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STABILITY ESTIMATES FOR A CLASS OF HELMHOLTZ

PROBLEMS∗

U. HETMANIUK†

Abstract. This paper presents new stability estimates for the scalar Helmholtz equation with a
complex-valued Robin boundary condition as well as Dirichlet and Neumann boundary conditions.
For each estimate, we state the explicit dependency of constants on the wave number. To deal with
mixed boundary conditions, we impose geometrical constraints on the two-dimensional or three-
dimensional bounded domain.

Key words. Helmholtz problems, stability estimates, mixed boundary conditions

AMS subject classifications. 35B35, 35J05

1. Introduction

The scalar Helmholtz equation defines the simplest model for wave phenomena
in the frequency domain. Despite its simplicity, the mathematical analysis of this
equation on a bounded domain remains incomplete. In particular, with a complex-
valued Robin boundary condition, few stability estimates for the solution are available
with the explicit dependency of the constants on the wave number. This dependence
is important, for instance, in order to define relations between the wave number and
the discretization parameters in the error analysis of a discretization method.

On one-dimensional bounded domains, Douglas et al. [5] proved such stability es-
timates for the Helmholtz equation with a Robin boundary condition. Ihlenburg and
Babuška [10] analyzed the Helmholtz equation with mixed boundary conditions for
one-dimensional domains. For two-dimensional and three-dimensional domains, sta-
bility estimates are available only for the Helmholtz equation with a Robin boundary
condition. Melenk [11] proved optimal estimates in two dimensions with an original
proof based on Rellich’s identities [12]. Recently, Cummings and Feng [3] extended
the proof of Melenk to three-dimensions1. However, the results of Melenk, Cummings,
and Feng do not apply to Helmholtz problems with mixed boundary conditions.

Therefore, the goal of this paper is to fill this gap by presenting stability estimates
for the Helmholtz equation with mixed boundary conditions. In Section 2, we intro-
duce notations and the model problem. Section 3 states the geometric assumptions
on the bounded domain and the stability estimates.

2. Model problem

2.1. Notations. Throughout this paper, we adopt the following notations.

• R is the set of real numbers.

• Ω denotes a bounded connected Lipschitz domain in R
d (d = 2, 3), Ω̄ is the

closure of Ω, and ∂Ω the boundary of Ω.
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• v denotes a vector and x the vector position in R
d (d = 2, 3). |v| is the

Euclidean norm of the vector v and v · w the Euclidean inner product of
vectors v and w.

• We denote L2(Ω) = H0(Ω) to be the Sobolev space of square integrable
complex-valued functions over Ω equipped with the norm

‖v‖0,Ω =

√

∫

Ω

|v(x)|2 dx.

We use the notation Hs(Ω) for the Sobolev space of order s in the usual sense.
On Hs(Ω), the full norm is written ‖·‖s,Ω. For any positive integer k, we will
also consider on Hk(Ω) the semi-norm

|v|k,Ω = ‖Dkv‖0,Ω.

• For a surface Γ of R
d, L2(Γ) is the Sobolev space of square integrable complex-

valued functions over Γ and ‖·‖0,Γ the usual norm for L2(Γ). Similarly, a
hierarchy of Sobolev spaces Hs(Γ), equipped with the norm ‖·‖s,Γ, can be
defined.

• When no confusion arises, we use
∫

Ω
f or

∫

Ω
f(x) to denote

∫

Ω
f(x)dx.

• We denote the normal derivative operator in the direction of the vector ν by
∂ν . When no confusion arises, we assume this vector to be outgoing.

• ∇ is the gradient operator, div the divergence operator, and ∆ the Laplacian
operator.

2.2. Problem. We consider the Helmholtz equation defined over a bounded,
connected Lipschitz domain Ω in R

d (d = 2 or 3):















−∆p− k2p = f in Ω,
p = 0 on Γd,

∂νp = 0 on Γn,
∂νp = (iβ − α)p+ g on Γr,

(2.1)

where the wave number k is real and positive, i denotes the imaginary unit, and the
real-valued functions α and β are bounded on Γr. The boundary of Ω is partitioned
as follows

∂Ω = Γd ∪ Γn ∪ Γr, (2.2)

where Γd, Γn, and Γr are disjoint sets. We allow the cases where Γd = ∅, Γn = ∅, or
Γd = Γn = ∅. However, we require that Γr is non-empty, i.e. Γr satisfies

meas(Γr) > 0. (2.3)

We assume that the source terms f and g belong respectively to L2(Ω) and to
L2(Γr). We define the functional space H1

Γd
(Ω) as

H1
Γd

(Ω) =
{

v ∈ H1(Ω); v = 0 on Γd

}

;

we remark that when Γd = ∅, H1
Γd

(Ω) coincides with H1(Ω).
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The variational formulation of problem (2.1) is given by

Find p ∈ H1
Γd

(Ω) such that
a(p, q) = l(q), ∀ q ∈ H1

Γd
(Ω).

