
COMMUN. MATH. SCI. c© 2008 International Press

Vol. 6, No. 1, pp. 217–234

AVALANCHES IN NETWORKS OF WEAKLY COUPLED

PHASE-SHIFTING ROTATORS∗

A.YU. SHAHVERDIAN† AND A.V. APKARIAN‡

Abstract. The networks of phase-shifting rotators interacting through exchange of weak δ-kicks
are considered. Such a rotator consists of a particle rotating on a circle which at some discrete mo-
ments receives some δ-kicks. We assume that the kicks are not of mechanical character: they change
a particle’s position but not the rate. A comparison of the rotator networks with the BTW model
of self-organized criticality, Burridge-Knopoff’s model in seismicity, Herz-Hopfield neural networks,
and the Turing-Smale system in biological cells is presented. This work studies the avalanches in
rotator networks — the events when a number of rotators almost simultaneously hit some threshold
levels. The asymptotic relations linking distribution of avalanches with the architecture of a network
are proved. The equivalence of two well-known power-law conjectures, in lattice models of statistical
physics and in interacting threshold systems, is established.
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1. Introduction

Let us explain our abstract and describe the networks of threshold microsystems
considered in this work; the formal definitions are given in the following sections. Let
EN =[1,2,... ,N ] be the sequence of N ≥2 integers and ω̄ =(ω1,... ,ωN )∈R

N be a vec-
tor with non-zero components. Let R={R1,... ,RN} be a set of N rotators Ri (some
of them may coincide): the Ri consists of a circle Ci and a particle Pi rotating on it
with constant angular rate |ωi|; rotation occurs clockwise or anti-clockwise depending
on whether ωi is positive or negative. Let to every i∈EN a label ρi ∈Ci as well as
a nonempty set of indices σi ⊂EN , i 6∈σi be prescribed: ρi is understood as some
threshold position for the motion of Pi and σ̄ =(σ1,... ,σN ) assigns the neighborhood
in the network R: Ri interacts with Rj iff j∈σi. The interaction is as follows: each
time when Pi hits the level ρi, each Pj whose index j is in σi instantaneously rotates
(shifts) along its orbit on Cj by a given small angle (the intensity of interaction).
The following is required: a shifting of a particle does not affect its rate (it remains
the same before and after interaction) and the moments when the particle hits its
threshold are separated by a positive constant. This work studies the avalanches in
such rotator networks — the events when a number of rotators in the network almost
simultaneously attain their corresponding thresholds.

We claim that if in a system of almost identical rotators the interaction of small
intensity is included, then provided certain extent in couplings there arises a dynamics
which is complicated. The situation is reminiscient of Turing’s statement [20, 22] in
biological cells: Turing-Smale’s theorem says that when put into conditions allowing
certain interaction, the system of initially inert cells begins to exhibit nontrivial oscil-
latory dynamics. It can be said that we study the Turing-Smale statement adapted
to the framework of self-organized criticality (SOC), a theory resulting from numer-
ous studies in the BTW model (a description is given below) which deals with large
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systems of interacting threshold elements and where the notion of avalanche is a basic
one. Indeed, in both systems the interaction is such that it always tends to equalize
the current states of microsystems, but in either case the system’s global dynam-
ics appears to be of oscillatory or even unpredictable character. It is an important
advantage of considering rotator networks (RN) that despite the fact that the micro-
dynamics in these systems is close to microdynamics usually accepted in SOC, they
permit theoretical analysis — this circumstance is due to a justification of the def-
inition of an avalanche and some restrictions imposed on the network’s parameters.
Thus, our statement permits a rigorous answer to Smale’s question about the role of
connectivity in interacting systems [20].

The sandpile- or BTW model (named after the authors who designed the concept
of self-organized criticality, Bak, Tang, and Weisenfeld [2]), a typical SOC system, is
the following (the details are omitted; for formal definition see [6]): at each moment
of discrete time a particle from some external source at a randomly chosen site (node)
of a given d-dimensional finite lattice is added; if at any site the number of particles
exceeds 2d they are uniformly distributed among the nearest neighbors; if because of
a large number of particles in the system this procedure cannot be continued, some of
them are removed to a “sink” and the entire procedure is repeated again. This sys-
tem inherits some dynamical features of Burridge-Knopoff’s (BK model) “earthquake
machine” (a set of sliding blocks connected by springs; [4], see also [1]) — in both
systems avalanches of arbitrary size occur in an unpredictable way and according to
simulations [2, 4] their distribution follows the power law:

P (k)∼ const ·k−λ1 , (λ1 >0), (1.1)

where P(k) is the frequency with which the avalanches of size k take place (an
avalanche of size k is an event where at some k different sites the number of par-
ticles at each of them simultaneously becomes equal to the threshold 2d). Since Equ.
(1.1) is well consistent with Gutenberg-Richter’s fundamental law in seismology (em-
pirical distribution of earthquakes’ intensity), these two systems were recognized as
valuable means in modelling of seismic events. Later, numerous applications of SOC
in various areas were proposed. In what follows RN is compared with a neuroscience-
related system which we refer to as the Herz-Hopfield model (the HHM; should not be
mixed with the other well known Hopfield model) suggested in [11, 12, 13] on neural
coherent firing. In contrast to many works in SOC that mostly deal with numerical
simulation, the work of these authors contains rigorously proven results. We also
briefly discuss the Turing-Smale mathematical model of morphogenesis: despite this
system being given in the form of ODEs, one can notice its common features with
RN, whose dynamics are described in terms of thresholds and avalanches.

Our interest is concentrated on avalanches and their distribution; in neural net-
works an avalanche of size k is treated as a simultaneous firing of an assembly of k
neurons, in BK- and BTW models it associates with an earthquake of intensity k.
Every avalanche of size k is followed by (almost) simultaneous interaction of some k
microsystems, and hence we study the intensity of interaction in the network. In these
systems a threshold nature phenomenon is modelled in such a way that the emergence
of an avalanche is associated with the attainment of the system’s orbit of the bound-
ary of state space (e.g., if this space is the N -dimensional unit cube D

N =[0,1]N ,
every attainment of its any k-dimensional, 1≤k≤N edge can be understood as an
avalanche of size k). The method used in the present work is the same as in [17] and
is based on Weyl’s theorems in uniform distribution [14]. This theorem is applied
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as follows: with every avalanche of size k we associate an N -dimensional region in
state space D

N which occupies some neighborhood of k-dimensional edges; then the
network’s orbits are approximated by the orbits of a simpler system where the Weyl
theorem holds, and thus the computation of the frequencies of avalanches is reduced
to a simpler task of computation of volumes of such regions.

