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A VARIATIONAL FORMULATION FOR A LEVEL SET

REPRESENTATION OF MULTIPHASE FLOW AND AREA

PRESERVING CURVATURE FLOW∗

SELIM ESEDOḠLU† AND PETER SMEREKA‡

Abstract. Variational descriptions for various multiphase level set formulations involving cur-
vature flow are discussed. A representation of n phases using n−1 level set functions is introduced
having the advantage that constraints preventing overlaps or vacuum are not needed. The repre-
sentation is then used in conjunction with our variational formulation to deduce a novel level set
based algorithm for multiphase flow. In addition, a similar variational formulation is applied to area
preserving curvature flow. In this flow, the area (or volume in 3D) enclosed by each level set is
preserved. Each algorithm has been implemented numerically and the results of such computations
are shown.

Key words. level set, multiphase flow, variational

AMS subject classifications. 65K10

1. Introduction

This paper is primarily concerned with the problem of of n different materials,
or phases, in which the i-th phase has a bulk energy density of ei (per unit area in
two dimensions or per unit volume in three dimensions). In addition, the interface
between phase i and j, denoted Γij has a surface energy density (surface tension) of
fij (per unit length in two dimensions or area in three dimensions). We let nij denote
the normal vector directed inward into phase i from phase j. Then, for the model we
consider, the normal speed of the interface to be given by

vn(Γij)=fijκij +ei−ej (1.1)

where κij is the curvature of Γij ; one has κij =−∇s ·nij where ∇s is the surface
gradient. We remark that for this formulation, if phase i is say a circle of radius R
surrounded by phase j then κij =1/R. The total energy of this system is given by

E =
∑

i<j

(length of Γij)fij +
∑

i

(area of phase i)ei. (1.2)

As pointed out in [15, 23, 24], gradient descent of (1.2) gives rise to (1.1). In
addition, the condition that Ė≤0 requires the following condition to be true at a
triple point:

sinθ1

f23
=

sinθ2

f13
=

sinθ3

f12
,

where θi is the angle between the interfaces Γij and Γik. In particular, if all the
surface energy densities are equal, then the interfaces must intersect at 120◦. See [23]
for a derivation of this condition.

The above system has been previously studied. Reitich & Soner examine the
system in the limit of vanishing surface tension and argue that in this limit, the
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126 VARIATIONAL MULTIPHASE FLOW

system evolving by (1.1) gives rise to a unique solution. Their results are based on
the concept of a weak viscosity solution. Merriman, Bence, & Osher [10] extended
the diffusion generated motion by mean curvature formulation to the case of multiple
phases. In related work, Taylor [20] has provided a least time formulation in which
existence and uniqueness of solutions has been established in the case in which the
interfacial velocity is prescribed.

Zhao et al. [23, 24] introduced a level set description for this system. In their
approach, each phase is represented as the zero level set of a function. Therefore,
for n different phases, n different level set functions are needed. The problem with
such a representation is that vacuum regions (which belong to none of the phases) or
overlaps between different phases may occur. To remove this possibility the authors
amend the variational principle with a constraint. There are several difficulties with
their constraint based approach. The first is that when deriving the Euler-Lagrange
equation, Dirac delta functions δ(φ) of the level set function φ appear. The authors
replace the δ(φ)s using |∇φ| — a process they call rescaling. The second difficulty
is that the no overlapping/no vacuum constraint influences the dynamics. In other
words, the gradient descent of (1.2) with the no overlapping/no vacuum constraint will
not necessarily give rise to (1.1). Another difficulty is that constraints incorporated
into the variational formulation may introduce additional stiffness to the problem.

Another formulation was introduced by Smith et al. [19] in which they replaced
the constraint with a projection step. However, it is not clear whether or not the
projection step will affect the dynamics. In addition, there has been a variety of
representations used in image processing applications which will be discussed in more
detail in §3.

In this paper we remove the difficulties associated with constrained formulations.
This is achieved by first reformulating the variational principle using a different inner
product and including all the level sets in the energy functional. This variational
formulation is known; see for example [5, 6, 8]. We, however, present it in a different
way which helps motivate subsequent discussions. Next, we introduce a new represen-
tation for the n-phase problem using (n−1) level set functions. The main advantage
of this formulation is that no overlaps/no vacuum constraints are not needed.

We then combine our variational formulation and our new level set representation
to deduce a formulation of the multiphase flow problem that is a gradient flow with
respect to a particular inner product. The resulting level set equations are easily solved
numerically using standard methods — a number of examples are presented. Another
interesting level set evolution, in which each level curve moves by area preserving
curvature flow, is also considered. We show that such a flow is a gradient flow with
an infinite number of constraints. Then, as an application, we show that this flow can
be used for the super-resolution of digital images.

2. Mean curvature flow

2.1. Lagrangian formulation. To begin, let us consider a closed curve, Γ,
in the plane parameterized by α. Thus we write

Γ={x(α,t)| 0≤α≤1}.

Let n be the inward-directed unit normal. The curvature of Γ will be denoted κ. κ
and n are related by κ=−∇s ·n, where ∇s is the surface divergence. Note that with
this definition κ=1/R when Γ is a circle of radius R. We say that Γ is moving by
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curvature flow if

dx

dt
=κn.

Curves moving by curvature flow have a variational principle. To state this we
first observe that the arc length of Γ is

L=

∫ 1

0

√

x2
α +y2

α dα.

Then, we have the following well known theorem about curvature flow.

