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KPP PULSATING FRONT SPEED-UP BY FLOWS∗

LENYA RYZHIK† AND ANDREJ ZLATOŠ‡

Abstract. We obtain a criterion for pulsating front speed-up by general periodic incompressible
flows in two dimensions and in the presence of KPP nonlinearities. We achieve this by showing that
the ratio of the minimal front speed and the effective diffusivity of the flow is bounded away from
zero and infinity by constants independent of the flow. We also study speed-up of reaction-diffusion
fronts by various examples of flows in two and three dimensions.
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1. Introduction

We consider reaction-diffusion fronts propagating in a strong periodic incompress-
ible flow on R

n:

Tt +Au ·∇T =∆T +f(T ). (1.1)

Here T (t,x)∈ [0,1] is the normalized temperature and the nonlinearity f is of the
KPP type: f(s) is a Lipschitz function such that f(0)=f(1)=0, while f(s)>0 and
f(s)≤f ′(0)s for s∈ (0,1). The Lipschitz flow u(x) is 1-periodic, incompressible, and
has mean zero. That is, u(x+k)=u(x) when k∈Z

n, ∇· u=0, and

∫

Tn

u(x)dx=0.

The parameter A∈R is the amplitude of the advection, and we will mainly be inter-
ested in A≫1.

It has been proved in [3] that when u(x) is periodic, equation (1.1) has pulsating
front solutions of the form T (t,x)=U(x ·e−ct,x), where c>0 is the propagation speed
and e∈R

n is the unit vector in the direction of propagation. The function U(s,x) is
periodic in x∈R

n and has uniform in x∈T
n limits as s→±∞:

lim
s→−∞

U(s,x)=1,

lim
s→+∞

U(s,x)=0. (1.2)

Pulsating front solutions were shown in [3] to exist for all |e|=1 and all c≥ c∗e(A).
As in the one-dimensional case without advection [15], the minimal front speed c∗e(A)
(we suppress the u and f dependence in our notation) determines the propagation
speed of solutions of the Cauchy problem for (1.1) with general compactly supported
initial data, and is therefore of a special interest [4, 18].

The presence of an incompressible flow in (1.1) improves mixing due to diffusion
and is thus expected to enhance the speed of reaction-diffusion fronts. This problem
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has been studied actively in recent years, especially in the large A limit: it has been
shown in [2, 9, 12] that the pulsating front speed in the direction of a mean-zero
shear flow behaves as c∗e(A)=O(A) for large A, and in [17] that c∗e(A)=O(A1/4) for
cellular flows in two dimensions. In both of these cases the minimal front speed scales
as c∗e(A)∼

√

De(A) for A≫1 where De(A) is the corresponding effective diffusivity
of the flow Au in the direction e. In the present paper we use the method of [17] to
show that this is indeed the case in general in two dimensions.

Let u be an incompressible 1-periodic mean-zero flow, let f be KPP, and let e∈R
2

be a unit vector. We consider the pulsating fronts in the direction e, that is, solutions
of

Tt +Au ·∇T =∆T +f(T ) (1.3)

of the form T (t,x1,x2)=U(x ·e−ct,x1,x2), where c>0 and

U(s,x1,x2)=U(s,x1,x2 +1),

U(s,x1,x2)=U(s,x1 +1,x2),

lim
s→−∞

U(s,x1,x2)=1,

lim
s→+∞

U(s,x1,x2)=0.

The last two limits are required to be uniform in s. It has been shown in [3] that
pulsating front solutions exist for all c≥ c∗e(A). We are interested in the asymptotics
of the minimal front speed c∗e(A) as A→+∞.

Let us recall the definition of the effective diffusivity. Consider the advection-
diffusion problem

pt +Au ·∇p=∆p (1.4)

with u a periodic incompressible flow. The long-time behavior of the solutions of (1.4)
is governed by the effective diffusion equation

p̄t =

n
∑

i,j=1

σij(A)
∂2p̄

∂xi∂xj
. (1.5)

The (x-independent) effective diffusivity matrix σ(A) is obtained as follows. For any
e∈R

n, let χe(x) be the periodic mean-zero solution of the cell problem

−∆χe +Au ·∇χe =Au ·e (1.6)

on T
n. Then the matrix σ(A) is given by

e ·σ(A)e′ =

∫

Tn

(∇χe +e) ·(∇χe′ +e′)dx=e ·e′+
∫

Tn

∇χe ·∇χe′dx, (1.7)

for any e,e′∈R
n. The effective spreading in the direction e is governed by the effective

diffusivity

De(A)=e ·σ(A)e=1+

∫

Tn

|∇χe|2dx.

When the nonlinearity in (1.1) is weak and (1.1) becomes

Tt +Au ·∇T =∆T +εf(T )
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with ε≪1, one may consider the long time-large space scaling t→ t/ε2, x→x/ε lead-
ing to

Tt +
A

ε
u
(x

ε

)

·∇T =∆T +f(T ).