This work contains a generalization of our earlier results from [17]. More at-
tention to possible applications in neuroscience is given. The theorems presented
are of asymptotic character: they are valid when some parameters of the network
are small. In Section 2 we define phase-shifting rotators, rotator networks RN, and
avalanches and present their comparison with the corresponding notions from other
works. In Section 3 we consider RN assigned on Euclidean lattices: Theorem 3.5
relates to frequency of avalanches which occur over a given set of nodes of the lattice;
Theorems 3.6 and 3.8 establish the formulas connecting dynamical (avalanche distri-
bution) and combinatorial characteristics of the network; Corollary 3.9 states that in
RN the power-law conjecture (1.1) for distribution of avalanches is almost equivalent
to another power-law conjecture appearing in statistical physics and combinatorial
enumeration of clusters. Section A considers RN with site-dependent thresholds de-
fined on graphs (Theorems A.2 – A.4). In Section 4 a brief discussion of the obtained
results is presented.

2. Rotators, networks, and avalanches

In this section we define phase-shifting rotators, rotator networks, and avalanches.
We formulate the Weyl theorem in uniform distribution on which our proofs are based
and give a brief comparison of rotator networks with some other systems.

2.1. Phase-shifting rotator. The rotator networks that we consider consist
of weakly interacting phase-shifting rotators (PSR). A rotator is a particle P rotating
on a circle — the phase variable Φ of P (in polar coordinates with the origin at the
center of the circle) is either increasing or a decreasing (depending on whether the
rotation is clockwise or anti-clockwise) function of time t. In PSR two types of motion
are allowed: uniform motion with constant rate and instantaneous rotations (shifts).
The latter occur as a result of δ-kicks: upon receiving a δ-kick, a uniformly moving
particle P instantaneously shifts from its current position by a given small distance.
The particle can be massive or massless, and we require that the particle’s rate remain
the same before and after such a shift. This means that the δ-kicks are assumed to be
not of mechanical character; particularly they must not be mixed with δ-pulses (which
affect the rate of a moving particle) considered in dynamical chaos (e.g., [16, 21]).

In what follows h(t) is the Heaviside step-function: h=0 if t≤0 and h=1 other-
wise; the notation a= b mod (c) means: a= b if b<c and a= c−b otherwise. The set
N={1,2,...} is the natural series, Z is the set of all integers, i=

√
−1 is the imaginary

unit, C ={(2π)−1 exp(iΦ) : 0≤Φ≤2π} is the circle of unit length, and I =[0,1] is the
unit numerical segment. We assume that a label ρ∈C or ρ∈ I, which is understood
as a threshold mark for some motion on C or I, is assigned. We present a formal
definition of PSR assigned specifically on circle C or segment I. Then a PSR assigned
on an arbitrary circle C ′ (or segment I ′) is then defined as follows: If C and C ′ are
found in complex plane C and the linear map L(z)=az+b is such that L(C)=C ′, a
rotator R′ on C ′ is defined as the composition R′ =L−1 ◦R where R is a rotator on C
(the same definition for the case of linear segments). For a finite set e the |e| denotes
its power (the number of elements).

Definition 2.1. Let α and ω be some numbers, αω >0, and tn >0 be such that
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tn+1− tn >η for some η >0 and all n∈N. Let kn ∈N be bounded and H be defined as

H(t)=ω t+α
∑

n∈N

knh(t− tn), (2.1)

where t>0 (time variable) and h is the Heaviside function. A map of the form

R : t→ (2π)−1 exp(iH(t)) or R : t→H(t) mod (1)

we call the phase-shifting rotator (PSR) assigned on C (on I). The time series

T (in) ={tn :n≥1} and T (out) ={τn :R(τn)=ρ}

are the input and output of the rotator R.

The H(t) in (2.1) is the coordinate of a moving particle at time t which starting
at t=0 moves rectilinearly (or rotates on a circle, then H(t) is proportional to the
argument Φ(t)) and uniformly with constant rate ω and at each moment tn is jumped
along its orbit by a distance of length |α|. As we mentioned, PSR must not be con-
fused with the mechanically kicked rotator (e.g., [16, 21]): a massive particle rotating
on a circle and at some moments receiving δ-pulses from some periodic force. The
mechanical rotator is a Hamiltonian system ([16, 21]) while PSR cannot be described
in classical-mechanical terms. Indeed, a non-relativistic particle’s rate just before and
after any δ-pulse cannot remain the same (see Section 1). Such a situation may hap-
pen only in relativistic theory when the particle’s rate is close to speed of light —
e.g., a moving electron (in the framework of Bohr’s atom model) receiving at some
moments some quanta of energy E =hν.

2.2. Rotator networks and τ-avalanches. Before giving a formal defini-
tion of rotator networks, we present their description using conventionally mechanical
terminology. We consider a rotator network as a set of particles performing finite
rectilinear motion on some segments; the “circular” interpretation of RN, dealing
with rotating particles, is immediately derived if one identifies the end-points of these
segments. The “linear” version of RN is more convenient in the proofs.

Let to every i∈EN a copy Ii of unit segment I =[0,1] and a particle Pi moving
on Ii be given. The regular motion of Pi, when interaction with other particles
is absent, is the following: when Pi is found on (0,1) it moves uniformly with the
rate ωi toward the threshold ρi (for simplicity we assume ρi =1 if ωi >0 and ρi =0
otherwise); when reaching the threshold, Pi transits instantaneously to the level 1−ρi

and then starts again the same motion. Such a regular motion can be perturbed by

some instantaneous shifts which occur at every moment (= t
(i)
n ) when some ki ≥1

(ki =k
(i)
n ) particles from some sites j∈E which are neighbor to i simultaneously hit

the levels ρj (in what follows we count that α>0, ωi >0 and all the thresholds ρi

are equal to 1 — this assumption does not affect on generality of results and their
proof). Denoting by Hi =Hi(t) the coordinate of Pi on Ii, the motion of Pi in this
situation is described as follows: If Hi +αki <1, the Pi instantaneously lifts from its
current position Hi to Hi +αki; and if Hi +αki ≥1, Pi instantaneously drops from Hi

to Hi +αki−1. Thus we distinguish two type of motions of the particle: the regular
and instantaneous one; they can be expressed (respectively) as

Hi(t)=ωit mod (1), and (for t= t(i)n ) : Hi(t+0)=Hi(t)+αki mod (1).
(2.2)
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One can see that at every moment t the coordinate Hi of Pi is equal to

Hi(t)=ωit+α
∑

n∈N

k(i)
n h(t− t(i)n ) mod (1) (2.3)

where h is Heaviside’s function. As in Section 1, it is required that any shifting of
a particle does not affect its rate, and the moments when a particle hits the corre-
sponding threshold are separated by a positive constant.