. (2.4)

a(·, ·) is a continuous sesquilinear form (linear in the first argument and conjugate
linear in the second) defined on H1

Γd
(Ω) ×H1

Γd
(Ω) by

a(p, q) =

∫

Ω

(

∇p · ∇q̄ − k2pq̄
)

−

∫

Γr

(iβ − α)pq̄, (2.5)

where q̄ is the complex conjugate of the complex-valued function q. l is a continuous
antilinear form (conjugate linear) defined on H1

Γd
(Ω) by

l(q) =

∫

Ω

f q̄ +

∫

Γr

gq̄. (2.6)

Throughout the paper, we assume that the bounded coefficients α and β satisfy

|α(x)| ≤ C|α| ∀ x ∈ Γr (2.7)

and

0 < Cβ,−k ≤ β(x) ≤ Cβ,+k, ∀ x ∈ Γr, (2.8)

where the constants C|α|, Cβ,−, and Cβ,+ depend only on the domain Ω. Examples
of pairs for (α, β) include (0, k) for the so-called Sommerfeld condition and, in two
dimensions, the pair (ζ(x)/2, k) for the first order generalized Bayliss-Gunzburger-
Turkel condition [1, 2], where ζ is the curvature on Γr.

Finally, we recall the existence result:

Proposition 2.1. There exists a unique solution in H1
Γd

(Ω) of the variational prob-
lem (2.4).

This result is well known and, for a proof, we refer the reader to Ihlenburg [9] and
the references therein.

3. Stability

In this section, we prove stability estimates for the unique solution p of problem
(2.4) for a class of bounded domains. For example, for any large wave number k, we
will prove that p satisfies

k‖p‖0,Ω + |p|1,Ω ≤ C(‖f‖0,Ω + ‖g‖0,Γr
), (3.1)

where C is a constant which does not depend on k.

3.1. State of the art. From the Banach-Nečas-Babuška theorem [6, Thm.
2.6], we can establish the continuous dependency of the unique solution with respect
to the source terms. But to express the dependence of the upper bound on the wave
number k, additional work is required. This dependence is important in the error
analysis of a discretization method in order to define relations between the wave
number and the discretization parameters.

To the best of our knowledge, on a bounded domain Ω sharp stability estimates
with the explicit dependence on the wave number k have only been shown
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• For problems in R: Douglas et al. [5] studied the problem with a Robin
boundary condition (Γr = ∂Ω); Ihlenburg and Babuška [10] analyzed a prob-
lem with mixed boundary conditions (Ω =]0, 1[, Γd = {0}, and Γr = {1}).

• For problems with a Robin boundary condition (Γr = ∂Ω): Melenk studied
the two-dimensional problem in his thesis [11] with the assumption

x · ν(x) ≥ γ > 0, ∀ x ∈ ∂Ω; (3.2)

Cummings and Feng [3] extended Melenk’s proof to three-dimensional prob-
lems with the same assumption on the domain Ω.

Actually, we can extend Melenk’s proof to problems with mixed boundary conditions.
We present this extension in the paper.

3.2. Technical results. We state two technical lemmas, which are used in the
proof of estimate (3.1). We denote the Sobolev space of essentially bounded functions
whose first derivatives are also essentially bounded by W 1,∞(Ω).

Lemma 3.1. Let m be a field of real vectors in W 1,∞(Ω)d. For all q ∈ H1(Ω), we
have

∫

∂Ω

|q|2 m · ν =

∫

Ω

div(m) |q|2 + 2Re

∫

Ω

qm · ∇q̄, (3.3)

where Re z is the real part of the complex number z.

Proof. We have
∫

Ω

div(|q|2 m) =

∫

∂Ω

|q|2 m · ν.

We expand the divergence term to get

div(|q|2 m) = |q|2 div(m) + qm · ∇q̄ + q̄m · ∇q,

div(|q|2 m) = |q|2 div(m) + 2Re(qm · ∇q̄).

The following result is proved in Grisvard [7].