Theorem 2.1. Gradient descent of arc length with respect to the following inner
product

〈f,g〉c =

∫ 1

0

fg
√

x2
α +y2

α dα (2.1)

gives rise to motion by curvature.

The proof is relatively straightforward and will not be given here.

2.2. Level set formulation. In the level set method, the interface Γ is
represented implicitly as the zero level set of a Lipschitz function which we will denote
by φ; i.e., we have

Γ={x :φ(x,t)=0}.

If the normal speed of the interface is vn, then the time evolution of φ is given by

∂φ

∂t
+vn|∇φ|=0. (2.2)

Let us now consider the case when the normal velocity is κ, where κ is the mean
curvature. We may easily write the mean curvature in terms of φ as

κ=−∇·

(

∇φ

|∇φ|

)

. (2.3)

Therefore, the level set equation for motion by mean curvature is

∂φ

∂t
−∇·

(

∇φ

|∇φ|

)

|∇φ|=0. (2.4)

It is natural to ask, especially in view of the previous discussion, whether or not (2.4)
can be viewed as gradient descent. One formulation in this direction is due to Zhao
et al. [23, 24], where they write the arc length of Γ as

L0(φ)=

∫

δ(φ)|∇φ|dx. (2.5)

They then consider the Fréchet derivative of L0 with respect to the L2 inner product
to obtain

δL0

δφ
=−δ(φ)∇·

(

∇φ

|∇φ|

)

. (2.6)
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This is quite close to what we want. In fact, if one replaces δ(φ) by |∇φ|, as is done by
Zhao et al. [23, 24], then one would have a gradient descent formulation for curvature
flow using a level set representation.

To achieve our objective we must make two observations. The first is that the
evolution equation for φ given by (2.4) involves all the level curves, whereas the
expression for arc length given by (2.5) singles out the zero level set. To incorporate
all the arc length level sets in a single functional we first express the arc length of the
β-th level set as

Lβ(φ)=

∫

δ(φ−β)|∇φ|dx. (2.7)

A measure of the total length of all the level curves is then

L(φ)=

∫

Lβ(φ)dβ =

∫

|∇φ|dx. (2.8)

Equation (2.8) is the familiar coarea formula for the total variation of functions.
Taking the Fréchet derivative of (2.8) with respect to the L2 inner product, we get

δL

δφ
=−∇·

(

∇φ

|∇φ|

)

. (2.9)

The reason that we do not obtain curvature flow constitutes our second observation:
When one takes variations with respect to φ this includes variations that do not move
the level sets, namely those that change only ∇φ. To circumvent this problem we
note that, for ǫ sufficiently small, φ+εu|∇φ| will perturb the locations of the level set
by an amount given by εu. In other words, if Γβ ={x :φ=β}, then the level curves
of {x :φ+εu|∇φ|=β} will be, approximately, a distance of εu from Γβ . It is natural
then to consider the following computation:

lim
ε→0

d

dε
L(φ+εu|∇φ|)=−

∫

Ω

∇·

(

∇φ

|∇φ|

)

|∇φ|udx.

Therefore, if we use the above expression to define the Fréchet derivative, then we
find that motion by mean curvature is gradient descent of (2.8). An equivalent inter-
pretation of the computation given above is the following:

Theorem 2.2. Level set motion of curvature flow is gradient decent of the total
variation of φ with respect to the inner product, denoted the level set inner product,

〈u,v〉=

∫

Ω

uv

|∇φ|
dx.

This result is known [5, 6, 8]. The purpose of the preceding discussion is to
establish a connection between the variational approach of Zhao et al. [23, 24] and
that found in [5, 6, 8].

3. Multi-phase motion with interfacial and bulk energies

In this section, we focus on the problem of n phases that partition a domain Ω.
We will denote the region occupied by the i-th phase Σi. Vol(Σi) and Per(Σi) will
denote its volume and perimeter (surface area); in the plane, these would be the area
of Σi and the length of the curve ∂Σi, respectively. Any given point in Ω belongs to
one and only one of the phases; more precisely, we have the following requirements:

n
⋃

i=1

Σi =Ω and Vol(Σi∩Σj)=0 whenever i 6= j. (3.1)
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The constant ei ≥0 will denote the “bulk energy density” of the i-th phase, and the
constant σi ≥0 its “surface energy density”. The total energy of the configuration
Σ1,... ,Σn is given by

E =

n
∑

i=1

σiPer(Σi)+eiVol(Σi). (3.2)

We remark that systems described by (1.2) are more general than the ones we are
now considering; in particular, not all choices of surface tensions fi,j can be described
by a choice of the σi. A very important point is that the energy (3.2) is lower semi-
continuous with respect to its variables Σi. It is not clear whether or not the remaining
systems are amenable to our formulation.

We shall let ni denote the unit inward-directed normal to the boundary ∂Σi of
the i-th phase. If we consider gradient descent of (3.2), then the normal velocity of
the boundary ∂Σi of phase i, which is adjacent to another phase, say phase j, is

vij =ei−ej +(σi +σj)κij (3.3)

where κij is the curvature of the interface ∂Σi∩∂Σj . Notice that as we mentioned
above, this is more restrictive than (1.1) since fij must take the form σi +σj .

Our goal is to develop a variational formulation for this problem in terms of level
set functions describing the phases. The first work in this direction is due to Zhao et
al. [23, 24]. In their approach, a level set function φi is introduced for each phase, so
that the points belonging to that phase are given by the set

Σi ={x :φi(x)>0}.

