H ′

(

n(x)

N(x)

)(

n(y)

N(y)
−

n(x)

N(x)

)]

dxdy.

For a convex function H this is a non-negative quantity and this entropy inequality is
usually enough to prove the strong convergence of n(t) to ̺N in a norm that depends
on the choice of H. However the simplest method to prove exponential decay is
through a Poincaré inequality (whenever available) which asserts the existence of
ν >0 such that

ν

∫ ∞

0

N(x)H

(

n(x)

N(x)

)

dx≤DH [n],

for all functions n satisfying
∫ ∞

0
n(x)dx=0.

The usual setting for the quadratic entropy H(r)= r2 is to say that u=n/N
satisfies

ν

∫ ∞

0

N(x)u(x)2dx≤D2[u] :=B

∫ ∞

0

∫ ∞

0

κ(x,y)N(y)
(

u(x)−u(y)
)2

dxdy,
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whenever
∫ ∞

0
u(x)N(x)dx=0. As far as we know, the validity of such an inequality

is unclear and it is actually false in the case of equal mitosis. Indeed, in that case, κ
is given by (2.1) and the right-hand side D2[u] is

D2[u]=4B

∫ ∞

0

N(2x)
(

u(x)−u(2x)
)2

dx,

which clearly vanishes for the class of functions that satisfy u(x)=u(2x) for all x∈
(0,∞): such functions are obtained from a given bounded function φ defined on [1,2]
by setting u(x)=φ(x/2j) for x∈ [2j ,2j+1) and j∈Z.

3. Proof of Theorem 1.1
Proof. As already mentioned, the proof uses an integral change of unknown which

is our starting point.
Step 1. (change of unknown function). Let n be a solution to (1.1) and set

M(x,t)=

∫ x

0

[n(z,t)−̺N(z)]dz for (x,t)∈ [0,∞)2.

It satisfies M(0,t)=M(∞,t)=0 thanks to the conservation of the number of fragments
(1.4), which implies that

∫ ∞

0

[n(z,t)−̺N(z)]dz =

∫ ∞

0

n0(z)dz−ρ

∫ ∞

0

N(z)dz =0.

The motivation for using M is that it satisfies a closed equation of the same type,
namely,











∂

∂t
M(x,t)+

∂

∂x
M(x,t)+kBM(x,t)=B

∫ ∞

0

β(x,y)M(y,t)dy,

M(x=0,t)=0.

(3.1)

Indeed, integrating the first equation in (1.1) over (0,x), x∈ (0,∞), we obtain

∂

∂t
M(x,t)+

∂

∂x
M(x,t)+kBM(x,t)=B

∫ x

z=0

∫ ∞

y=0

κ(z,y)n(y,t)dydz

=B

∫ ∞

y=0

∂

∂y
M(y,t)

∫ x

z=0

κ(z,y)dzdy

=B

∫ ∞

y=0

[

−
∂

∂y

∫ x

z=0

κ(z,y)dz

]

M(y,t)dy

=B

∫ ∞

0

β(x,y)M(y,t)dy.

Step 2. (Property of β). To proceed further, we need a specific property of β, namely
∫ ∞

0

β(x,y)dx=−

∫ y

x=0

∂

∂y

(
∫ x

z=0

κ(z,y)dz

)

dx

=−
∂

∂y

(
∫ y

x=0

∫ x

z=0

κ(z,y)dzdx

)

+

∫ y

z=0

κ(z,y)dz

=−
∂

∂y

(
∫ y

z=0

κ(z,y)

∫ y

x=z

dxdz

)

+k

=−
∂

∂y

(
∫ y

z=0

(y−z)κ(z,y)dz

)

+k

=−
∂

∂y
[(k−1)y]+k
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and thus
∫ ∞

0

β(x,y)dx=1. (3.2)

Step 3. (Exponential decay of M). We now study the evolution of the function M .
Due to the positivity (1.7) of β, we infer from (3.1) that

∂

∂t
|M(x,t)|+

∂

∂x
|M(x,t)|+kB|M(x,t)|≤B

∫ ∞

0

β(x,y)|M(y,t)|dy.

After integration of the above inequality with respect to x over (0,∞), we deduce
from (3.2) that

d

dt

∫ ∞

0

|M(x,t)|dx+kB

∫ ∞

0

|M(x,t)|≤B

∫ ∞

0

∫ ∞

0

β(x,y)|M(y,t)|dydx

≤B

∫ ∞

0

|M(x,t)|dx,

and thus
∫ ∞

0

|M(x,t)|dx≤e−(k−1)Bt

∫ ∞

0

|M(x,0)|dx for t≥0.

Step 4. (Exponential decay of n). Transferring the exponential decay to the solution
n itself is not always possible; see for instance the coagulation case [8]. Here, we
can follow [15] and argue as follows. We first notice that ∂M/∂t satisfies the same
equation as M . Therefore Step 3 and (3.1) also give

∫ ∞

0

∣

∣

∣

∣

∂M

∂t
(x,t)

∣

∣

∣

∣

dx≤e−(k−1)Bt

∫ ∞

0

∣

∣

∣

∣

∂M

∂t
(x,0)

∣

∣

∣

∣

dx

≤e−(k−1)Bt

∫ ∞

0

∣

∣

∣

∣

∂M

∂x
(x,0)+kBM(x,0)−B

∫ ∞

0

β(x,y)M(y,0)dy

∣

∣

∣

∣

dx.