According to Definition 2.1, for every i∈E Equation (2.3) determines a PSR
which we denote as Ri. In the described network the α in (2.3) does not depend on i
and the following linking condition holds: for every i∈EN

T
(in)
i =

⋃

j∈σ(i)

T
(out)
j , (2.4)

where it is assumed that for every term from T
(in)
i , its multiplicity coincides with the

number of its occurrences in different T
(out)
j with j∈σ(i). One can see that (2.4) is

a necessary and sufficient condition for a set of PSR (having the same parameter α)
to be constituting some above-described network; i.e., the following definition can be
given:

Definition 2.2. Let for every i∈EN a set σi ⊂EN , i 6∈σi be prescribed. A collection
R={R1,... ,RN} of (not necessary different) PSR with the same value of parameter
α is called a rotator network (RN) assigned on EN , if for every i∈EN condition (2.4)
holds.

Despite the fact that (2.4) is a necessary requirement organizing a set of rotators
into a network, this relation seems only of formal character and hardly suffices for
computation of rotators’ inputoutput series by the network’s parameters ω̄, σ̄, and
α. For that purpose the numerical method should rather be used: these series can be
generated dynamically as the network is evolved with time t. We note that if a PSR
is treated as a neuron, the output of every rotator in RN appears to be some analogy
of neural spike trains of interacting neurons.

Our definition of avalanches involves a time parameter τ >0 and thus differs from
definitions accepted in SOC. To emphasize this we use the term τ -avalanche. A τ -
avalanche consists of some single events whose precise occurrence times are found in
the same time interval of length τ .

Definition 2.3. Let R={R1,... ,RN} be a rotator network. We say that at the i-th
site at moment t a single τ -event occurs if the particle Pi in Ri hits the threshold ρi

during time interval [t,t+τ). The collection A=A(t) of all single τ -events which occur
at the same moment t is called a τ -avalanche. The collection SA of all the sites at
which a single τ -event constituting a given τ -avalanche A occurs is called the support
of A; a site of SA is called A-regular (A-singular) if the attainment of threshold at
this site has resulted from regular (singular) motion. The number of vertices in SA

is interpreted as the size or intensity of A. The duration of A is the minimal time
interval TA during which the series of all τ -events constituting A is started and then
completed.

The τ -avalanches in rotator networks can be studied in a rigorous way. To make
this possible, one has to impose some restrictions on networks parameters; these are:
the rate ω̄ of regular motion (clockwise rotation), the level of interaction α>0, and
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time parameter τ through which the avalanches are defined. The restriction on the
parameters is as follows: letting

β =
max{ωi : 1≤ i≤N}
min{ωi : 1≤ i≤N} −1, ω =N−1

N
∑

i=1

ωi, θ=ωτ, (2.5)

we require that α, β, and θ are small. It is also assumed that ω1,... ,ωN are Z-
independent, i.e., for arbitrary hi ∈Z the relation

∑N
i=1hiωi =0 implies that all the

hi are zero; the collection of the ω̄ =(ω1,... ,ωN ) with Z-independent components is
dense in Euclidean R

N . In other words, our main results, which are of asymptotic
character, are valid under the following conditions:

α+β+θ→0, and ω1,... ,ωN are Z-independent. (2.6)

In what follows, two different situations, α/θ=o(1) and θ/α=o(1), are considered.

2.3. Weyl’s theorem and some remarks. We formulate the Weyl theorem
in uniform distribution (see, e.g., [14]) on which our proofs are based. Let [x] denote
the integer part of the real number x (the maximal integer which is ≤x), {x}=x− [x]

be the fractional part of x, <a,b>=
∑N

k=1akbk be the inner product of vectors a and
b, i denote the imaginary unit, and vol and mes denote N -dimensional volume in
R

N and Lebesgue measure on the real axis R
1, respectively. Hereafter, for a vector-

function f =(f1,... ,fN ) we denote f̂ =({f1},... ,{fN}).
Theorem 2.4. (H. Weyl) Let f(t)=(f1(t),... ,fN (t)) be a measurable vector-function,
∆⊂D

N be a finite union of N -dimensional parallelepipeds. If for every h∈Z
N such

that h 6=0,

lim
T→∞

1

T

∫ T

0

exp(2πi<h,f(t)>)dt=0 (2.7)

then

lim
T→∞

mes({0≤ t≤T : f̂(t)∈∆})
T

=vol (∆). (2.8)

The orbits for which the latter equality holds are called ([14]) continuously uni-
formly distributed (c.u.d.) in D

N . The next remark is a simple consequence (a
particular case when f(t) is linear) of Weyl’s theorem:

Remark 2.5. Let ω1,... ,ωN be Z-independent, the numbers a1,... ,aN be arbitrary,
∆ be a finite union of N -dimensional parallelepipeds from D

N , and S be defined as
S(t)=(a1 +ω1t,... ,aN +ωN t). Then there exists the limit

lim
T→∞

{0≤ t≤T : Ŝ(t)∈∆}
T

=m(S,∆), and m(S,∆)=vol (∆). (2.9)

The state space of rotator networks is either the N -dimensional cube (when we
count that the particles Pi move on linear segments) or the N -dimensional torus (if
they rotate on circles). One can see that (due to a finite number of rotators in the
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network) the separation condition t
(i)
n+1− t

(i)
n ≥ηi >0 for inputs of rotators Ri from a

given network implies such a separation for their outputs τ
(i)
n :

Remark 2.6. For every RN there is a constant η′ >0 which depends only on N and

separation constants η1,... ,ηN , such that τ
(i)
n+1−τ

(i)
n ≥η′ for every i∈EN and for all

n∈N.

We say that time interval [τ
(i)
n ,τ

(i)
n+1] is the n-th cycle of motion of Pi. Let

k
(i)
n be the number of kicks received by Pi from its neighbors during the n-th cy-

cle. Every orbit of RN is of the form Hα(t)=(ω1t+αj1(t),... ,ωN t+αjN (t)), where

ji(t)=
∑

0<t
(i)
n ≤t

k
(i)
n is the number of kicks received by Pi during time t. The second

sentence in the next remark is an obvious consequence of the first one; it follows from
the separation condition for the input series in Definition 2.1.

Remark 2.7. If α>0 is small enough, then every particle Pi during each cycle

receives fewer than c kicks, i.e., 0≤k
(i)
n ≤ c for all i and n; here c>0 is a constant

which depends only on the separation constant η but not on i or n. Therefore, the
orbit Ĥα(t) uniformly (in respect of t∈ [0,+∞)) converges (as α→0) to some Ŝ(t),
and hence, for arbitrary ∆⊂D

N , the relation

lim
α→0

m(Hα,∆)=m(S,∆)=vol (∆) (2.10)

holds.