Lemma 3.2. Let m be a field of real vectors in W 1,∞(Ω)d. For all q ∈ H1
Γd

(Ω) ∩

H3/2+ε(Ω) (ε > 0), we have

∫

∂Ω\Γd

|∇q|2 m · ν −

∫

Γd

|∂νq|
2
m · ν

=

∫

Ω

div(m) |∇q|2 − 2Re

∫

Ω

∇q · (∇q̄ · ∇)m

− 2Re

∫

Ω

∆q(m · ∇q̄) + 2Re

∫

∂Ω\Γd

∂νq(m · ∇q̄). (3.4)

Finally, we will make an extensive use of the classical inequality

uv ≤
ξ

2
u2 +

1

2ξ
v2 (3.5)

for positive numbers u, v, and ξ 6= 0.
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3.3. Geometric assumption. In order to prove stability estimates, we need
to constrain the domain Ω. We define the geometric assumption (GA) as follows:

• The unique solution p of problem (2.4) belongs to H3/2+ε(Ω) with ε > 0;

• There exists a point x0 ∈ R
d and a constant γ > 0 such that

(x − x0) · ν(x) ≤ 0 ∀ x ∈ Γd, (3.6a)

(x − x0) · ν(x) = 0 ∀ x ∈ Γn, (3.6b)

(x − x0) · ν(x) ≥ γ ∀ x ∈ Γr. (3.6c)

The regularity assumption on p is actually a geometric constraint because of the
regularity of the source terms f and g and the coefficients α and β. For example,
with mixed boundary conditions, Grisvard [7, Lem. 5.1] states that the angles at the
change of boundary conditions must be strictly convex.

The condition on Γr is identical to the one of Melenk [11] and Cummings and
Feng [3]. Grisvard [7, Eqn. (5.10)] used conditions similar to the ones on Γd and on
Γn to deal with Dirichlet and Neumann boundary conditions. We remark that, in R

2,
Γn is composed of straight segments.

When the boundary ∂Ω is connected and Γr is different from ∂Ω, the assumption
(GA) makes the product (x − x0) · ν(x) discontinuous over ∂Ω. Consequently, the
domain Ω can not be smooth when the boundary ∂Ω is connected and Γr is different
from ∂Ω.

We give now three examples of domains Ω satisfying the assumption (GA).

• The first example models a scattering problem with a sound-soft scatterer.
We set Ω = B(0, 2)\B(0, 1) (where B(0, 2) is the open ball of radius 2 cen-
tered at the origin). Γd is the unit sphere and Γr the sphere of radius 2. Here
Γn is empty and x0 coincides with the origin.

Ω

x
0

Γ
d

Γ
r

• For the second example, we set Ω to the L-shaped domain ]0, 1[2\[1/2, 1]2.
Γn is ({0}×]0, 1[) ∪ (]0, 1[×{0}) and Γr the remaining part of the boundary.
Here Γd is empty and x0 coincides with the origin.

Ω

x
0

Γ
n

Γ
r

• The third example combines the three boundary conditions.
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Ω

x
0

Γ
d

Γ
r

Γ
n

Γ
n

x0 coincides with the origin. Γn is composed of two straight segments along
the coordinate axes. Γr is a quarter of an ellipse. Γd is made of a segment
and a quarter of a circle.

3.4. Stability estimates. In this section, we write our main stability results
in two parts, one for large wave numbers and one for small wave numbers.

3.4.1. Case of a large wave number k. The proof is similar to the two-
dimensional proof of Melenk [11]. The difference lies in the treatment of mixed bound-
ary conditions and of three-dimensional problems.

Proposition 3.3. Let k0 be an arbitrary strictly positive number. If Ω satisfies the
regularity assumption (GA), then there exists a constant C, which does not depend
on k, such that for any f ∈ L2(Ω), g ∈ L2(Γr), and k ≥ k0, the unique solution p of
problem (2.4) satisfies

k‖p‖0,Ω + |p|1,Ω ≤ C(‖f‖0,Ω + ‖g‖0,Γr
). (3.7)

The constant C depends on the domain Ω, the constants C|α|, Cβ,−, Cβ,+, and k0.

Proof. Throughout the proof, we use the notation C to denote a generic positive
constant depending only on the domain Ω and, when present, the subscript of C refers
to the origin of the constant.