In order to ensure that these sets form a partition of the domain Ω, it is then necessary
to impose explicitly the conditions that these sets be disjoint, and that they cover up
Ω completely (i.e., conditions (3.1)). In terms of the level set functions φi, these
requirements can be viewed as the following pointwise constraint:

∑

i

H(φi(x))=1. (3.4)

For technical reasons, they replaced the above constraint with

∫

Ω

(

∑

i

H(φi(x))−1

)2

dx=ε≪1.

The authors then use standard level set methods to cast (3.2) in terms of level set
functions. The constraint is handled by introducing a Lagrange multiplier λ. Zhao
et al. [23, 24] then consider gradient descent with respect to the L2 inner product.
After replacing the resulting Dirac delta functions by |∇φi|s, the authors show that
the normal speed of the interface of the i-th phase is

vi =ei +σiκi−λ∆A, (3.5)

where

∆A= total amount of overlap among all regions

− amount of vacuum between all regions
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and λ is the Lagrange multiplier (see (2.16) in [24], but note that (2.16) has a sign
mistake). It is not clear that (3.5) will ever agree with (3.3). In the case n=2
with σ1 =σ2 =0, one can apply an argument similar to that found in [25] to show
λ∆A≈ 1

2 (e1 +e2), which combined with (3.5) shows that v1 =−v2 = 1

2 (e1−e2), which
is half the expected amount. It should be emphasized that this argument is based on
uncontrolled approximations which would be difficult to make rigorous. Nevertheless,
this seems to agree quite closely with the numerical results presented in Figure 5 of
[24].

Thus it would appear that the introduction of the no overlapping/no vacuum
constraint will affect the dynamics. In general it is not easy to determine in what way
the dynamics will deviate from (3.3). Moreover, the presence of the constraint might
contribute to the stiffness of the problem. Therefore it seems it would be useful to
have a level set description that has no constraints for this problem. This is done in
the next section.

3.1. Unconstrained formulation. In this section, we propose an alter-
native level set based formulation that does not require explicit constraints for the
multiphase flow problem: instead, the constraints will be satisfied automatically by
our construction. The idea is similar to, but different from, the multiphase level
set representation used in [22] for the numerical treatment of the piecewise constant
Mumford-Shah image segmentation model. Our formulation is closest to the level set
based approach [26] to another vision problem, namely the 2.1D sketch model [11, 12]
of Nitzberg, Mumford, and Shiota. In this model, a scene consisting of planar objects
which may be occluding each other is to be represented. The objects are assumed to
be ordered according to their distances from the observer, so that those closer to the
observer can occlude those further away. In [26], this is accomplished by describing
the space occupied by each such planar object by a level set function. Since the model
allows occlusions, these sets are not required to be disjoint. However, one defines the
visible part of any object in the scene, which is the part of the object that is not
occluded by those in front of it. The visible parts of objects are pairwise disjoint, and
constitute a partitioning of the domain.

Our approach is to use this representation of a partitioning of the domain by sets
that are allowed to overlap. The essential difference of this representation from the one
in [22] is the following: In order for the representation in [22] to describe, for example,
three regions, one of the phases needs to become empty, leading to the degenerate
situation where boundaries of two separate phases completely overlap. This prevents
the technique from faithfully simulating, for instance, the motion by curvature of
a triple junction. As is pointed out in [13], for example the 120◦ condition can be
violated by this technique (which is not a drawback and is in fact a possible advantage
for the original purpose of this method — image segmentation). It is pointed out in
[13] that if one wants to faithfully simulate motion of, say, a triple junction under
motion by curvature, one can resort to the Lagrange multiplier based approach in
[24] rather than the unconstrained method of [22]. We will show below that one can
faithfully simulate these motions with an unconstrained formulation.

Although our representation is closely related to that of [7, 26], there is a signif-
icant difference. In the model dealt with by these previous works, the motion of the
interfaces is derived from an interfacial energy that involves the entire boundaries of
the regions (whereas the bulk energy terms involve the visible parts of the phases). In
the more standard multi-phase problems we are dealing with in this work, overlapping
parts of phases do not make any sense, and the interfacial energies involve only the
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visible parts of the boundaries (and also the bulk energy terms involve only the visible
parts of the regions).

ΣΣ
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Fig. 3.1. The setup for three phases using our approach. The region with the jagged lines is
Σ1, the gray region is Σ2, and the white region is Σ3. The solid line marks φ1 =0, and φ1 >0 in the
region surrounded by the solid line. The dotted line shows where φ2 =0. In the region surrounded
by the dotted line, φ2 >0.

We shall now describe the level set representation for the unconstrained formu-
lation in which (n−1) level set functions are utilized to describe partitions of the
domain into n different phases. Recall that we use Σi to denote the region occupied
by phase i. We begin with the simplest case, n=2. Here, we have

Σ1 ={x :φ1 >0}

and

Σ2 ={x :φ1 <0}.

The first non-trivial case is n=3 (see Figure 1). In this case, we have

Σ1 ={x :φ1 >0},

Σ2 ={x :φ1 <0}∩{x :φ2 >0}={x :min(−φ1,φ2)>0},

Σ3 ={x :φ1 <0}∩{x :φ2 <0}={x :min(−φ1,−φ2)>0}.