The next remark reflects some features of τ -avalanches; point (1) follows from
(2.6) and Remark 2.7; the proof of point (2) is straightforward.

Remark 2.8. (1) If α>0 is small enough, then during every τ -avalanche A each
particle on SA reaches threshold exactly once while no particle from the complement
of SA reaches the threshold during this time interval. (2) If SA =SA′ and TA =TA′

then A=A′; if A 6=A′ then TA∩TA′ =∅.
2.4. Some comparisons. We present a brief comparison of RN (and related

notions) with some other systems. The HHM, a neural network considered in [11, 12,
13] can be defined as follows: 0≤Ui ≤1 is the membrane voltage of the i-th neuron,
the regular motion is the same as in (2.2) but with ωi ≡1, and the instantaneous
motion is assigned by:

Ui(t+0)=Ui(t)+
∑

j

αi,j(t) or Ui(t+0)=γ(Ui(t)+
∑

j

αi,j(t)−1),

depending on whether the sum Ui(t)+
∑

j αi,j(t) is less than 1 or not, (cp. Equation
(2.3)); here, 0<γ≤1 is a constant and αi,j >0 is understood as synaptic strength
between the i-th and j-th neurons. If considering RN as neural networks, one should
treat a PSR as a neuron, the R(t) in Definition 2.1 as its current state, the output
series T (out) as a spike train, and the separation constant η′ in Remark 2.6 as the
neuron’s refractory period. The BTW model supposes θ =α=1/2d; this condition is
intermediate between two limits, α/θ=o(1) and θ/α=o(1), assumed in the present
work. There is an analog for our requirement α=o(1) (weak interaction) in HHM,
which provides the convergence of its orbits [11] to some quasiperiodic [19] states.
Point (1) in Remark 2.8 is not true for the BTW model but is essential in HHM.
In RN, the randomness (often postulated in different SOC systems) is substituted by
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Z-independence (both are absent in HHM); due to the above-cited Weyl theorem; this
enables us to reduce the computation of the frequency of the avalanches to a simpler
geometrical task of computation of some volumes in the state space (see Remark 3.3).
Every avalanche in the BTW model is an instantaneous event, and its support is
always a connected set on the lattice; every τ -avalanche in RN lasts a positive time,
0< |TA|≤ τ , and its support can be an arbitrary set on the lattice (the latter holds
also in HHM). It is possible in RN that a chain of different τ -avalanches A1,A2,...
immediately following each other will occur; in this case the supports of Ai and Ai+1

are disjoint.
We present a (qualitative) comparison of rotator networks with the Turing-Smale

mathematical model of morphogenesis. In his well-known work [22] Turing suggested
the following system of ODEs

dxk

dt
=R(xk)+

∑

i

µi,k(xi−xk) (k =1,... ,N), (2.11)

which models a set of N interacting biological cells; here xk ∈R
m denotes the k-th

cell, its components x
j
k denote the concentration of the j-th morphogen, µi,k are some

m×m matrices, and the sum is taken over the neighbors of the k-th cell. In (2.11) the
diffusion (transport of mass) from xi to xk arises when x

j
i >x

j
k for some 1≤ j≤m; in

RN, the k-th site receives a kick of positive intensity from its i-th neighbor when Hi =1
(and hence Hi ≥Hk). Smale [20] constructed some systems of the form (2.11), such
that if µi,k 6=0, the system’s orbits are asymptotically periodic, and if µi,k =0 (i.e. the
system without the sum in (2.11) that is responsible for interaction), they converge
to some constants (the cells are inert); in rotator networks the orbits are of irregular
character if the intensity of interaction α is nonzero and they are quasiperiodic if
α=0. In respect to the above-mentioned tendency to equalize the current states
of the microsystems, we mention the difference analysis (see, e.g., [18]) where the
dynamics of the equalizing process in application to discrete-time systems is studied.

Some modifications of the Turing-Smale have been suggested; e.g., we mention
the well-known Kuramoto model of weakly coupled neural oscillators (see, e.g., [10]).
A similar statement in dynamical networks, resulting from Huygens’ earlier discovery
on synchronization of almost identical coupled oscillators, is also a subject of many
studies (see, e.g. [25]). The analytical results for synchronization of coupled threshold
microsystems were obtained by several authors (see, [15] and references therein). In
contrast, in the present work we are interested not in synchronization of the whole
dynamics of coupled microsystems but only in their simultaneous (coherent) attaining
of the threshold states on a given cluster (‘firing of cluster’). Clearly, this is a different
and less restrictive statement when different microsystems are each allowed to reach
their thresholds in different ways (although again, almost simultaneously).

3. Main results

The theorems proved in this section establish the interrelation between the dis-
tribution of τ -avalanches in rotator networks and the network’s combinatorial charac-
teristics. Following traditions in the SOC and the BK model, and in order to simplify
our statement, we define and consider the networks on Euclidean lattices. In Section
A we briefly explain how the results obtained are extended to rotator networks on
graphs with site-dependent values of thresholds. Before presenting our main theorems
we need to introduce some definitions and formulate some remarks.

As before we denote by |S| the power (number of entries) of the set S, EN =
[1,... ,N ], and let R={R1,... ,RN} be a rotator network on EN . Let also S ={S},
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S ⊂2EN be some (arbitrary) collection of subsets of EN . We are interested in com-
putation of the frequency of τ -avalanches having a given support S⊂EN as well as
in computation of the distribution of τ -avalanches whose supports belong to a given
collection S. These are defined as follows:

Definition 3.1. Let S⊂EN and S ={S} be a collection of subsets of EN . The
frequency of avalanches with the support S and the distribution of avalanches with the
supports from a given S are defined as

πS = lim
T→∞

mes (e(S,T ))

T
and πS(k)=

∑

S∈S, |S|=k

πS (k =1,2,... ,N) (3.1)

respectively; here 1≤k≤N and e(S,T ) denotes the set of all the moments 1≤ t≤T
at which a τ -avalanche with the support S occurs.

In what follows in this section we consider RN assigned on Euclidean d-
dimensional lattices L

d =L×···×L (d times); here L=[1,... ,m] is the segment
of m integers, d≥1 and m≥2. The lattice L

d consists of N =md vertices (sites,
nodes), which are numbered arbitrarily, L

d ={v1,v2,... ,vN}. We consider connected
sets (clusters, lattice animals, LA) on the lattice L

d: a set S⊂L
d is called connected

if for every pair of different vertices u,v∈S there exists a series u0,... ,un of vertices
from S such that u0 =u, un =v, and for all i=1,... ,n the Euclidean distance between
ui−1 and ui is equal 1. Every non-empty set on the lattice can be represented in the
form of the union of some pairwise disjoint clusters (connected components of S).