The homogenized version of this equation is

Tt =∇·(σ(A)∇T )+f(T ),

with the corresponding homogenized minimal front speed v∗e(A)=2
√

f ′(0)De(A).
This approximation holds only on certain space-time scales in the original variables
(namely, t=O(1/ε2) and x=O(1/ε)). However, it suggests a relation between the
minimal front speed for (1.1) and the effective diffusivity. The following result con-
firms this relation in two dimensions.

Theorem 1.1. There exists C>0 (independent of A,u,f,e) such that if u(x) is a
1-periodic incompressible Lipschitz flow on R

2, f a KPP nonlinearity, A∈R, and
e∈R

2 a unit vector, then

√

f ′(0)

C
(

1+
√

f ′(0)
) ≤ c∗e(A)

√

De(A)
≤C

√

f ′(0)
(

1+
√

f ′(0)
)

. (1.8)

Moreover, there is f0>0 such that

∣

∣

∣

∣

c∗e(A)

2
√

f ′(0)De(A)
−1

∣

∣

∣

∣

≤Cf ′(0)1/4 (1.9)

whenever 0<f ′(0)≤f0.
That is, the ratio c∗e(A)/

√

De(A) is bounded away from zero and infinity by

constants only dependent on f ′(0), and becomes close to 2
√

f ′(0) when f ′(0) is

small. We note that the slightly weaker, and merely upper bound c∗e(A)/
√

De(A)≤
Cε

√

f ′(0)(1+
√

f ′(0))‖Au‖ε
∞ for any ε>0 has been obtained in [12].

As f ′(0)→+∞, the lower bound in (1.8) stays bounded whereas the upper bound
grows linearly with f ′(0). We show by looking at the example of shear flows (see
Example 3.2 below) that at least the lower bound cannot be improved. This conclusion
can also be reached using the results of [12] for the shear flow.

It follows from Theorem 1.1 that the minimal front speed c∗e(A) has the same
asymptotic behavior in the regime of large A as does

√

De(A). But for the latter
quantity we have the following general sharp criterion which holds in any spatial
dimension.

Proposition 1.2. Let u(x) be a 1-periodic incompressible Lipschitz flow on R
n and

let e∈R
n be a unit vector.

(i) If the equation

u ·∇φe =u ·e (1.10)

has a solution φe ∈H1(Tn), then

limsup
A→+∞

De(A)<+∞. (1.11)



578 KPP PULSATING FRONT SPEED-UP BY FLOWS

(ii) If (1.10) has no H1(Tn)-solutions, then

lim
A→+∞

De(A)=+∞. (1.12)

Remark 1.3. Note that it follows from part (i) that the set of all non-negative
multiples of unit vectors e∈R

n for which (1.11) holds is a subspace of R
n. Indeed,

the sum of two solutions of (1.10) for e and e′ is a solution for e+e′, and the negative
of a solution for e is a solution for −e.

The result of Proposition 1.2 is not new. It has already appeared in [11], although
it has been stated only in two dimensions, and the first claim has also appeared earlier
in [6]. Much more precise asymptotic behavior of De(A) is well understood for many
specific examples of flows — see [16] for an extensive list of references.

Putting Theorem 1.1 and Proposition 1.2 together, we have the following charac-
terization of flows in two dimensions that speed up KPP fronts.

Corollary 1.4. Let u(x) be a 1-periodic incompressible Lipschitz flow on R
2, let f

be a KPP nonlinearity, and e∈R
2 a unit vector.

(i) If (1.10) has a solution φe ∈H1(T2), then

limsup
A→+∞

c∗e(A)<+∞. (1.13)

(ii) If (1.10) has no H1(T2)-solutions, then

lim
A→+∞

c∗e(A)=+∞. (1.14)

Remark 1.5. In particular, the pulsating front speed for KPP nonlinearities may
not diverge to +∞ along some sequence of amplitudes while staying bounded along
another sequence.

The paper is organized as follows. Section 2 contains the proofs of Theorem 1.1
and Proposition 1.2. The proof of Theorem 1.1 is based on the proof of the main result
of [17]. Section 3 contains the generalization of Corollary 1.4(ii) to higher dimensions
and various examples. In particular, we show there that the minimal front speed for a
class of three-dimensional cellular flows satisfies (1.14). To the best of our knowledge,
this is the first time that pulsating front speed-up by a three-dimensional cellular flow
has been established.

2. Diffusivity enhancement and front speed-up

We first present the proof of Proposition 1.2 for the convenience of the reader.

Proposition 2.1. Assume that (1.10) has no H1(T2) solution. Then the effective
diffusivity satisfies

lim
A→+∞

De(A)=+∞. (2.1)

Proposition 2.2. Assume that (1.10) has an H1(T2) solution. Then the effective
diffusivity satisfies

limsup
A→+∞

De(A)<+∞. (2.2)
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Proposition 2.3. Let An →+∞. Then

lim
n→+∞

De(An)=+∞ if and only if lim
n→+∞

c∗e(An)=+∞, (2.3)

and

limsup
n→+∞

De(An)<+∞ if and only if limsup
n→+∞

c∗e(An)<+∞. (2.4)

Moreover, (1.9) holds.