It is easy to check that these sets do not overlap.
For the general case, we first introduce the following notation

M1(ξ1,... ,ξn−1)= ξ1,

Mi(ξ1,... ,ξn−1)=min

{

ξi, min
j=1,...,i−1

−ξj

}

for i=2,... ,n−1,

Mn(ξ1,... ,ξn−1)=min{−ξ1,... ,−ξn−1},
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and then the definition

ψi(x)=Mi (φ1(x),... ,φn−1(x)) for i=1,...,n.

Our representation for an n-phase partition is

Σi ={x : ψi >0} for i=1,...,n.

These automatically satisfy the nonoverlap constraint, namely,
1. Σi∩Σj =∅ whenever i 6= j, and
2. ∪iΣi =Ω.

Finally we remark that if we consider the sets

Σ′
i ={x : φi(x)>0} for i=1,...,n−1,

one can then view the sets Σi as the “visible” parts of Σ′
i (i.e. parts of Σ′

i unoccluded
by other sets). The relation between Σi and Σ′

i is given by

Σi :=Σ′
i \

i−1
⋃

j=1

Σ′
j

with the understanding that Σ1 =Σ′
1.

3.2. Variational level set formulation. In this section we describe the
variational formulation according to the representation of multiple phases described
in the previous section. To clarify the basic idea, we first consider the case n=2.
Here, Σ1 ={x :φ1 >0} and Σ2 ={x :φ1 <0}. Therefore the total energy of the system
is

E0 =

∫

Ω

[σδ(φ1)|∇φ1|+e1H(φ1)+e2(1−H(φ1))]dx,

where σ =σ1 +σ2. However, gradient descent of this energy will give rise to delta
functions. To remove this difficulty, we apply a similar strategy as in Section 2.2: the
energy is modified so that all the other level curves behave in a similar way. To that
end, we consider the following energy associated to the β-th level curve

Eβ =

∫

[σδ(φ1−β)|∇φ1|+e1H(φ1−β)+e2(1−H(φ1−β))]dx.

Now we include energy of all the level curves:

E =

∫

Eβdβ

=

∫

Ω

|∇φ1|dx+

∫

β

∫

Ω

[e1H(φ1−β)+e2(1−H(φ1−β))]dxdβ.

The Fréchet derivative of E with respect to the level set inner product gives

δE

δφ1
=

[

−σ∇·

(

∇φ1

|∇φ1|

)

+e1−e2

]

|∇φ1|.

Therefore, gradient descent with respect to the level set inner product yields the
following evolution:

∂φ1

∂t
+

[

e1−e2−σ∇·

(

∇φ1

|∇φ1|

)]

|∇φ1|=0.
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We recall that κ12 =−∇·n12 where n12 is the unit normal into phase 1 from phase 2.
In this case n12 =∇φ1/|∇φ1|, so it follows that the normal speed of phase 1 is then

v1 =e1−e2 +(σ1 +σ2)κ12

as expected.

3.3. General case. We now present the derivation of our level set method
for multiphase motion in the general case. The total energy associated to the zero
level set is now given by

E0(φ1,... ,φn−1)=

n
∑

i=1

∫

Ω

(σiδ(ψi)|∇ψi|+eiH(ψi))dx.

As before we consider the total energy associated to the β-th level set, which is

Eβ(φ1,... ,φn−1)=

n
∑

i=1

∫

Ω

(σiδ(ψi−β)|∇ψi|+eiH(ψi−β))dx,

and the total energy of the all the level sets is then

E(φ1,... ,φn−1)=

∫

Eβ(φ1,... ,φn−1)dβ

=

n
∑

i=1

∫

Ω

(

σi|∇ψi|+ei

∫

β

H(ψi−β)dβ

)

dx.

The level set inner product for multiple level sets is a straightforward extension
of the scalar case. If we let u and v be n−1 dimensional vector-valued functions of
x then the level set inner product for n phases is

〈u,v〉=

∫

Ω

u
T diag(|∇φ1|

−1,...,|∇φn−1|
−1)vdx.

Gradient flow for E with respect to the level set inner product turns out to be

∂tφi = |∇φi|
n

∑

j=i

∂ψj

∂φi

[

σj∇·

(

∇ψj

|∇ψj |

)

−ej

]

,

where we have made use of the fact that

∂ψj

∂φi

=0 for i>j.

In addition, there are explicit expressions for the other terms. For j =1 we have

∂ψ1

∂φi

= δ1i

where δij is the Kronecker delta function. For j =2 to n−1 we have

∂ψj

∂φi

=























−H(φi +φj)

j−1
∏

k=1,k 6=i

H(φi−φk) for i<j

j−1
∏

k=1

H(−φj −φk) for i= j ,
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and for j =n we have

∂ψn

∂φi

=−
n−1
∏

k=1,k 6=i

H(φi−φk).

3.3.1. Explicit example for n=3. We can either use the above formulas
or note that ψ1 =φ1, ψ2 =min(φ2,−φ1), and ψ3 =min(−φ1,−φ2). In either case one
finds

∂ψ1

∂φi

=

{

1 for i=1
0 for i=2,

∂ψ2

∂φi

=

{

−H( φ1 +φ2) for i=1
H(−φ1−φ2) for i=2,

and

∂ψ3

∂φi

=

{

−H( φ1−φ2) for i=1
−H(−φ1 +φ2) for i=2.