The “nearest-neighbor” (in the sense of Euclidean metric) relation on the lattice
L

d determines some special neighborhood σ̄ =(σ1,... ,σN ) on EN (= [1,... ,N ]): j∈
σi whenever the Euclidean distance between vi and vj is equal 1. Every network
R={R1,... ,RN} of rotators on EN having such a special σ̄ can be considered as a
network assigned on L

d: the rotator Ri is now assigned not to the index i∈EN but
to the site vi ∈L

d (the same substitution made in Definition 3.1 for avalanches on
the sets S⊂L

d). The circumstance which allows the application of the above cited
Weyl’s theorem is the following: every τ -avalanche can be geometrically interpreted
as a parallelepiped in the state space of the network. To explain this point some
additional notions are required:

Definition 3.2. Let S⊂L
d be a non-empty set and C =(S0,S1) be a partition of S

into two disjoint subsets S0 and S1: S0∪S1 =S, S0∩S1 =∅, S0 6=∅ such that every
connected component of S contains at least one vertex from S0 and for any vertex
from S0 all its neighbors on the lattice, which belong to S, are found in S1. Every
such partition C of S we call a color of S assuming that the vertices from S0 are
colored into red and vertices from S1 are colored into blue. The collection of all such
colors C of S is denoted C(S).

In this definition the requirements for the distribution of red and blue are not
symmetric: e.g., if a partition C of a non-empty set S contains only one red vertex
while all the others in S (if any) are blue then C ∈C(S), but if a C contains only one
blue vertex in S and all the others in S are red then C 6∈ C(S). For example, if each
connected component of a given S contains exactly one red vertex while all the others
in S are blue, then such a partition belongs to C(S). The following provides another
example of considering colors: if a partition C of S is such that for every red vertex
v∈S all its neighbors belonging to S are blue and for every blue vertex v∈S there is
a red vertex in S which is a neighbor to v, then C ∈C(S).
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Let S⊂L
d be non-empty set, C ∈C(S), and vectors k=(k1,... ,kN ) and δ̄ =

(δ1,... ,δN ) be such that kn ∈N, 1≤kn ≤N , knα<1 and components of δ̄ are small.
With every such C, δ̄, and k we associate an N -dimensional parallelepiped BC(δ̄,k)
from D

N defined as: BC(δ̄,k)=J1×···×JN , where the intervals Jn ⊂ [0,1] are

Jn =















(0,1−mα−δn), vn ∈M
(m)
S ,

(0,1−δn), vn ∈L
d \ S̄,

(1−δn,1), vn ∈S0,
(1−knα,1), vn ∈S1;

(3.2)

here, MS is the border of S (the collection of the vertices from L
d \S which contain

at least one neighbor belonging to S), M
(m)
S is the collection of all sites of MS each of

which possesses exactly m neighbors belonging to S, and S̄ =S∪MS . Let us denote
θi =ωiτ and BC,k =BC(θ1,... ,θN ;k). Since for every τ -avalanche A the collections
of all A-regular and A-singular vertices constitute a color from C(SA) (see Definition
2.3; the regular vertices are red and singular ones are blue), every τ -avalanche with
support S determines some BC,k. Taking into account Remark 2.7 and point (1) of
Remark 2.8, one can see that the following is true:

Remark 3.3. Let S⊂L
d be a non-empty set and A be a τ -avalanche with the support

S. There exists a color C ∈C(S) and a vector k such that Sα(t)∈BC,k if and only if
t∈TA.

Our next formulations involve some combinatorial characteristics — with a given
S⊂L

d we associate two polynomials: for a vector q=(q1,... ,qN ) where 1≤ qn ≤N
we let

G
(0)
S (α,θ,q)=

∑

n∈N

a0(n,S)(θ/qnα)n, G
(1)
S (α,θ,q)=

∑

n∈N

a1(n,S)(qnα/θ)n,

where aδ(n,S) (δ∈{0,1}) denotes the total number of partitions (S0,S1)∈C(S) for
which |Sδ|=n. In what follows, the notation ϕ∼ψ means ϕ=ψ+o(ψ).

Lemma 3.4. Let R be a rotator network on L
d and S be an arbitrary set on the lattice

L
d. Under conditions (2.6), for asymptotic frequency πS of τ -avalanches in R with

the support S the relations

πS ∼ (qα)|S|G
(0)
S (α,θ,q) (α/θ→0) and πS ∼θ|S|G

(1)
S (α,θ,q) (θ/α→0)

with some q and 1≤ q≤N hold.

Proof. In order to simplify the notation we assume τ =1. It follows from the first
condition in (2.6) that

vol (
⋃

C∈C(S)

BC,q)∼vol (
⋃

C∈C(S)

B′
C),

where B′
C denotes B′

C =BC(θ,... ,θ;q) and θ is defined in (2.5); therefore, due to
Remark 2.7 and Remark 3.3, πS converges (as α+β+θ→0) the to N -dimensional
volume

λS =vol (
⋃

C∈C(S)

B′
C). (3.3)



A. YU. SHAHVERDIAN AND A.V. APKARIAN 227

Since α, β, and θ are small, from the definition in Equ. (3.2) it follows that

vol (B′
C)∼k

|S1|
C θ|S0|α|S1| where 1≤kC ≤N






kC =





|S1|
∏

n=1

qn





1/|S1|





. (3.4)

Using the inclusion-exclusion procedure:

vol (
⋃

C∈C(S)

B′
C)=

∑

p≥1

(−1)p−1
∑

1≤i1<i2<···<ip≤r

vol (B′
Ci1

∩B′
Ci2

∩···∩B′
Cip

)

(it is assumed that C(S) is numbered, C(S)={C1,C2,... ,Cr}), we obtain

vol (
⋃

C∈C(S)

B′
C)≥

∑

C∈C(S)

vol (B′
C)−

∑

1≤i1<i2≤r

vol (B′
Ci1

∩B′
Ci2

). (3.5)

Equations (3.2) and (3.4) imply that for i 6= j

vol (B′
Ci

∩B′
Cj

)≤min

{

θ

α
,
α

θ

}

min{vol (B′
Ci

),vol (B′
Cj

)};

consequently, for the last sum in (3.5) we obtain

∑

1≤i1<i2≤r

vol (B′
Ci1

∩B′
Ci2

)=

r
∑

i=1

r−i
∑

j=1

vol (B′
Ci

∩B′
Ci+j

)≤min{ θ

α
,
α

θ
}r

∑

C∈C(S)

vol (B′
C),

and then it follows from Equations (3.3), (3.4), and (3.5) that

λS =(1+o(1))
∑

C∈C(S)

vol (B′
C)

where the term o(1) is as small as we like. Using (3.4) one can see that Lemma 3.4 is
proved.