First, we take the solution itself as a test function. The imaginary part of the
resulting variational relation gives

∫

Γr

β |p|2 ≤ ‖f‖0,Ω‖p‖0,Ω + ‖g‖0,Γr
‖p‖0,Γr

,

Cβ,−k‖p‖
2
0,Γr

≤
1

2ξ1k
‖f‖2

0,Ω +
ξ1k

2
‖p‖2

0,Ω +
1

2ξ2
‖g‖2

0,Γr
+
ξ2
2
‖p‖2

0,Γr
,

k2‖p‖2
0,Γr

≤
1

Cβ,−

(

1

2ξ1
‖f‖2

0,Ω +
ξ1k

2

2
‖p‖2

0,Ω +
k

2ξ2
‖g‖2

0,Γr
+
ξ2k

2
‖p‖2

0,Γr

)

.

Now we set ξ2 to kCβ,− to get

k2

2
‖p‖2

0,Γr
≤

1

Cβ,−

(

1

2ξ1
‖f‖2

0,Ω +
ξ1k

2

2
‖p‖2

0,Ω

)

+
1

2C2
β,−

‖g‖2
0,Γr

.

Thus we obtain, for any ǫ > 0,

k2‖p‖2
0,Γr

≤
C

ǫ
‖f‖2

0,Ω + ǫk2‖p‖2
0,Ω + C‖g‖2

0,Γr
. (3.8)

The real part of the same variational relation gives

|p|21,Ω +

∫

Γr

α |p|2 ≤ k2‖p‖2
0,Ω + ‖f‖0,Ω‖p‖0,Ω + ‖g‖0,Γr

‖p‖0,Γr
. (3.9)
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Using the inequality (3.5), we write

|p|21,Ω ≤

(

k2 +
ξ3k

2

2

)

‖p‖2
0,Ω +

1

2ξ3k2
‖f‖2

0,Ω +
1

4k2
‖g‖2

0,Γr
+ k2‖p‖2

0,Γr
+ C|α|‖p‖

2
0,Γr

.

We rewrite expression (3.8) as follows

(k2+C|α|)‖p‖
2
0,Γr

≤
C

ǫ

(

1 +
C|α|

k2

)

‖f‖2
0,Ω+ǫ(k2+C|α|)‖p‖

2
0,Ω+C

(

1 +
C|α|

k2

)

‖g‖2
0,Γr

.

Inserting this expression with ǫ = ξ4k
2/(k2 + C|α|), we obtain

|p|21,Ω ≤ k2

(

1 + ξ4 +
ξ3
2

)

‖p‖2
0,Ω +

(

1

2ξ3k2
+
C(3.8)

ξ4

(k2 + C|α|)
2

k4

)

‖f‖2
0,Ω

+ C

(

1 +
1

k2

)

‖g‖2
0,Γr

. (3.10)

In particular, when ξ4 = ξ3/2 = 1/2, we have

|p|21,Ω ≤ 2k2‖p‖2
0,Ω + C

(

1 +
1

k2
+

1

k4

)

‖f‖2
0,Ω + C

(

1 +
1

k2

)

‖g‖2
0,Γr

. (3.11)

We now use expression (3.4) where we replace −∆p with f + k2p in Ω, ∂νp with
0 on Γn, and ∂νp with (iβ − α)p+ g on Γr.

∫

∂Ω\Γd

|∇p|2 m · ν −

∫

Γd

|∂νp|
2
m · ν

=

∫

Ω

div(m) |∇p|2 − 2Re

∫

Ω

∇p · (∇p̄ · ∇)m

+ 2Re

∫

Ω

(f + k2p)(m · ∇p̄) + 2Re

∫

Γr

((iβ − α)p+ g)(m · ∇p̄).

We replace Re
∫

Ω
p(m · ∇p̄) with the relationship (3.3):

∫

∂Ω\Γd

|∇p|2 m · ν −

∫

Γd

|∂νp|
2
m · ν

=

∫

Ω

div(m) |∇p|2 − 2Re

∫

Ω

∇p · (∇p̄ · ∇)m

+ 2Re

∫

Ω

f(m · ∇p̄) + k2

∫

∂Ω

|p|2 m · ν

− k2

∫

Ω

div(m) |p|2 + 2Re

∫

Γr

((iβ − α)p+ g)(m · ∇p̄).