The gradient descent equations for the level set functions φ1,φ2 are

∂tφ1 = |∇φ1|

([

−e1 +σ1∇·

(

∇φ1

|∇φ1|

)]

−H(φ1 +φ2)

[

−e2 +σ2∇·

(

∇min(φ2,−φ1)

|∇min(φ2,−φ1)|

)]

−H(φ1−φ2)

[

−e3 +σ3∇·

(

∇min(−φ1,−φ2)

|∇min(−φ1,−φ2)|

)])

and

∂φ2 = |∇φ2|

(

−H(−φ1−φ2)

[

−e2 +σ2∇·

(

∇min(φ2,−φ1)

|∇min(φ2,−φ1)|

)]

−H(−φ1 +φ2)

[

−e3 +σ3∇·

(

∇min(−φ2,−φ1)

|∇min(−φ2,−φ1)|

)])

.

Note that when φ1≈0 and φ2 <0, one is in the vicinity of the interface between
Σ1 and Σ3 (i.e. Γ13). In this case, H(φ1 +φ2)=0 and H(φ1−φ2)=1. In addition,
min(−φ1,−φ2)=−φ1. Therefore, in the region close to Γ13, the evolution equation
for φ1 is

∂tφ1 + |∇φ1|

(

e1−e3−(σ1 +σ3)∇·

(

∇φ1

|∇φ1|

))

=0.

As a consequence one finds that

v13 =e1−e3 +(σ1 +σ3)κ13

as expected. A similar calculation will show the other normal speeds are in agreement
with (3.3).
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Remark 3.1. A possible alternative to the representation proposed and utilized in this
paper can be based on the idea in [3]. There, n possibly overlapping subsets Σ′

1,... ,Σ
′
n

of the domain Ω are used to partition Ω into 2n disjoint components given by:

Σv =





⋂

j :v(j)=1

Σ′
j



∩





⋂

j :v(j)=0

(Σ′
j)

c



 ,

where v is a mapping v :{1,2,... ,n}→{0,1}. With this representation, energy (3.2)
can be written:

E =
∑

{

v:{1,...,n}→{0,1}
}

σvPer(Σv)+evVol(Σv).

Note that this is not what is done in [3]; rather the authors of [3] replace the surface
energy terms by perimeters of the sets Σ′

j instead, which does not yield energy (3.2);
nevertheless, as mentioned earlier, this can be advantageous for image processing ap-
plications.

This alternative approach has been implemented using a level set formulation.
Preliminary results seem to suggest that the resulting flow does not work, possibly be-
cause it is significantly more stiff than the formulation given in Section 3.1. However,
given the potential benefits of this representation, it seems worth further exploration.

3.4. Almgren-Taylor-Wang approximating flows. In this section, we
show how the technique described in sections 3.1 and 3.2 can be used to solve via
level sets a variational formulation of multi-phase motion that is motivated by an
idea of Almgren, Taylor, and Wang. In [1], these authors introduced an algorithm for
approximating at discrete times the motion by mean curvature of an interface. Their
algorithm consists in solving a variational problem at every time step. Generalization
of their method to the motion of multiple phases is discussed in [20, 21, 4]. The
formulation in [21], although probably more principled and accurate than others as
explained in that paper, seems to be computationally very difficult. Here we, therefore,
consider a simplified formulation that seems equivalent to the one in [4]. For the sake
of clarity, we will illustrate it in the case of three-phase motion; its generalization to
more than three phases will be quite clear.

The main idea is to solve the following variational problem in order to advance the
solution (Σn

1 ,Σn
2 ,Σn

3 ) at the n-th time step t=nδt to the solution (Σn+1
1 ,Σn+1

2 ,Σn+1
3 )

at the next time step:

min
Σ1,Σ2,Σ3,

Σi∩Σj=∅∀i6=j,
S

j
Σj=Ω

3
∑

j=1

{

σj Per(Σj)+ej Vol(Σj)+
1

δt

∫

Σj△Σn
j

|dΣn
j
(x)|dx

}

, (3.6)

where dΣn
j
(x) is the signed distance function to Σn

j , and △ denotes the symmetric

difference operator for two sets. The minimizing triplet of sets, (Σ1,Σ2,Σ3), become
the solution at the (n+1)-th time step. Note that the only coupling between the
unknown sets Σj of the variational problem takes place through the constraint.

First, note that for two sets A and B, we have the following:
∫

A△B

|dB |dx=

∫

B

dB dx−

∫

A

dB dx, (3.7)
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Since the first term on the right hand side is constant with respect to variations of A,
we have the equivalence of the following variational problems:

min
A

∫

A△B

|dB |dx ⇐⇒ min
A

−

∫

A

dB dx. (3.8)

Consequently, we can write problem (3.6) as follows:

min
Σ1,Σ2,Σ3

Σi∩Σj=∅∀i6=j
S

j
Σj=Ω

3
∑

j=1

{

σj Per(Σj)+ej Vol(Σj)−
1

δt

∫

Σj

dΣn
j
(x)dx

}

. (3.9)

We can apply our constraint-free level set based approach of previous sections to the
solution of (3.9).

3.4.1. Level set based computation of approximating flow. We use the
same level-set representation of three phases as before (Section 3.1):

Σ1 ={x :φ1 >0},

Σ2 ={x :min(−φ1,φ2)>0},

Σ3 ={x :min(−φ1,−φ2)>0}.