Remark 2.4.

1. Propositions 2.1 and 2.2 have already appeared in [11] (and the second of them
earlier in [6]) but we prove them here for the sake of completeness.

2. Our proofs of propositions 2.1 and 2.2 hold in any spatial dimension (see
Theorem 3.1 below). However, the proof of Proposition 2.3 relies on the fact that we
are working in two dimensions.

2.1. The proof of Proposition 1.2. Let us assume that there exists a
sequence An →+∞ and a constant M>0 such that De(An)<M for all n. It follows
from (1.7) that there exists a sequence of mean-zero functions χn(x) on T

n which
satisfy

−∆χn +Anu ·∇χn =Anu ·e (2.5)

such that ‖∇χn‖2
2≤M for all n. As the functions χn are uniformly bounded in

H1(Tn) there exists a subsequence χnk
which converges to a function χ̄(x) weakly in

H1(Tn) and strongly in L2(Tn) as k→+∞. We divide (2.5) by Ank
and pass to the

limit k→+∞ to obtain

u ·∇χ̄=u ·e (2.6)

in the sense of distributions. Since χ̄∈H1(Tn), (2.6) holds almost everywhere on T
n.

This proves Proposition 1.2(ii).
In order to prove Proposition 1.2(i) let us assume that a mean-zero function

φe ∈H1(Tn) satisfies (1.10) and let χe be the mean-zero solution of (1.6). Consider
the function η=χe−φe which satisfies

−∆(η−φe)+Au ·∇η=0.

Multiplying the last equation by η and integrating by parts, from incompressibility
of u we obtain

∫

|∇η|2dx=−
∫

∇φe ·∇ηdx.

It follows that ‖∇η‖2≤‖∇φe‖2, and so

De(A)=1+

∫

Tn

|∇χe|2dx≤1+2

∫

Tn

|∇η|2dx+2

∫

Tn

|∇φe|2dx≤1+4‖∇φe‖2
2.

Therefore, De(A) is uniformly bounded in A and (i) follows.
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2.2. A variational principle for c∗e(A). The proof of Theorem 1.1 relies
on a variational principle for the effective speed which we now recall. Details and
proofs of propositions 2.5 and 2.6 below can be found in [3, 4, 5, 10, 17]. Consider
the eigenvalue problem on T

n

∆ϕ−Au ·∇ϕ−2λe ·∇ϕ+λAu ·eϕ=κe(λ;A)ϕ, ϕ>0. (2.7)

It has a unique eigenvalue κe(λ;A) that corresponds to a positive periodic eigenfunc-
tion ϕe(x;λ,A).

Proposition 2.5. The minimal front speed is described by the variational principle

c∗e(A)= inf
λ>0

f ′(0)+λ2 +κe(λ;A)

λ
. (2.8)

It is convenient to rewrite the eigenvalue problem (2.7) in terms of the function

ψe(x)=ϕe(x)e
−λx·e

on R
n, with ϕe periodically extended from T

n. This function is not periodic but
rather belongs to the set

E+
e,λ =

{

ψ(x)
∣

∣ψ(x)eλx·e is 1-periodic in x and ψ>0
}

.

The corresponding eigenvalue problem for ψe(x) is

Lψ :=∆ψ−Au ·∇ψ=µe(λ;A)ψ, ψ∈E+
e,λ, (2.9)

with µe(λ;A)=λ2 +κe(λ;A) the unique eigenvalue of (2.9). The variational principle
(2.8) may now be restated as

c∗e(A)= inf
λ>0

f ′(0)+µe(λ;A)

λ
. (2.10)

Let us recall some basic properties of the function µe(λ;A). These can be found, for
instance, in [3, Prop. 5.7] (with our µe being their −h):

Proposition 2.6. For each fixed A∈R we have µe(0;A)=0, and the function
µe(λ;A)≥0 is monotonically increasing and convex in λ≥0.

Proposition 2.6 allows us to define the inverse function λe(µ;A) to µe(λ;A) that
is increasing and concave in µ≥0 for a fixed A. The eigenvalue problem (2.9) may
now be reformulated as follows: given µ≥0 find λ=λe(µ;A) so that the problem

∆ψ−Au ·∇ψ=µψ (2.11)

has a solution ψ∈E+
e,λ. The variational principle (2.10) for the minimal front speed

now becomes

c∗e(A)= inf
µ>0

f ′(0)+µ

λe(µ;A)
. (2.12)
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2.3. The proof of Theorem 1.1. The proof of Theorem 1.1 is based on the
ideas of [17] where they were used to obtain the asymptotics of the pulsating front
speed for cellular flows in the direction (1,0). Here we extend them to general flows
and directions e, and show that they yield the conclusion of the theorem. The main
ingredient is the following lemma.