The following speculation (which then results in Theorem 3.5) leads to two nu-
merical characteristics of subsets S⊂L

d in terms of which the relations in Lemma 3.4
can be given in a simpler form: since G

(δ)
S (δ∈{0,1}) is a polynomial, its growth is

determined by two numbers µδ(S) and νδ(S):

G
(0)
S (α,θ,q)∼ν0(S)(θ/qα)µ0(S), G

(1)
S (α,θ,q)∼ν1(S)(qα/θ)µ1(S), (3.6)

where q = qS and 1≤ q≤N . It follows from definition of the coefficients aδ, that µδ

and νδ can also be defined without referring to these polynomials: µδ(S)=max{|Sδ| :
(S0,S1)∈C(S)} and νδ(S) is the number of (δ)-maximal colors of S (a color of S is
called (δ)-maximal if |Sδ|=µδ(S)).

The next theorem, which is an immediate consequence of Lemma 3.4 and relations
(3.6), expresses the πS explicitly through the characteristics µδ and νδ of the S and
parameters α and θ (=ωτ). If interpreting the RN as neural networks, one may treat
a given set S on the lattice as some pattern and the avalanches that occur over the
S as the way for its dynamical generation; then Theorem 3.5 allows us to control the
pattern’s appearance probability (by varying the parameters α or θ). As before, in
the following formulations the notation ϕ∼ψ means ϕ=ψ+o(ψ).
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Theorem 3.5. Let R be a rotator network on L
d and S be a set on the lattice L

d.
Under conditions (2.6), the asymptotic frequency πS of τ -avalanches in R with the
support S can be computed by the formulas

πS ∼ν0(S)(qα)|S|(θ/qα)µ0(S) if α/θ→0, (3.7)

πS ∼ν1(S)θ|S|(qα/θ)µ1(S) if θ/α→0; (3.8)

here q = qS and 1≤ q≤N .

Theorem 3.5 somewhat contradicts (due to the presence of the coefficients ν0 and
ν1 in (3.7) and (3.8)) some assumptions in combinatorics ([24]) according to which
the probability associated with a LA depends on its size but not configuration. In
LA-related problems arising in statistical physics (e.g., [8]) and combinatorics (e.g.,
[24]) one usually deals with some collection S of subsets of Z

d which is specified by
some criteria. For example, S can be required to consist of percolation or Laplacian
clusters (cell growth statement in statistical physics, [8]), convex clusters (enumeration
in combinatorics), unions of some clusters, etc. We consider m-chains on L

d (1≤m≤
d): such a chain is defined as a cluster which is isomorphic to an m-dimensional
parallelepiped from Z

d (we say that S and S′ are isomorphic if there exists a one-to-
one map S→S′ preserving the neighborhood relation). The 1-chain is a zigzag line,
and 2-chain is a two-dimensional serpentine-like folded surface on L

d. The chains
are the simplest clusters, but sometimes they can be of most interest in applications
(e.g., see Section 4). Obviously, if S and S′ are isomorphic then µδ(S)=µδ(S

′) and
νδ(S)=νδ(S

′) — for some clusters this circumstance reduces the computation of these
characteristics to computation of ones for a simpler configuration. For example, for
arbitrary 1- and 2-chains S⊂L

d we obtain µδ(S)= [(|S|+1)/2] (since this holds for
linear segments and rectangles).

Let us formulate a consequence of Theorem 3.5 which for some special collections
S gives us an asymptotic expression for distribution πS . We call S isometric if for
arbitrary S,S′∈S the relation |S|= |S′| implies that S and S′ are isomorphic; for
instance, for each m the collection of m-chains is isometric. For every isometric S
there exist two functions ϕδ and ψδ of natural argument (we do not study their explicit
form) such that µδ(S)=ϕδ(|S|), νδ(S)=ψδ(|S|), and the term q = qS in Theorem 3.5
depends only on the power |S|. From (3.7) and (3.8) it follows that:

Theorem 3.6. Let R be a rotator network on L
d and S be an isometric collection

on L
d. Under conditions (2.6) the distribution πS of τ -avalanches in R with supports

from S can be computed by the formulas

πS(k)∼αkψ0(k)(θ/qα)ϕ0(k)NS(k) if α/θ→0, (3.9)

πS(k)∼θkψ1(k)(qα/θ)ϕ1(k)NS(k) if θ/α→0; (3.10)

here q = qk, 1≤ q≤N , and NS(k) is the number of entries of S of size k.

For every cluster S⊂Z
2 its (0)-maximal color can be constructed as follows: there

exist exactly two partitions (Z2
ǫ ,Z

2
1−ǫ) (ǫ=0,1) of Z

2 such that for every vertex from
Z

2
ǫ all its neighbors belong to Z

2
1−ǫ; one of them (or both) induces a (0)-maximal

color of S (we omit the strict proof). For a set S⊂L
d, S =

⋃

κ

i=1Si, and Si are some
pairwise disjoint clusters its every (1)-maximal partition consists of a single red vertex
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in each Si, while all other vertices (if any) in Si are blue (in particular, this yields the
equality in (3.12) and the following relation: ν1(S)=

∏

κ

i=1 |Si|). We estimate µδ and
νδ as follows:

Remark 3.7. For every S⊂L
d the relations

λd,1|S|≤µ0(S)≤λd,2|S|, 1≤ν0(S)≤2|S|, (3.11)

µ1(S)= |S|−κ, |S|/κ≤ν1(S)≤ (|S|/κ)κ , (3.12)

where λd,1 = 1
2d+1 , λd,2 = 2d

2d+1 , and κ is the number of connected components of S,
hold.

Proof. To prove (3.11) we first assume that S is a cluster and let its partition
(S0,S1) be (0)-maximal. Since for every v∈S0 all its neighbors belong to S1, we have
|S0|≤2d|S1|. Since S0 is (0)-maximal, it follows that every v∈S1 possesses at least
one neighbor belonging to S0, and, consequently, |S1|≤2d|S0|. These two imply the
sought inequalities for µ0(S). If S =

⋃

iSi is an arbitrary set (and Si are its pairwise
disjoint connected components) then µ0(S)=

∑

iµ0(Si), and the sought inequalities
follow from the ones for the clusters Si. In (3.11) the upper bound for µ0 is the
exact one: it is assumed, e.g., for clusters consisting of a single vertex with all its
2d neighbors. The inequality for ν0 in (3.11) is obvious, since 2|S| is the number of
arbitrary colorings of the elements of S into red and blue (more precise estimates

are also possible; e.g., since ν0(S)≤
(

|S|
µ0

)

, using Stirling’s formula one can obtain:

ν0(S)≤2c|S| for some 0≤ c<1 and large enough |S|). The second relation in (3.12)
follows from equalities |S1|+ ···+ |Sκ |= |S| and ν1(S)=

∏

κ

i=1 |Si|: the geometrical
mean of the numbers |Si| is less than the arithmetical one, and since |Si|≥1, at least
one term in the above sum is larger than the arithmetical mean. Remark 3.7 is proved.