Inserting the Dirichlet boundary condition on Γd, we now obtain

−

∫

Γd

|∂νp|
2
m · ν +

∫

Γn

|∇p|2 m · ν +

∫

Γr

|∇p|2 m · ν + k2

∫

Ω

div(m) |p|2

=

∫

Ω

div(m) |∇p|2 − 2Re

∫

Ω

∇p · (∇p̄ · ∇)m + 2Re

∫

Ω

f(m · ∇p̄)

+ k2

∫

Γn

|p|2 m · ν + k2

∫

Γr

|p|2 m · ν + 2Re

∫

Γr

((iβ − α)p+ g)(m · ∇p̄). (3.12)
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We replace the vector field m with x − x0 and we have

div(x − x0) = d in Ω,

∇p · (∇p̄ · ∇)(x − x0) = |∇p|2 in Ω,
(x − x0) · ν(x) ≤ 0 on Γd,
(x − x0) · ν(x) = 0 on Γn,
(x − x0) · ν(x) ≥ γ on Γr,

where γ is a strictly positive constant. As Ω is a bounded domain, we get

dk2‖p‖2
0,Ω + γ‖∇p‖2

0,Γr
≤ (d− 2) |p|21,Ω + C(‖f‖0,Ω |p|1,Ω + ‖g‖0,Γr

‖∇p‖0,Γr
)

+ C

(

k2‖p‖2
0,Γr

+ sup
Γr

|iβ − α| ‖p‖0,Γr
‖∇p‖0,Γr

)

. (3.13)

To eliminate ‖∇p‖2
0,Γr

in the left-hand side of (3.13), we use

sup
Γr

|iβ − α| ‖p‖0,Γr
‖∇p‖0,Γr

≤
k2

2ξ5
‖p‖2

0,Γr
+
ξ5(C

2
β,+k

2 + C2
|α|)

2k2
‖∇p‖2

0,Γr
,

‖g‖0,Γr
‖∇p‖0,Γr

≤
1

2ξ6
‖g‖2

0,Γr
+
ξ6
2
‖∇p‖2

0,Γr
,

with ξ5 and ξ6 satisfying

γ

2
= C(3.13)

ξ5(C
2
β,+k

2 + C2
|α|)

2k2
= C(3.13)

ξ6
2
.

We note that ξ5 satisfies also

k2

2ξ5
=
C(3.13)

2γ
(C2

β,+k
2 + C2

|α|) ≤ C(k2 + 1).

We now obtain

dk2‖p‖2
0,Ω ≤ C[(k2 + 1)‖p‖2

0,Γr
+ ‖f‖0,Ω |p|1,Ω + ‖g‖2

0,Γr
] + (d− 2) |p|21,Ω . (3.15)

We rewrite (3.8) with ǫ = k2ξ7/(k
2 + 1):

(k2 + 1)‖p‖2
0,Γr

≤
C(3.8)

ξ7

(k2 + 1)2

k4
‖f‖2

0,Ω + ξ7k
2‖p‖2

0,Ω + C(3.8)(1 +
1

k2
)‖g‖2

0,Γr
.

Inserting this relation into (3.15), we have

k2(d− ξ7C(3.15))‖p‖
2
0,Ω ≤ C(‖f‖0,Ω |p|1,Ω + ‖g‖2

0,Γr
) + (d− 2) |p|21,Ω

+
C

ξ7

(k2 + 1)2

k4
‖f‖2

0,Ω + C

(

1 +
1

k2

)

‖g‖2
0,Γr

(3.16)

that we combine with expression (3.10) and ξ4 = ξ3/2 = ξ8 to obtain

k2[2 − ξ7C(3.15) − 2(d− 2)ξ8]‖p‖
2
0,Ω ≤ C‖f‖0,Ω |p|1,Ω + C

(

1 +
1

k2

)

‖g‖2
0,Γr

+ C

(

1

ξ7

(k2 + 1)2

k4
+

1

ξ8

(

1 +
1

k2
+

1

k4

))

‖f‖2
0,Ω. (3.17)
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Next, we deal with the term ‖f‖0,Ω |p|1,Ω as follows:

‖f‖0,Ω |p|1,Ω ≤
1

2ξ9
‖f‖2

0,Ω +
ξ9
2
|p|21,Ω ,

‖f‖0,Ω |p|1,Ω ≤ ξ9k
2‖p‖2

0,Ω +

[

1

2ξ9
+ Cξ9

(

1 +
1

k2
+

1

k4

)]

‖f‖2
0,Ω

+Cξ9

(

1 +
1

k2

)

‖g‖2
0,Γr

,

where we used (3.11). Inserting the latest bound in (3.17) results in

k2[2 − ξ7C(3.15) − 2(d− 2)ξ8 − C(3.17)ξ9]‖p‖
2
0,Ω ≤ C (1 + ξ9)

(

1 +
1

k2

)