Lemma 2.1. There exists ρ>0 such that when ε∈ [0, 12 ] and µ0(ε)=ρε4, then for any
µ∈ [0,µ0(ε)], any flow u as in Theorem 1.1, any unit vector e∈R

2, and any A∈R we
have

(1−ε)
√
µ

√

De(A)
≤λe(µ;A)≤ (1+ε)

√
µ

√

De(A)
. (2.13)

We postpone the proof of this Lemma and prove Theorem 1.1 first. Fix any ε>0.
Then the variational principle for c∗e(A) implies that

c∗e(A)= inf
µ>0

f ′(0)+µ

λe(µ;A)
≥min

{

inf
0<µ≤µ0(ε)

f ′(0)+µ

λe(µ;A)
, inf
µ≥µ0(ε)

µ

λe(µ;A)

}

(2.14)

and

c∗e(A)≤ inf
0<µ≤µ0(ε)

f ′(0)+µ

λe(µ;A)
. (2.15)

In addition, as the function λe(µ,A) is concave and increasing in A and λe(0;A)=0,
we have

inf
µ≥µ0(ε)

µ

λe(µ;A)
=

µ0(ε)

λe(µ0(ε);A)
≥

√

De(A)

√

µ0(ε)

1+ε
.

It follows now from (2.14) and (2.13) that

c∗e(A)≥
√

De(A)

1+ε
min

{

inf
0<µ≤µ0(ε)

f ′(0)+µ√
µ

,
√

µ0(ε)

}

. (2.16)

Using (2.15) and (2.13) we also arrive at

c∗e(A)≤
√

De(A)

1−ε inf
0<µ≤µ0(ε)

f ′(0)+µ√
µ

. (2.17)

If now f ′(0)≤ 1
4µ0(

1
2 ), we take ε=µ−1

0 (4f ′(0))≤ 1
2 to obtain

inf
0<µ≤µ0(ε)

f ′(0)+µ√
µ

=2
√

f ′(0)=
√

µ0(ε),

and so we get from (2.16) and (2.17) that

2
√

f ′(0)

√

De(A)

1+ε
≤ c∗e(A)≤2

√

f ′(0)

√

De(A)

1−ε . (2.18)

Therefore, we have
∣

∣

∣

∣

∣

c∗e(A)

2
√

f ′(0)De(A)
−1

∣

∣

∣

∣

∣

≤ ε

1−ε2 ≤C(f ′(0))1/4
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for some C>0. This proves the second claim in Theorem 1.1.
On the other hand, if f ′(0)> 1

4µ0(
1
2 ), then we set ε= 1

2 and obtain

√

µ0(1/2)

√

De(A)

1+1/2
≤ c∗e(A)≤ f ′(0)+µ0(1/2)

√

µ0(1/2)

√

De(A)

1−1/2
.

This and (2.18) with ε≤ 1
2 for f ′(0)≤ 1

4µ0(
1
2 ) proves the first claim in Theorem 1.1.

2.4. The proof of Lemma 2.1. The proof of Lemma 2.1 is similar to that of
Theorem 3.1 in [17] but our result is slightly sharper. First, we rewrite the eigenvalue
problem (2.11) in terms of the function ζ(x1,x2)= lnψ(x1,x2):

∆ζ−Au ·∇ζ=µ−|∇ζ|2,
ζ(x1 +1,x2)= ζ(x1,x2)−λe(µ;A)e1

ζ(x1,x2 +1)= ζ(x1,x2)−λe(µ;A)e2, (2.19)

where e=(e1,e2). Without loss of generality we may assume that ζ(x1,x2) has mean
zero on T

2 (which is now viewed as a subset of R
2):

∫

T2

ζ(x1,x2)dx1dx2 =0.

As ∇ζ is periodic both in x1 and x2, and
∫ 1

0
u1(x1,x2)dx2 =0 for each x1 and

∫ 1

0
u2(x1,x2)dx1 =0 for each x2 (because u is 1-periodic, mean-zero, and incompress-

ible), by integrating (2.19) over T
2 we obtain

µ=

∫

T2

|∇ζ|2dx1dx2. (2.20)

The Poincaré inequality then implies
∫

T2

|ζ|2dx1dx2≤Cµ. (2.21)

The function ζ(x1,x2) may be decomposed as

ζ(x1,x2)=λe(µ;A)

(

1

2
−x ·e+χe(x1,x2)

)

+S(x1,x2).

Here χe(x1,x2) is the mean-zero periodic solution of (1.6) and S(x1,x2) is a mean-zero
periodic correction that we would like to show to be “small”. Let us set

Φ(x1,x2)=λe(µ;A)

(

1

2
−x ·e+χe(x1,x2)

)

.