Let us consider the situation when S consists of arbitrary subsets of L
d, i.e., no

special restriction on its terms is imposed. The next theorem connects the distribution
πS of τ -avalanches with the combinatorial distribution of S. We consider two such
distributions (using the same notation): NS(k) is the number of entries of S of size k
and NS(k,κ) is the number of entries of S of size k having κ connected components.
As before, in the next formulation the θ is defined as θ =ωτ .

Theorem 3.8. Let R be a rotator network on L
d and S be a collection of subsets of

L
d. Under conditions (2.6) the distribution πS of τ -avalanches in R with the supports

from S can be computed by formulas

πS(k)∼ (c1(qα)c2θ1−c2)kNS(k) if α/θ→0, (3.13)

πS(k)∼αk
k

∑

κ=1

(k/κ)ck,κ (θ/qα)κNS(k;κ) if θ/α→0; (3.14)

here q = qk, 1≤ q≤N , the c1 and c2 which may depend on k are such that 1≤ c1≤2,
λd,1≤ c2≤λd,2, and 1≤ ck,κ ≤κ.

Proof. This theorem follows from Theorem 3.5 almost immediately. Indeed,
taking into account Remark 3.7, Equation (3.7) can be rewritten as

πS ∼ (c1(S)(qα)c2(S)θ1−c2(S))k, (3.15)
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where k = |S|, and for every S the coefficients c1(S) and c2(S), depending only on
dimensionality d, are found within the same bounds as in the formulation of the
theorem. For each k the relation in the left hand side of (3.15) is a continuous function
in variables c1 and c2, defined in the rectangle D⊂R

2 determined by inequalities from
the formulation of the theorem. Its average on a finite set of pairs (c1(S),c2(S)) (where
S∈S and |S|=k) from D is found between its minima and maxima in D; since the
average is always assumed at some point of D, (3.15) implies (3.13). To prove (3.14)
we note that it follows from Theorem 3.5 and Equ. (3.12) that for every S having κ

connected components we obtain

πS ∼ (k/κ)c(S)αk(θ/qα)κ ,

where 1≤ c(S)≤κ. Arguing as above, we obtain Equ. (3.14). Theorem 3.8 is proved.

If S consists of clusters, Theorem 3.8 links the computation of the distribution
of τ -avalanches with the problem of combinatorial enumeration of LA. In an abstract
setting the latter problem is to compute the number of LA on a lattice some of
whose parameters (e.g., size, perimeter, etc.) satisfy certain limitations. There are
many results on enumeration, related to computer and computation theory, molecular
biology, and statistical physics (see, e.g., [24] and references therein). In statistical
physics the LA appear in connection with critical behavior in lattice models of such
phenomena as crack propagation, electrical discharge, percolation, etc ([8]). To our
knowledge, the main conjecture in this field ([5, 8, 9] and [23, 24]):

N(k)∼ const. ckk−λ2 (c>1, λ2 >0), (3.16)

where N(k) is the number of non-congruent LA from Z
2 of size k, still remains un-

resolved. As an example, we present some of such results (the notation N(k) now
stands for the total number of corresponding clusters): for oriented 1-chains in Z

d

and 1-chains in Z
2: N(k)=dk and N(k)=(1+

√
2)k−(1−

√
2)k ([17]); for “real” 1-

chains in Z
2 and Z

3: N(k)= ckk1/3 and N(k)= ckk1/6 ([9]); for convex clusters in Z
2

with perimeter 2k: N(2k+8)=(2k+11)4k−4(2k+1)
(

2k
k

)

([5]).
One can deal only with avalanches whose supports are non-congruent; e.g., one can

be interested in the dynamical appearance (i.e., as the supports of some avalanches) of
some configurations (e.g., rectangles, circle-like objects, some images) ignoring their
precise position on the lattice. Such assumption on non-congruency of LA, appearing
in different models of fractal growth, is present (though implicitly) in many works in
statistical physics (e.g., [8]). Particularly, this concerns models of electric discharge
and crack-propagation ([8]), whose mechanism is close to ones using in modelling the
seismicity. This is, the collection S in the theorems above is assumed to be such that
it does not contain two different congruent items. In this situation, assuming that the
linear size L of L

2 is large enough (then one can assume that all the non-congruent
LA from Z

2 of relatively small power are found on L
2), we compare the conjectures

(1.1) and (3.16): for relatively (in respect to L) small k Equation (3.13) in Theorem
3.8 implies that for some values λ, c (in (1.1) and (3.16)) and parameters α and θ
the two conjectures are almost equivalent: if we accept (1.1) (or (3.16)), Theorem 3.8
yields a relation which almost coincides with the other conjecture (3.16) (or (1.1)).
More precisely, the following is true:

Corollary 3.9. In rotator networks (with α/θ=o(1)) on L
2, conjecture (1.1) is

equivalent to conjecture (3.16) where the coefficient c is allowed to have some (arbi-
trarily slow) growth to +∞ (and then it follows that λ1 =λ2).
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4. Conclusions

The results presented assert that in rotator networks. NS , which is defined as
the combinatorial distribution of a given collection S, strongly correlates with the
dynamical distribution πS of τ -avalanches whose supports belong to S. Thus, if
S consists of clusters (connected sets), then according to our theorems NS should
be recognized as the network’s basic connectivity-related characteristic affecting its
dynamics (avalanche distribution). The theorems presented contain some answer to
the following question: if one can register the avalanches in the network, then what
conclusion can be drawn about the network’s architecture? And conversely, knowing
the network’s structural data, what can be said about the avalanches in the network?

The features of the networks reflected by NS and πS are in a certain sense oppo-
site: we illustrate this on the following example. Let the network consists of neurons
x∈X, and let Ux(t) be the membrane voltage of neuron x at moment t. For integrate-
and-fire neurons the Ux can be (roughly) treated as a rotator: Ux(t) increases, when
reaching the threshold it drops to a level close to initial one, and a firing of the neuron
occurs.