‖g‖2
0,Γr

+ C

[

1

ξ7

(k2 + 1)2

k4
+

1

ξ9
+

(

1

ξ8
+ ξ9

) (

1 +
1

k2
+

1

k4

)]

‖f‖2
0,Ω. (3.18)

By selecting ξ7, ξ8, and ξ9 such that

2 − ξ7C(3.15) − 2(d− 2)ξ8 − C(3.17)ξ9 = 1,

we obtain

k2‖p‖2
0,Ω ≤ C

(

1 +
1

k2
+

1

k4

)

(‖f‖2
0,Ω + ‖g‖2

0,Γr
). (3.19)

Furthermore, when using expression (3.11), we have

|p|21,Ω ≤ C

(

1 +
1

k2
+

1

k4

)

(‖f‖2
0,Ω + ‖g‖2

0,Γr
). (3.20)

These last two bounds give (3.7), provided that the wave number k stays away from
0.

When only a Robin boundary condition is specified (i.e. Γd = Γn = ∅) and the
coefficients (α, β) are equal to (0, k), we recover the optimal results of Melenk [11]
and of Cummings and Feng [3].

The result (3.7) is new for two-dimensional and three-dimensional domains with
mixed boundary conditions. The bounds are similar to the optimal one-dimensional
result of Ihlenburg and Babuška [10] and, consequently, are sharp with respect to the
wave number k.

3.4.2. Case of a small wave number k. To study the case for small values
of k, we consider the following boundary value problem:















−∆φ = f in Ω,
φ = 0 on Γd,

∂νφ = 0 on Γn,
∂νφ = −αφ+ g on Γr.

(3.21)

Formally, this problem is the limit when k is zero for the Helmholtz problem (2.1).
The variational formulation of problem (3.21) is given by

Find φ ∈ H1
Γd

(Ω) such that
a0(φ, ψ) = l(ψ), ∀ ψ ∈ H1

Γd
(Ω).

. (3.22)
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a0(·, ·) is a continuous sesquilinear form (linear in the first argument and conjugate
linear in the second) defined on H1

Γd
(Ω) ×H1

Γd
(Ω) by

a0(φ, ψ) =

∫

Ω

∇φ · ∇ψ̄ +

∫

Γr

αφψ̄. (3.23)

l is the continuous antilinear form defined by (2.6).
The bilinear form a0 satisfies a Gȧrding inequality. Indeed, we have

∣

∣

∣

∣

∫

Γr

α |ψ|2
∣

∣

∣

∣

≤ C|α|‖ψ‖
2
0,Γr

≤ C‖ψ‖1,Ω‖ψ‖0,Ω ≤ Cε‖ψ‖2
1,Ω +

C

ε
‖ψ‖2

0,Ω

and

a0(ψ,ψ) =

∫

Ω

|∇ψ|2 +

∫

Γr

α |ψ|2 ≥ (1 − Cε) |ψ|21,Ω − C

(

ε+
1

ε

)

‖ψ‖2
0,Ω.

Consequently, the Fredholm alternative applies to the form a0. To prove stability
estimates for small wave numbers, we distinguish whether problem (3.22) has a unique
solution or not.

Proposition 3.4. When problem (3.22) is well-posed, there exists a positive number
k0 and a constant C, which does not depend on k, such that for any f ∈ L2(Ω),
g ∈ L2(Γr), and k ≤ k0, the unique solution p of problem (2.4) satisfies

‖p‖1,Ω ≤ C(‖f‖0,Ω + ‖g‖0,Γr
). (3.24)

The constant C depends only on the domain Ω and the constants C|α|, Cβ,−, Cβ,+,
and k0.

Proof. Problem (3.22) is well-posed, thus we can apply the Banach-Nečas-Babuška
theorem [6, Thm. 2.6]. Thus there exists a constant C such that

‖φ‖1,Ω ≤ C(‖f‖0,Ω + ‖g‖0,Γr
). (3.25)

The solution p of problem (2.4) satisfies problem (3.21) with right hand sides of f+k2p
and g + iβp. Consequently, we have

‖p‖1,Ω ≤ C(‖f + k2p‖0,Ω + ‖g + iβp‖0,Γr
).

Also, we have

‖p‖0,Γr
≤ C‖p‖1,Ω. (3.26)

Thus we obtain

(1 − C(3.25)k
2 − C(3.26)Cβ,+k)‖p‖1,Ω ≤ C(‖f‖0,Ω + ‖g‖0,Γr

).