This function satisfies

∆Φ−Au ·∇Φ=0,

Φ(x1 +1,x2)=Φ(x1,x2)−λe(µ;A)e1,

Φ(x1,x2 +1)=Φ(x1,x2)−λe(µ;A)e2. (2.22)

The definitions of Φ and De(A), periodicity of χe, and |e|=1 imply that

‖∇Φ‖2 =λe(µ;A)
√

De(A). (2.23)
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Lemma 2.2. There exists a universal constant C>0 such that for any flow u as in
Theorem 1.1, any unit vector e∈R

2, and any A∈R, we have

‖Φ‖L∞(T2)≤Cλe(µ;A)
√

De(A) (2.24)

and

ζ(x1,x2)≤C
√
µ for (x1,x2)∈T

2. (2.25)

We postpone the proof and first finish that of Lemma 2.1. It follows from (2.24)
and (2.25) that

S(x1,x2)≤C
[

λe(µ;A)
√

De(A)+
√
µ
]

. (2.26)

Note that this is only a bound from above, as is the one in (2.25). On the other hand,
as

µ=

∫

T2

|∇ζ|2dx1dx2 =

∫

T2

|∇(Φ+S)|2dx1dx2,

the triangle inequality implies that

|√µ−‖∇Φ‖2|≤‖∇S‖2. (2.27)

It follows from (2.19) and (2.22) that the function S is a mean-zero periodic solution
of

∆S−Au ·∇S=µ−|∇(Φ+S)|2.

Multiplying both sides by S and integrating over T
2 we obtain using (2.26),

∫

T2

|∇S|2dx1dx2 =

∫

T2

S|∇(Φ+S)|2dx1dx2

≤C
[

λe(µ;A)
√

De(A)+
√
µ
]

∫

T2

|∇(Φ+S)|2dx1dx2

=C
[

λe(µ;A)
√

De(A)+
√
µ
]

µ,

with C from Lemma 2.2. Using this inequality, (2.27), (2.23), and
√
ab+c≤ δa+

δ−1b+
√
c with δ=ε/2C, we obtain that for any ε>0,

√
µ≤λe(µ;A)

√

De(A)+C

√

λe(µ;A)
√

De(A)µ+µ3/2

≤
(

1+
ε

2

)

λe(µ;A)
√

De(A)+
2C2

ε
µ+Cµ3/4.

We now let µ0(ε)=(ε/4C)4 for ε∈ [0, 12 ] so that

2C2

ε
µ+Cµ3/4≤ 3ε

8

√
µ

for all µ∈ [0,µ0(ε)]. Then for µ∈ [0,µ0(ε)] we have

√
µ≤ (1+ε)λe(µ;A)

√

De(A).
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In a similar manner, from

√
µ≥λe(µ;A)

√

De(A)−C
√

λe(µ;A)
√

De(A)µ+µ3/2

we obtain that for µ∈ [0,µ0(ε)],

(1−ε)λe(µ;A)
√

De(A)≤√
µ.

This finishes the proof of Lemma 2.1.

2.5. The proof of Lemma 2.2. Both statements of this lemma are an
immediate consequence of the following two propositions.

Proposition 2.7. There exists a universal constant C>0 such that if α∈R
2 and

the function q on R
2 satisfies

∆q−Au ·∇q+ |∇q|2≥0,

q(x1 +1,x2)= q(x1,x2)+α1,

q(x1,x2 +1)= q(x1,x2)+α2,
∫

T2

q(x1,x2)dx1dx2 =0,

then

q(x1,x2)≤C
(

‖∇q‖L2(T2) + |α1|+ |α2|
)

(2.28)

for all (x1,x2)∈T
2.

Remark 2.8. When α2 =0 then this is Proposition 4 in [17].

Proof. The Poincaré inequality says that

‖q‖L2(T2)≤
(

C

2
−1

)

‖∇q‖L2(T2) (2.29)

for some C>2. We will show that (2.28) holds with this C.
Let

M := max
(x1,x2)∈T2

q(x1,x2)= q(x0)

for some x0∈T
2 and consider the case

M ≥2‖q‖L2(T2) + |α1|+ |α2|

(otherwise we are done by (2.29)).
Assume first that

for any x1∈ [0,1] there exists s(x1)∈ [0,1] such that q(x1,s(x1))≥M−|α1|−|α2|.
(2.30)

Observe that if we define the set A⊂ [0,1] as

A=
{

x1∈ [0,1] : ∃r(x1)∈ [0,1] such that |q(x1,r(x1))|≤2‖q‖L2(T2)

}

(2.31)
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then

|A|≥ 1

2
. (2.32)

Now, (2.30)–(2.32) imply that

∫ 1

0

∣

∣

∣

∣

∂q

∂x2

∣

∣

∣

∣

2

dx2≥
[
∫ 1

0

∂q

∂x2
dx2

]2

≥
(

M−|α1|−|α2|−2‖q‖L2(T2)

)2

for all x1∈A. We then obtain

∫

T2

|∇q|2dx1dx2≥
∫

A

∣

∣

∣

∣

∂q

∂x2

∣

∣

∣

∣

2

dx1dx2≥
1

2

(

M−|α1|−|α2|−2‖q‖L2(T2)

)2
.

It follows from the above and (2.29) that

max
(x1,x2)∈T2

q(x1,x2)=M ≤2
(

‖∇q‖L2(T2) +‖q‖L2(T2) + |α1|+ |α2|
)

≤C
(

‖∇q‖L2(T2) + |α1|+ |α2|
)

.

If (2.30) does not hold, but

for any x2∈ [0,1] there exists s(x2)∈ [0,1] such that q(s(x2),x2)≥M−|α1|−|α2|,
(2.33)

then an identical argument applies. Assume therefore that neither (2.30) nor (2.33)
hold. This means that there are ξ1,ξ2∈ [0,1] such that for all ξ∈ [0,1],

q(ξ1,ξ),q(ξ,ξ2)<M−|α1|−|α2|.