The expression for the energy given by (3.9) can be expressed in terms of φ1 and φ2

in pretty much the same way as in Section 3.3; the only difference is the additional
bulk energy terms in (3.9) that are responsible for limiting movement during a time
step. These contribute the following terms to the total energy of all the level sets:

1

δt

∫ ∫

Ω

3
∑

i=1

H(ψi−β)dΣn
i
(x)dxdβ. (3.10)

where ψi is given by the expressions at the top of Section 3.3.1. The resulting gradient
descent equations for (3.9), given below, differ from the ones in Section 3.3 in merely
the additional bulk energy terms coming from (3.10):

∂tφ1 = |∇φ1|

([

1

δt
dΣn

1
(x)−e1 +σ1∇·

(

∇φ1

|∇φ1|

)]

−H(φ1 +φ2)

[

1

δt
dΣn

2
(x)−e2 +σ2∇·

(

∇min(φ2,−φ1)

|∇min(φ2,−φ1)|

)]

−H(φ1−φ2)

[

1

δt
dΣn

3
(x)−e3 +σ3∇·

(

∇min(−φ1,−φ2)

|∇min(−φ1,−φ2)|

)])

and

∂tφ2 = |∇φ2|

(

−H(−φ1−φ2)

[

1

δt
dΣn

2
(x)−e2 +σ2∇·

(

∇min(φ2,−φ1)

|∇min(φ2,−φ1)|

)]

−H(−φ1 +φ2)

[

1

δt
dΣn

3
(x)−e3 +σ3∇·

(

∇min(−φ2,−φ1)

|∇min(−φ2,−φ1)|

)])

.

We can think of our level sets based Almgren-Taylor-Wang formulation as pro-
viding a relaxation of our approach from the previous sections. Indeed, we have now
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introduced in essence a new time variable into our algorithm that is completely in-
dependent from the real time represented by the step size δt that appears in the
variational problem (3.6). During the solution of the variational problem of each ac-
tual time step, the interfaces thus get plenty of opportunity to adjust themselves, for
example in order to attain the angle conditions (Young’s law) implied by the energy.
Some of our most accurate results were obtained using this approach. Indeed, we
observed that the angle conditions are more accurately satisfied with this approach.

3.5. Numerical results. In this section, we present some numerical results
for our unconstrained level set formulations of multiphase flow. We start with the
formulations given in Section 3.3. Figure 3.2 presents the situation in which two
phases have the same bulk energy density of 5 and the other is 10. All the surface
energy densities are unity. As expected the lower energy phases propagate into the
high energy phase and the angles of the triple point are all approximately 120◦. Figure
3.3 shows computations when all the bulk energies are zero and the surface energy
densities are unity. In this case the motion results in curvature flow with all angles
at the triple junction being 120◦. The motion for four phases moving by curvature
flow is shown in Figure 3.4. The initial condition consists of all four phases meeting
at one point. This is stationary but unstable; under a small perturbation, it splits to
form two triple junctions that subsequently pull apart. During these computations,
the level set functions were reinitialized using the algorithm in [16] roughly between
every 200 and 500 iterations of the flow, which was implemented with an explicit
time discretization — the results were relatively insensitive to the exact frequency of
reinitialization.

We also present several computations using the Almgren-Taylor-Wang approxi-
mating flow approach of Section 3.4, which turned out to provide some of the most
accurate results we obtained. Redistancing was applied to the level set functions every
now and then during these computations as well. The first computational example,
shown in Figure 3.5, is the evolution of a triple junction under motion by mean cur-
vature, with σj =1 and ej =0 for j =1,2,3. The initial condition is the T-shaped
data shown in the left plot. Solutions starting from this data tend toward an exact
solution that consists of a constant profile that translates upwards [9]. The result of
the computation at some later time is shown, and seems to be very close to the exact
constant profile, with the correct angles (all 120◦) at the junction. The plot on the
right shows that there is indeed excellent agreement between the computed and the
exact profiles.

Figure 3.6 shows the evolution starting from the same T-shaped initial data as in
Figure 3.5, but this time the constants in energy (3.6) are chosen to be σ1 =σ2 = 1√

2−1
,

σ3 =1, and e1 =e2 =e3 =0. These choices imply, via Young’s law, that one 90◦ and
two 135◦ angles should form at triple junctions. Once again, there is an exact constant
profile that attracts our initial condition. The left plot of the figure shows a snapshot
from the evolution, and the plot on the right compares the computed profile with the
exact one. As can be seen, the error in this case is greater than in the experiment of
Figure 3.5, which involved a symmetric triple junction. Nevertheless, the agreement is
still very good, and compares quite favorably with e.g. phase-field based computations
(such as those in [9] that present results with similar data), which are another class
of methods that do not require explicit representation of interfaces and which are
therefore also capable of handling topological changes.

Figure 3.7 zooms in on the junctions from the experiments of figures 3.5 and 3.6.
The angles achieved by the computations are very close to what they ought to be. Note
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Fig. 3.2. Motion of a triple junction as gradient descent for energy (3.2) with e1 =10 (cor-
responding to the rightmost phase) and e2 = e3 =5. Evolution takes place left to right, and top to
bottom. Neumann boundary conditions were imposed.

that the small (mesh sized) “triangular deviation” that appears right at the junction is
merely an artifact of the contouring algorithm. Figure 3.8 shows the evolution of two
initially disjoint disks under the motion generated once again by the approximating
flow formulation (3.6) with σ1 =σ2 =σ3 =1, e1 =e2 =0, and e3 =1. The two disks
represent two of the phases with 0 bulk energies; the background (complement of the
disks) is the phase with bulk energy constant 1. The disks grow at the expense of
the background phase, and eventually touch. At that point, two triple junctions are
formed, which subsequently pull apart, forming a new straight interface between the
initially circular phases.