We conclude that, for k sufficiently small, we have

‖p‖1,Ω ≤ C(‖f‖0,Ω + ‖g‖0,Γr
).

We remark that the result (3.24) does not require the geometric assumption (GA).
Examples of a well-posed problem (3.22) include the case where α > 0 and the case
where α ≥ 0 and Γd 6= ∅.
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When problem (3.21) is not well-posed, the L2-norm of p should not remain
bounded as the wave number k goes to zero. For general cases, we were not able to
prove this result. However, for the particular case where α is zero and Γd is empty, we
can give sharp upper bounds. This result does not require the geometric assumption
(GA).

Proposition 3.5. When α is zero and Γd is empty, there exists a positive number
k0 and a constant C, which does not depend on k, such that for any f ∈ L2(Ω),
g ∈ L2(Γr), and k ≤ k0, the unique solution p of problem (2.4) satisfies

k‖p‖0,Ω + |p|1,Ω ≤ C(‖f‖0,Ω + ‖g‖0,Γr
). (3.27)

The constant C depends only on the domain Ω and the constants C|α|, Cβ,−, Cβ,+,
and k0.

Proof. We introduce the average p,

p =
1

meas(Ω)

∫

Ω

p.

We use the function p− p inside the sesquilinear form a:

a(p− p, p− p) = a(p, p− p) − a(p, p− p)

a(p− p, p− p) =

∫

Ω

f(p− p) +

∫

Γr

g(p− p) + k2

∫

Ω

p(p− p) +

∫

Γr

iβp(p− p). (3.28)

Noting that
∫

Ω

p(p− p) = 0,

the real part of the variational relation (3.28) gives

|p|21,Ω − k2‖p− p‖2
0,Ω ≤ ‖f‖0,Ω‖p− p‖0,Ω + ‖g‖0,Γr

‖p− p‖0,Γr

+ Cβ,+k
∣

∣p
∣

∣ ‖p− p‖0,Γr
, (3.29)

where we used the upper bound on β. We have also

‖p− p‖0,Ω ≤ C |p|1,Ω and ‖p− p‖0,Γr
≤ C |p|1,Ω . (3.30)

For small k, we combine (3.29) and (3.30):

|p|21,Ω ≤ C(‖f‖0,Ω |p|1,Ω + ‖g‖0,Γr
|p|1,Ω + k

∣

∣p
∣

∣ |p|1,Ω)

|p|21,Ω ≤ C(‖f‖0,Ω + ‖g‖0,Γr
) |p|1,Ω +

C2k2

2

∣

∣p
∣

∣

2
+

1

2
|p|21,Ω .

Finally, we get

|p|21,Ω ≤ C(‖f‖0,Ω + ‖g‖0,Γr
) |p|1,Ω + Ck2

∣

∣p
∣

∣

2
, (3.31)

where C is a generic constant depending only on Ω. So we need now to estimate

k2
∣

∣p
∣

∣

2
.
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As
√

|p|21,Ω + ‖p‖2
0,Γr

is a norm on H1(Ω), we write

∣

∣p
∣

∣

2
≤ C(‖p‖2

0,Γr
+ |p|21,Ω). (3.32)

Then, in order to bound ‖p‖0,Γr
, we start by using p − p as a test function. The

imaginary part of the variational relation gives

∫

Γr

β |p|2 ≤ C(‖f‖0,Ω + ‖g‖0,Γr
) |p|1,Ω +

∣

∣

∣

∣

Im

[
∫

Γr

iβpp̄

]∣

∣

∣

∣

. (3.33)

Similarly, when p is the test function, the imaginary part results in

∣

∣

∣

∣

Im

[
∫

Γr

iβpp̄

]∣

∣

∣

∣

≤ (‖f‖0,Ω + ‖g‖0,Γr
)
∣

∣p
∣

∣ . (3.34)

Thus we get

k‖p‖2
0,Γr

≤ C(‖f‖0,Ω + ‖g‖0,Γr
)(|p|1,Ω +

∣

∣p
∣

∣).