If now Sj , j=1,2,3,4, are the four unit squares with sides parallel to the axes, and
having (ξ1,ξ2) as a vertex, then for each j we must have

max
(x1,x2)∈∂Sj

q(x1,x2)<M−|α1|−|α2|+ |α1|+ |α2|=M

by the assumptions on q. But one of these squares contains x0 with q(x0)=M , which
is a contradiction because q satisfies the maximum principle. Hence (2.30) or (2.33)
hold and we are done.

Proposition 2.9. For all A we have

λe(µ;A)≤√
µ. (2.34)

Proof. This is an immediate consequence of (2.19), (2.20), and |e|=1:

µ=

∫

T2

|ζx1
|2 + |ζx2

|2dx1dx2≥
(

∫

T2

ζx1
dx1dx2

)2

+

(
∫

T2

ζx2
dx1dx2

)2

=λe(µ;A)2.

Proof of Lemma 2.2. This holds with C being (1+
√

2) times the constant from
Proposition 2.7. The upper bound on Φ(x1,x2) follows directly from (2.22), (2.23),
and De(A)≥1. The lower bound on Φ follows after applying Proposition 2.7 to −Φ.
The upper bound (2.25) for ζ(x1,x2) follows from propositions 2.7 and 2.9, and (2.20).



586 KPP PULSATING FRONT SPEED-UP BY FLOWS

3. An extension to higher dimensions and examples

3.1. The main result in higher dimensions. As mentioned before, Propo-
sition 1.2 holds in any dimension. Moreover, the following partial analog of Corollary
1.4 holds.

Theorem 3.1. Let u(x) be a 1-periodic incompressible Lipschitz flow on R
n, let f

be a KPP nonlinearity, and e∈R
n a unit vector. If (1.10) has no H1(Tn)-solutions,

then

lim
A→+∞

c∗e(Au,f)= lim
A→+∞

De(Au,f)=+∞. (3.1)

Proof. Assume that there is a sequence Ak →+∞ such that

M := sup
n
c∗e(Ak)<+∞. (3.2)

Let ϕk be a solution of (2.7) on T
n with A=Ak and λ=λk where λk is such that

c∗e(Ak)=
f ′(0)+λ2

k +κe(λk;Ak)

λk
(3.3)

with κe defined in (2.7). Moreover, we choose ϕk so that ωk =lnϕk is mean-zero on
T

n. Denote κk =κe(λk;Ak) so that

∆ωk + |∇ωk|2−Aku ·∇ωk−2λke ·∇ωk +Akλku ·e=κk. (3.4)

Integrate this over T
n and use that u is incompressible and mean-zero to obtain

κk =

∫

Tn

|∇ωk|2dx≥0.

This, (3.2), and (3.3) mean that the λk are bounded away from 0 and ∞ (namely,
|2λk−M |≤

√

M2−4f ′(0)). So after passing to a subsequence we can assume λk →
λ0∈ (0,∞). This and (3.2) give

sup
k

‖∇ωk‖2
L2(Tn) =sup

k
κk<+∞.

By (2.29), the ωk are bounded in H1(Tn), and so converge to some ω0∈H1(Tn)
strongly in L2(Tn) and weakly in H1(Tn). Then also ∆ωk →∆ω0 in the sense of
distributions and |∇ωk|2 are bounded in L1(Tn). Divide (3.4) by Ak and pass to the
limit so that in the sense of distributions,

−u ·∇ω0 +λ0u ·e=0.

Since ω0∈H1(Tn), we now see that φe =ω0/λ0∈H1(Tn) solves (1.10), yielding a
contradiction.

3.2. Examples. We conclude with several examples of flows in two and
three dimensions which speed up reaction-diffusion fronts. We will consider the case
e=e1 =(1,0) (respectively e=e1 =(1,0,0) in three dimensions) so that (1.10) becomes

u ·∇φ=u1, (3.5)
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but our analysis easily extends to other directions of front propagation.

Example 3.2. Shear flows. These are flows of the form u(x1,x2)=(α(x2),0) with
mean-zero α. In this case (2.7) with e=e1 becomes

∆ϕ−(Aα(x2)+2λ)ϕx1
+λAα(x2)ϕ=κ(λ;A)ϕ, ϕ>0.

The unique solution to this equation is of the form ϕ(x1,x2)=ϕ(x2) and satisfies

ϕx2x2
+λAα(x2)ϕ=κ(λ;A)ϕ, ϕ>0. (3.6)

Obviously then κ(λ;A)=κ(λA;1) and so we have

lim
A→∞

c∗e(A)

A
= lim

A→∞
inf
λ>0

f ′(0)+λ2 +κ(λA;1)

λA

= lim
A→∞

inf
λ>0

f ′(0)+ λ2

A2 +κ(λ;1)

λ
= inf

λ>0

f ′(0)+κ(λ;1)

λ
.