4. Area preserving curvature motion

4.1. Lagrangian formulation. Consider a curve moving in the plane. We
define area preserving curvature flow

dx

dt
=(κ−〈κ〉)n, (4.1)
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Fig. 3.3. Motion of a triple junction as gradient descent for energy (3.2) with e1 = e2 = e3 =0;
hence this is motion by curvature. Dirichlet boundary conditions were imposed. The lower right
hand image is essentially the stationary state.

where 〈κ〉 is the average curvature of the curve,

〈κ〉=

∫ 1

0
κ
√

x2
α +y2

αdα
∫ 1

0

√

x2
α +y2

αdα
.

It is easy to check that the area enclosed by such a curve remains constant under the
evolution given by (4.1). We have the following theorem concerning area preserving
curvature flow:

Theorem 4.1. Area preserving curvature flow is constrained gradient descent of arc
length with respect to the inner production given by (2.1).

4.2. Level set formulation. We will follow our previous approach and ask
for the level set equations so that all level curves move by area preserving curvature
motion. We begin with the following definition, 〈κ〉β is the average curvature of the
β-th level curve. This can be expressed in terms of level set functions as



140 VARIATIONAL MULTIPHASE FLOW

20
 40
 60
 80
 100
 120


20


40


60


80


00


1
20


20
 40
 60
 80
 100
 120


20


40


60


80


100


120


2
0
 4
0
 60
 80
 1
00
 12
0


20


40


60


80


00


20


2
0
 4
0
 60
 80
 1
00
 12
0


20


40


60


80


100


120


Fig. 3.4. Motion of four phases with e1 = e2 = e3 = e4 =0; hence this is motion by curvature.
The initial condition is stationary but unstable, and splits into two triple junctions. Dirichlet bound-
ary conditions were used.

〈κ〉β =

∫

Ω
δ(φ−β)κ|∇φ|dx

∫

Ω
δ(φ−β)|∇φ|dx

. (4.2)

We can now write down the level set equation in which each level curve moves by
area preserving mean curvature flow:

φt +(κ−〈κ〉φ)|∇φ|=0 (4.3)

In order to avoid any confusion we present the following explicit expression

〈κ〉φ(x,t)=

∫

Ω
δ(φ(x′,t)−φ(x,t))κ(x′,t)|∇φ(x′,t)|dx

′
∫

Ω
δ(φ(x′,t)−φ(x,t))|∇φ(x′,t)|dx

′ .

We have the following Theorem concerning (4.3):
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Fig. 3.5. Comparison between the exact profile (dashed curve) and the computed one (solid
curve), in the case of equal surface tensions (so that 120◦ angles are formed at the junctions) and
no bulk energies. The computation was based on the formulation in Section 3.4.1.
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Fig. 3.6. Comparison between the exact profile (dashed curve) and the computed one (solid
curve), in the case of σ1 =σ2 = 1√

2−1
, σ3 =1, and ej =0 according to the notation in Section 3.4.1;

these imply two 125◦ and one 90◦ angles at triple junctions. The error is larger than in the symmet-
ric 120◦ case shown in the previous figure, but is still very competitive with, for instance, phase-field
based methods at similar resolutions (see e.g. [9]). Once again, the formulation of Section 3.4.1
was used for the computation.

Theorem 4.2. Area preserving curvature flow is gradient descent, with respect to the
level set metric, of the following,

E =

∫

Ω

|∇φ|dx,
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Fig. 3.7. Zoom-in on the triple junctions. The plot on the left is from the numerical experiments
of Figure 3.5, where the surface tensions are equal so that a symmetric 120◦ junction should form.
the plot on the right is from the experiments of Figure 3.6, where the surface tensions imply one
90◦ and two 135◦ angles at a triple junction.

with the infinite set of constraints given by

Cn =

∫ nε+ ε
2

nε− ε
2

∫

Ω

H(−φ+β)dxdβ

in the limit ε→ 0, where n∈Z.

Proof. We first observe that the Fréchet derivative of Cn with respect to the level
set inner product is

δCn

δφ
=−|∇φ|χ{|φ−nε|≤ ε

2
},

where χA is the characteristic function of the the set A. We will now examine the
problem of gradient descent of

E =

∫

Ω

|∇φ|dx

subject to the constraints Cn = constant for all n∈Z. Therefore we consider

F =E +
∞
∑

n=−∞
λnCn.

We compute the Fréchet derivative of F with respect to the level set inner product and
find that its corresponding gradient descent gives the following evolution equation:

∂φ

∂t
=

[

−κ+
∞
∑

n=−∞
λnχ{|φ−nε|≤ ε

2
}

]

|∇φ|. (4.4)
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Fig. 3.8. Evolution under bulk and surface energies. Surface tensions are the same for all
interfaces. The two disks represent two phases for which the bulk energy constant is e1 = e2 =0.
Their complement, the background, which represents the third phase, has a bulk energy constant of
e3 =1. The computation was carried out using the formulation in Section 3.4.1.