With this upper bound, relation (3.32) now becomes

k2
∣

∣p
∣

∣

2
≤ Ck2 |p|21,Ω + Ck(‖f‖0,Ω + ‖g‖0,Γr

)(|p|1,Ω +
∣

∣p
∣

∣) (3.35)

and

k2
∣

∣p
∣

∣

2
≤ C(3.35)k

2 |p|21,Ω +
C(3.35)

2
(‖f‖0,Ω + ‖g‖0,Γr

)2 + C(3.35)
k2

2
|p|21,Ω

+
k2

2

∣

∣p
∣

∣

2
+
C2

(3.35)

2
(‖f‖0,Ω + ‖g‖0,Γr

)2,

k2
∣

∣p
∣

∣

2
≤ Ck2 |p|21,Ω + C(‖f‖0,Ω + ‖g‖0,Γr

)2. (3.36)

We insert this result into (3.31) so that we have

|p|21,Ω ≤ C(‖f‖0,Ω + ‖g‖0,Γr
) |p|1,Ω + Ck2 |p|21,Ω + C(‖f‖0,Ω + ‖g‖0,Γr

)2,

|p|21,Ω ≤ C(‖f‖0,Ω + ‖g‖0,Γr
)2 +

1

2
|p|21,Ω + Ck2 |p|21,Ω .

For small values of k, we now obtain

|p|21,Ω ≤ C(‖f‖0,Ω + ‖g‖0,Γr
)2. (3.37)

Finally, in order to bound k2‖p‖2
0,Ω, we write

k2‖p‖2
0,Ω ≤ Ck2(‖p− p‖2

0,Ω +
∣

∣p
∣

∣

2
) ≤ Ck2(|p|21,Ω +

∣

∣p
∣

∣

2
)

and we use (3.36) and (3.37) to bound k2‖p‖2
0,Ω for small values of the wave number

k.

When only a Robin boundary condition is specified (i.e. Γd = Γn = ∅) and the
coefficients (α, β) are equal to (0, k), Prop. 3.5 states that the L2-norm of the solution
gradient remains bounded when the wave number approaches zero. This result is new
for three-dimensional domains as this boundedness was not proved by Cummings and
Feng [3].
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3.4.3. Case of a smooth solution p. Finally, we state a stability estimate
when p belongs to H2(Ω).

Proposition 3.6. If the source term g belongs to H1/2(Γr) and the solution p belongs
to H2(Ω), then we have

|p|2,Ω ≤ C(‖f‖0,Ω + ‖g‖1/2,Γr
) + C(1 + k)(k‖p‖0,Ω + |p|1,Ω) (3.38)

where C does not depend on k.

Proof. The application

L :

{

H1
Γd

(Ω) ∩H2(Ω) → L2(Ω) ×H1/2(Γn) ×H1/2(Γr)
ψ 7→ (−∆ψ, ∂νψ, ∂νψ + αψ)

(3.39)

is continuous and surjective. We apply a corollary of the open mapping theorem,
described in Dautray and Lions [4, Corollary 2 on page 279], to define a continuous
bijective mapping from the quotient-space

(

H1
Γd

(Ω) ∩H2(Ω)
)

/KerL

into the space

L2(Ω) ×H1/2(Γn) ×H1/2(Γr).

The mapping

ψ 7→

√

|ψ|21,Ω + |ψ|22,Ω +

∫

Γr

|ψ|2

defines a norm on this quotient-space. Thus we have
√

|ψ|21,Ω + |ψ|22,Ω +

∫

Γr

|ψ|2 ≤ C
(

‖−∆ψ‖0,Ω + ‖∂νψ‖1/2,Γn
+ ‖∂νψ + αψ‖1/2,Γr

)

where C is a constant depending only on the domain Ω and the coefficient α.
We now obtain, for the solution p,

|p|2,Ω ≤ C(‖−∆p‖0,Ω + ‖∂νp‖1/2,Γn
+ ‖∂νp+ αp‖1/2,Γr

),

|p|2,Ω ≤ C(‖f + k2p‖0,Ω + ‖iβp+ g‖1/2,Γr
),

|p|2,Ω ≤ C(‖f‖0,Ω + k2‖p‖0,Ω + k‖p‖1/2,Γr
+ ‖g‖1/2,Γr

),

|p|2,Ω ≤ C[‖f‖0,Ω + k2‖p‖0,Ω + k(‖p‖0,Ω + |p|1,Ω) + ‖g‖1/2,Γr
],

|p|2,Ω ≤ C(‖f‖0,Ω + ‖g‖1/2,Γr
) + C(k + k2)‖p‖0,Ω + Ck |p|1,Ω .

Prop. 3.6 does not require the geometric assumption (GA) and is valid for any
wave number k. When the solution p satisfies the stability estimate

k‖p‖0,Ω + |p|1,Ω ≤ C(‖f‖0,Ω + ‖g‖0,Γr
),

we obtain

|p|2,Ω ≤ C(1 + k)(‖f‖0,Ω + ‖g‖1/2,Γr
).
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