Notice that this shows that c∗e(A)/A is decreasing to a positive limit. This has been
established in [2] and an alternative (variational) characterization of the limit has
been provided in [12]. Multiplying (3.6) by ϕ and integrating over T

2 one obtains
κ(λ;1)≤λ‖α+‖∞ with α+ the positive part of α. Since the operator on the right hand
side of (3.6) is self-adjoint, it is easy to see that in fact limλ→∞κ(λ;1)/λ=‖α+‖∞.
From this it follows that for each f ′(0),

lim
A→∞

c∗e(A)

A
≤‖α+‖∞ = lim

f ′(0)→∞
lim

A→∞

c∗e(A)

A
.

On the other hand, (1.6) becomes

−χx2x2
=Aα(x2)

with χ(x1,x2)=χ(x2) and it follows that De(A)=1+A2γ2 with
γ=‖∇x2

(−∆x2
)−1α‖2. We thus have

lim
A→∞

c∗e(A)
√

De(A)
≤ ‖α+‖∞

γ

for any f ′(0) and α 6≡0. This shows that the lower bound in (1.8) is optimal up to
a constant for large f ′(0). Note that this example extends without change to any
dimension.

If a solution φ∈H1(T2) of (3.5) exists, then the function ψ : 2T×T→2T given
by ψ(x1,x2)=φ({x1},x2)−x1 belongs to H1(2T×T;2T) (here 2T=[0,2] with 0 and 2
identified, and {x} is the fractional part of x; in three dimensions ψ∈H1(2T×T

2;2T)).
Moreover, ψ satisfies

u ·∇ψ=0 and ψ(x1 +1,x2)=ψ(x1,x2)−1. (3.7)

In the following examples it will be a bit easier to work with ψ than with φ.

Example 3.3. Percolating flows. Let u be such that for some x2 the streamline
S of the flow (i.e., solution of the ODE X ′ =u(X)) starting at (0,x2) reaches (1,x2)
in finite time. This means that S is a periodic curve passing through (n,x2) for each
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n∈Z. Such u is called a percolating flow (in the horizontal direction). Note that any
non-zero shear flow is percolating. Since u 6=0 on S, it is easy to show that if ψ from
(3.7) exists, it must be continuous and constant on S (see [19, Lemma 5.2]). This,
however, contradicts the second condition in (3.7). Hence such a ψ does not exist and
Corollary 1.4 gives

lim
A→+∞

c∗e(A)=+∞ (3.8)

for e=e1. This has been proved under some additional “non-degeneracy” conditions
on u in [9].

Example 3.4. Cellular flows. These are flows with a periodic array of cells, each
streamline of the flow being either a closed curve contained inside a cell or a part of
the boundary of a cell. A typical example is the flow

u(x1,x2)=∇⊥H(x1,x2)=(−Hx2
(x1,x2),Hx1

(x1,x2)) (3.9)

with H(x1,x2)=sin2πx1 sin2πx2 the stream function of u. The streamlines of this
flow are depicted in Figure 3.1.

Fig. 3.1. A 2D cellular flow.

Constancy and continuity of ψ from (3.7) on each non-trivial streamline implies
that ψ has to be constant on the boundary of each cell (namely, it equals there the
limit of the values on the streamlines approaching the boundary). But then ψ can
belong to H1 only if it is constant on the whole “skeleton” of separatrices separating
the cells, which again contradicts the second condition in (3.7). Hence (3.8) holds for
e=e1. We note that pulsating front speed-up by (certain generic) cellular flows has
first been proved in [14], with precise asymptotics established in [17].

Example 3.5. Checkerboard flows. Consider the cellular flows from the previous
example with the flow vanishing in every other cell, thus forming the checkerboard
pattern depicted in Figure 3.2.

The above u is not Lipschitz in this case, so let us remedy this problem by taking,
for instance, H(x1,x2)=(sin2πx1 sin2πx2)

α with α≥2 in the cells where u does not
vanish. Now u vanishes on the boundaries of all cells, but if ψ from (3.7) exists, the
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Fig. 3.2. A checkerboard cellular flow.

requirement ψ∈H1 still ensures that ψ is constant on the boundaries of those cells in
which the flow does not vanish (and it is continuous at these boundaries from inside
of these cells). The values of these constants for two cells that touch by a corner must
be the same. This follows from the fact that if an H1 function has values a and b on
two curves connecting a point x∈R

2 to a circle {y : |y−x|=ε} for some ε>0 (and it
is continuous at these curves, at least from one side), then a= b (see, e.g. [19, Lem.
5.2] for this simple argument). We again have contradiction with the second condition
in (3.7), and (3.8) for e=e1 follows.

Effective diffusivity enhancement for the flow in Figure 3.2 has been proved in
[11] but pulsating front speed-up is new. Notice also that the above argument applies
without change to more general checkerboard-type flows. Consider, for instance, the
case of such flows but with the contact between the “active” cells formed only by two
touching cusps rather than two right angles (so that the angle of contact between
these cells is π). As before, one finds that there is no function ψ∈H1 satisfying (3.7)
and so pulsating front speed-up by the flow in the sense of (3.8) follows by Corollary
1.4.