Next, we determine the values of λn so that the constraints are satisfied. To
begin, we make the following computation:

∂Cn

∂t
=

∫ nε+ ε
2

nε− ε
2

∫

Ω

δ(−φ+β) ∂tφ dxdβ

=

∫ nε+ ε
2

nε− ε
2

∫

Ω

δ(−φ+β)

[

−κ+
∞
∑

m=−∞
λmχ{|φ−mε|≤ ε

2
}

]

|∇φ|dxdβ

=

∫ nε+ ε
2

nε− ε
2

∫

Ω

δ(−φ+β)
[

−κ+λnχ{|φ−nε|≤ ε
2
}
]

|∇φ|dxdβ,

Since ∂tCn =0, we find

λn =

∫ nε+ ε
2

nε− ε
2

∫

Ω
δ(−φ+β)κ|∇φ|dxdβ

∫ nε+ ε
2

nε− ε
2

∫

Ω
δ(−φ+β)|∇φ|dxdβ

. (4.5)

Substitution of (4.5) into (4.4) gives the the evolution of φ that yields constrained
gradient descent of E with respect to the level set inner product.
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We are now going to examine the behavior of this evolution as ε→0. We divide
the numerator and denominator of (4.5) by ε, let g =εn and take the following limit:

lim
ε→0

λn ≡ λ̃g

where

λ̃g = lim
ε→0

1
ε

∫ g+ ε
2

g− ε
2

∫

Ω
δ(−φ+β)κ|∇φ|dxdβ

1
ε

∫ g+ ε
2

g− ε
2

∫

Ω
δ(−φ+β)|∇φ|dxdβ

, (4.6)

We note, in the sense of distributions, that

lim
ε→0

1

ε

∫ z+ ε
2

z− ε
2

δ(x−y)dy = δ(x−z),

so we can rewrite (4.6) as

λ̃g =

∫

Ω
δ(−φ+g)κ|∇φ|dx

∫

Ω
δ(−φ+g)|∇φ|dx

=average curvature of the g-th level curve

≡〈κ〉g. (4.7)

Finally, we observe that

lim
ε→0

∞
∑

n=−∞
λnχ{|φ−nε|≤ ε

2
} (4.8)

converges to a function of φ, denoted λ̃(φ), which has the property that λ̃(g)= λ̃g.
Therefore it follows that

lim
ε→0

∞
∑

n=−∞
λnχ{|φ−nε|≤ ε

2
} = 〈κ〉φ. (4.9)

Combining (4.9) and (4.4) yields our claim.

4.3. Numerical examples. Equation (4.3) was solved numerically as
follows. The 〈κ〉φ term was evaluated by computing (4.2) for 50 values of β and then
interpolating to find 〈κ〉φ. The integrals in (4.2) were computed to first order using the
method presented in [17]. The convection term, −〈κ〉φ|∇φ|, was implemented using
a first order Godunov scheme and the curvature term was implemented using center
differencing. The system was evolved in time using a first order explicit method. A
semi-implicit algorithm similar to that found in [18] was also implemented but it was
found that it did not preserve area well.

In the first example, we consider the following initial condition,

φ(x,y)=
√

3x2 +y2 +1−1,

in the domain Ω=[−5,5]× [−5,5] with period boundary conditions. We used 300
grid points in each direction. The time step was h2/10 where h is the mesh size.
The computational results are shown in Figure 4.1. The long time behavior of (4.3)
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Fig. 4.1. Evolution by area preserving curvature flow. In each figure, the level curves plotted
are φ= 1

2
+n, where n=0,...,8.

should result in a level set function φ whose level curves are either circles or straight
lines. This seems to be the case as can be seen in Figure 4.1. However, it also
seems clear that under the evolution of (4.3) various level curves can intersect. This
is evident in the figure. If the level set function were allowed to become multiple
valued, this interaction would result in a multiple valued level set function. However
in our implementation the level set function must remain single valued, and so as a
consequence we are presumably computing some sort of weak solution, not unlike a
shock. A closer examination of the numerical computations shows that the intersecting
level curves of these weak solutions can loose area.
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(a) 256×256 Pixelated Image (b) After evolution by (4.3)

Fig. 4.2. Super resolution using area preserving curvature flow

In the second example, the flow given by (4.3) is used for the purpose of super-
resolution of an image. This is done as follows: We first start with a 64×64 image and
use bilinear interpolation to create an image that is 256×256. The resulting image
is shown in Figure 4.2 on the left. The underlying pixelation from the 64×64 image
is evident. Next we apply (4.3) for a short time to the pixelated image in Figure
4.2. The result is shown on the right in Figure 4.2. The flow removes the pixelation
without removing the small scale features; notice, for example, the eye pupil. For
another approach to PDE based super-resolution, the reader is referred to [2].

5. Summary

In this paper we have provided a new interpretation of a well known variational
formulation of curvature flow in terms of a level set description. This description
shows that the level set evolution equation for curvature flow is gradient descent of
the total variation norm with respect to the level set inner product. Basically, the
level set inner product ensures that, when calculating Frechet derivative, variations
to the level curves are measured in a geometrically meaningful way.

We also present a new level set representation of n phases using (n−1) phase
functions. This representation has the advantage that a no overlapping/no vacuum
constraint is not needed in computing geometric motions of multiple phases. This
level set representation is then combined with a modified version of the variational
formulation of curvature flow to obtain a gradient descent version of of a multiphase
flow problem with bulk and surface energies.

In addition, we consider a level set evolution equation where each level curve
has normal velocity equal to its curvature minus its average curvature: this is the
area preserving curvature flow. We show that such a flow is gradient descent of
the total variation norm with respect to the level set inner product, subject to an
infinite number of constraints. This evolution is then used for the image processing
application of super-resolution.
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Finally, we remark that all the implementations in the paper are formally first
order in space and time. It would be interesting to verify this numerically and to
develop higher order versions.
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