Next, owing to (1.7) and (3.2), we have
∫ ∞

0

∣

∣

∣

∣

∫ ∞

0

β(x,y)M(y,t)dy

∣

∣

∣

∣

dx≤

∫ ∞

0

|M(y,t)|

∫ ∞

0

β(x,y)dxdy

=

∫ ∞

0

|M(y,t)|dy. (3.3)

As a consequence, (3.1) also reads

n(x,t)−̺N(x)=−
∂M

∂t
(x,t)−kBM(x,t)+B

∫ ∞

0

β(x,y)M(y,t)dy,

and we conclude with the help of (3.3) that
∫ ∞

0

|n(x,t)−̺N(x)|dx≤

∫ ∞

0

∣

∣

∣

∣

∂M

∂t
(x,t)

∣

∣

∣

∣

dx+(k+1)B

∫ ∞

0

|M(x,t)|dx

≤e−(k−1)Bt

∫ ∞

0

∣

∣

∣

∣

∂M

∂x
(x,0)+kBM(x,0)−B

∫ ∞

0

β(x,y)M(y,0)dy

∣

∣

∣

∣

dx

+(k+1)Be−(k−1)Bt

∫ ∞

0

|M(x,0)|dx

as claimed.
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4. Concluding remarks

(a) Owing to (3.3) and its definition in (1.8), the semi-norm actually satisfies

|||n0|||≤

∫ ∞

0

∣

∣

∣

∣

∂M

∂x
(x,0)

∣

∣

∣

∣

dx+2(k+1)B

∫ ∞

0

|M(x,0)|dx,

and |||n0||| is thus dominated by the W 1,1-norm of M(.,0).

(b) Theorem 1.1 can be extended to growth-fragmentation equations with non-
constant velocity











∂

∂t
n(x,t)+

∂

∂x
(τ(x)n(x,t))+kBn(x,t)=B

∫ ∞

0

κ(x,y)n(y,t)dy,

n(x=0,t)=0.

The fragment distribution function κ is still assumed to fulfil the properties
(1.2), (1.3), (1.7), and the velocity τ is required to satisfy

τ(x)≥ τm >0 ϑ := (k−1)B− sup
x∈(0,∞)

∂τ

∂x
(x)>0.

Under these assumptions, the exponential decay rate is e−ϑt. Indeed, the
equation on M is







∂

∂t
M(x,t)+τ(x)

∂

∂x
M(x,t)+kBM(x,t)=B

∫ ∞

0

β(x,y)M(y,t)dy,

M(x=0,t)=0.

Therefore, proceeding as in the third step of the proof of Theorem 1.1, we
have

d

dt

∫ ∞

0

|M(x,t)|dx+(k−1)B

∫ ∞

0

|M(x,t)|dx=

∫ ∞

0

|M(x,t)|
∂τ

∂x
(x)dx.

The decay rate for M follows directly from this equality. The positive bound
from below required on τ is next used to transfer this decay rate on n, arguing
as in the fourth step of the proof of Theorem 1.1.

(c) The exponential decay rate in Theorem 1.1 seems to be optimal: indeed,
consider the case where κ is given by (2.1) (equal mitosis), that is, κ(x,y)=
4δ(y−2x)=2δ(x−y/2), and introduce the function ξ defined by

ξ(x) :=
1

2

∂N

∂x

(x

2

)

, x∈ (0,∞).

Owing to the properties of N given in (1.6) and the specific choice of κ, it
is straightforward to check that (x,t) 7−→e−Btξ(x) is the solution to (1.1)
with initial condition ξ and the integral of ξ vanishes. Consequently, given
̺>0, n(x,t)=̺N(x)+e−Btξ(x) is the solution to (1.1) with initial condition
n0 =̺N +ξ and

∫ ∞

0

|n(x,t)−̺N(x)|dx=e−Bt

∫ ∞

0

|ξ(x)|dx

(recall that k =2 in that case).
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(d) Similarly, when κ(x,y)=21I{x≤y}/y (which corresponds to uniform fragmen-
tation, see (2.2)), the equilibrium N is known explicitly and given by
N(x)=4B2xe−2Bx for x≥0. Introducing η(x) :=x(Bx−2)e−Bx for x≥0,
one readily checks that (x,t) 7−→e−Btη(x) is the solution to (1.1) with initial
condition η. Observe that the integral of η vanishes. As in the previous case,
given ̺>0, n(x,t)=̺N(x)+e−Btη(x) is the solution to (1.1) with initial
condition n0 =̺N +η. Since

∫ ∞

0

|n(x,t)−̺N(x)|dx=e−Bt

∫ ∞

0

|η(x)|dx,

and k =2, this example also yields the optimality of the decay rate obtained
in Theorem 1.1 for that particular case.
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[9] Ph. Laurençot and Ch. Walker, Well-posedness for a model of prion proliferation dynamics, J.

Evolution Equations, 7, 241–264, 2007.
[10] J.A.J. Metz and O. Diekmann, Formulating models for structured populations, The dynamics

of physiologically structured populations (Amsterdam, 1983), Lecture Notes in Biomath.,
Springer, Berlin, 68, 78–135, 1986.

[11] Ph. Michel, Existence of a solution to the cell division eigenproblem, Math. Models Methods
Appl. Sci., 16, 1125–1153, 2006.

[12] Ph. Michel, S. Mischler and B. Perthame, General relative entropy inequality: an illustration

on growth models, J. Math. Pures Appl., (9), 84, 1235–1260, 2005.
[13] B. Niethammer and R.L. Pego, Well-posedness for measure transport in a family of nonlocal

domain coarsening models, Indiana Univ. Math. J., 54, 499–530, 2005.
[14] B. Perthame, Transport Equations Arising in Biology, Front. Math., Birkhäuser, Basel, 2007.
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