It is claimed in neuroscience that in terms of coherent firings (avalanches) of
neurons the basic information-coding mechanism could be expressed. Therefore, while
NS seems to be of a technological character (wiring), the πS should rather be classified
according to system’s information-processing capabilities. Some discussions on this
matter can be found in [11, 12, 13] (avalanches in neural nets) and in [3] (connectivity
in the brain; e.g., it is known that the cerebellum consists of 1-, 2-, and 3-chains).
The question of how these two opposite entities relate to each other and in what
terms their correlation should be expressed is of the prior interest in brain research.
In this work we introduced weakly coupled pulse working systems, the networks of
phase-shifting rotators, which are close to neural nets and which permit some answer
to this question.

Appendix A. Generalized rotator networks. In this section we generalize
the rotator networks in such a way that the rotators may possess arbitrary values of
thresholds but theorems from previous Section 3 remain valid. Moreover, since in the
proofs in Section 3 the Euclidean structure (e.g., metric, linear independence) of the
lattices L

d has not been taken into account, in this section we consider the rotator
networks assigned on graphs, where the connectivity (neighborhood relation) is the
only structure.

Let X be a finite set and σ :X →2X (x 6∈σ(x)) be a map prescribing to every
x∈X a subset σ(x)⊂X (the pair (X,σ) is an oriented graph). The map σ assigns
a neighborhood on X: entries of σ(x) are understood as neighbors for x. Assuming
reflexivity of σ, i.e., x∈σ(y) whenever y∈σ(x), the clusters (as well as m-chains and
isometric collections) can be defined; particularly, every S⊂X can be represented
in the form of a union of pairwise disjoint clusters. Let X be arbitrarily numbered,
X ={x1,x2,... ,xN} and with the i-th node xi a (generalized) rotator Ri be prescribed.
A (generalized) rotator consists of a particle P rotating with a constant angular rate
ω on a circle C with radius r>0 (and a threshold mark ρ∈C) which at some moments
tn separated by a positive constant receives some δ-kicks of small constant intensity.
That is, the H from Definition 2.1 gains the form

H(t)=ωrt+αr
∑

n∈N

knh(t− tn), (A.1)

where α is the intensity of δ-kicks, and tn satisfies the same separation condition as
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in Definition 2.1. Descriptively, Equ. (A.1) means that at each moment t (= t
(i)
n )

when the particle Pi in Ri hits the threshold ρi, it sends a δ-kick to each Pj whose
index j is in σ(i); this kick results in instantaneous rotation of Pj on the angle α.
In the “linear” case, when particles perform motion on some segments Ii of length
ri (for simplicity one may assume that Ii =[0,ri] and ρi =0), upon receiving a δ-kick
the Pj instantaneously shifts by the distance αrj : If Hj +αrj <rj the Pj lifts from
its current position Hj to Hj +αrj ; and if Hj +αrj ≥ rj , the Pj drops from Hj to
the level Hj +αrj −rj . This is, interaction in the system is essentially the same as
before: we accept the micro-dynamics as in (2.3) (or (2.2) but replacing mod (1)
by mod (ri)). The generalized RN is defined as a network R={R1,... ,RN} of such
generalized rotators Ri for which the corresponding functions Hi are of the form (A.1);
it is also assumed that the linking condition Equ. (2.4) holds.

Let us explain how the linear transform L(z)=az+b determines (in accordance
with definitions in Section 2.1) the PSRs assigned on circles of arbitrary radius. Let
(as in Section 2.1) C ⊂C (the complex plane) be a circle with center z =0 and length
1 and P be a particle rotating on C with angular rate ω, receiving δ-kicks of intensity
α at some moments tn. Let C ′ be a concentric circle with radius r= |a|/2π and P ′

be the intersection of C ′ with the ray emerging from z =0 and passing through P .
Then P ′ rotates on C ′ with the same angular rate ω and receives δ-kicks of intensity
α at the same moments tn. Thus a PSR assigned on C determines some PSR on C ′.
Shifting C ′ on vector b we obtain a rotator assigned on the circle with center b and
radius |a|/2π.

The assumption that the absolute value (= ri) of the threshold may vary with the
site influences the form of some previous limitations and let us clarify this point. The
interaction in the system is assigned as in (2.3) (or (2.2) but replacing mod (1) by
mod (ri)). The state space of the network is now either the parallelepiped P=[0,r1]×
···× [0,rN ] or torus T=C1×···×CN . Given a vector-function f(t)=(f1(t),... ,fN (t))
we let

f̃ =(r−1
1 f1,... ,r

−1
N fN ), f̂ =(r1{r−1

1 f1},... ,rN{r−1
N fN})

and for ∆⊂P define e(f ,∆,T )={0<t<T : f̂(t)∈∆}; we say that f is c.u.d. in P if
for an arbitrary union of parallelepipeds ∆⊂P

lim
T→∞

mes (e(f ,∆,t))

T
=

vol (∆)

vol (P)
.

Instead of the Z-independence of ω1,... ,ωN we now require the Z-independence of
the numbers ω1r1,... ,ωNrN . To prove the next remark it suffices to take into account
Remark 2.7 and apply the cited Weyl’s theorem to the vector-function Af̃ , where A
is the linear map A :P→D

N defined by the diagonal matrix [ai,j ]
N
i,j=1 with ai,i = ri:

Remark A.1. (1) A vector-function f is c.u.d. in the parallelepiped P iff f̃ is c.u.d.
in D

N ; (2) If ω1r1,... ,ωNrN are Z-independent, then f(t) is c.u.d. in P.

The τ -avalanches in such generalized networks, their frequencies and distributions,
as well as the other notions (such as C(S), µδ, νδ, clusters, connected components,
etc.) appeared in the previous formulations of theorems and proofs and are defined in
the same way as before. The next theorems are valid under the following limitations:

α+β+θ→0, and ω1r1,... ,ωNrN are Z-independent, (A.2)
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where α, β and θ are the same as in Equ. (2.5) (since the angular rates of P and P ′ in
the above-mentioned concentric rotators are the same); their proof remains the same
as for the corresponding theorems in Section 3. That is, the following three theorems,
where the same two situations — α/θ=o(1) and θ/α=o(1) — are considered, are
true:

Theorem A.2. Let R be a rotator network on X and S be a subset of X. Under
conditions (A.2) the asymptotic frequency πS of τ -avalanches in R with the support
S can be computed by Equations (3.7) and (3.8).

Theorem A.3. Let R be a rotator network on X and S be an isometric collection
on X. Under conditions (A.2) the distribution πS of τ -avalanches in R with supports
from S can be computed by Equations (3.9) and (3.10).

Theorem A.4. Let R be a rotator network on X and S be collection of arbitrary
subsets of X. Under conditions (A.2) the distribution πS of τ -avalanches in R with
supports from S can be computed by Equations (3.13) and (3.14).
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