Example 3.6. Flows with gaps. Consider the cellular flow from Example 3.4 but
with a vertical “gap” of width δ>0 (in which u=0) inserted in place of each vertical
line {n}×R, n∈Z, such as shown in Figure 3.3.

This can be achieved by letting the stream function be, for instance,

H(x1,x2)=

{

(sin 2π
1−δx1 sin2πx2)

α x1 mod 1∈ [0,1−δ)
0 x1 mod 1∈ [1−δ,1)

with α≥2. More generally, we can assume that u has a periodic array of vertical
channels in which the flow only moves “along” each channel. Namely, we assume that
there is a C1 map γ : [0,1]×R→ [0,1]×R which is one-to-one and satisfies γ(a,b+1)=
γ(a,b)+(0,1) and u(γ(a,b))= c(a,b) ∂

∂yγ(a,b) for all (a,b)∈ [0,1]×R and some c(a,b)∈
R. This means that γ({a}×R) is a “vertical” streamline of u for each a (or a union
of streamlines if u vanishes somewhere on this curve). Let us also assume that the
curve γ({0}×R) lies to the “left” of γ({1}×R). We now let ω : [0,1]→ [0,1] be a C1
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Fig. 3.3. A cellular flow with gaps.

function with ω(0)=1 and ω(1)=0. We define ψ(γ(a,b))=ω(a) and set ψ equal 1 and
0 on the “left” and “right” components of [0,1]×Rrγ([0,1]×R), respectively. We
have that ψ is constant on each γ({a}×R) and so u ·∇ψ=0. Since the periodicity
of γ ensures ψ(x1,0)=ψ(x1,1), we can extend ψ to an H1(2T×T;2T) function by
letting ψ(x1 +1,x2)=ψ(x1,x2)−1. Hence (3.7) is satisfied and (3.8) fails for e=e1.

Note that the flows in the last example are percolating in the vertical direction
if u does not vanish on each of the curves γ({a}×R). Hence by the remark after
Proposition 1.2 and Example 3.3, speed-up of fronts in the sense of (3.8) happens
precisely when e 6=e1. On the other hand, (3.8) is valid for any e in the case of the
flows from examples 3.4 and 3.5.

Our final example deals with speed-up of fronts by three-dimensional cellular
flows. To the best of our knowledge this is the first example of this kind.

Example 3.7. 3D cellular flows. We consider here flows that have a cellular
structure and are truly three-dimensional, with all three components of the velocity
depending on all three coordinates. Such incompressible flows have been constructed
in [7]. They have the form

u(x1,x2,x3)=
(

Φx1
(x1,x2)W

′(x3),Φx2
(x1,x2)W

′(x3),kΦ(x1,x2)W (x3)
)

(3.10)

with ∆Φ≡−kΦ. We will concentrate here on the simplest example of a flow with
cubic cells. This flow is given by

Φ(x1,x2)=cosx1 cosx2, W (x3)=sinx3 (3.11)

and k=2, with W possibly any other 2π-periodic function vanishing at 0.
The cube C=[0,2π]3 =(2πT)3 is a cell of periodicity for the flow (3.11). Each

of the eight dyadic sub-cubes of C of side-length π is invariant under the flow and
the flow in each of them has the same streamlines but moves along them in opposite
directions in two neighboring sub-cubes. For the moment we restrict our attention
to only one of them, [0,π]3. The streamlines of the flow in the part of this sub-cube
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Fig. 3.4. A 3D cellular flow.

given by x1 +x2≥π are depicted in Figure 3.4 (and they are symmetric across the
plane x1 +x2 =π).

Since

u1(x1,x2,x3)

u2(x1,x2,x3)
=

Φx1
(x1,x2)

Φx2
(x1,x2)

=
sinx1cosx2

cosx1 sinx2

is independent of x3, the projection onto the (x1,x2)-plane of any streamline of the
flow stays on a curve satisfying X ′ =∇Φ(X). Figure 3.5 shows the phase portrait of
this ODE in [0,π]2.

Fig. 3.5. A 2D projection of the 3D cellular flow.

With the exception of the diagonals D={(x1,x2) : |x1−π/2|= |x2−π/2|}, each
of the pictured curves connects a minimum and a maximum of Φ (we will call these
Φ-curves). Any streamline of u in [0,π]3, with the exception of those lying in (D×
[0,π])∪([0,π]2×{0,π}) (these form a set of measure zero and will be disregarded from
now on), is a closed orbit, whose projection onto the (x1,x2)-plane is a portion of a Φ-
curve contained in [0,π]2 \D (in particular, it does not contain the corners of [0,π]2).
Some of these are stationary, namely those at (x1,x2,x3) with x3 =π/2 and either
x1 =π/2 or x2 =π/2.
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For each (x1,x2)∈ [0,π]2 \D, let J(x1,x2)=(x1,π−x2) if |x1−π/2|> |x2−π/2|
and J(x1,x2)=(π−x1,x2) if |x1−π/2|< |x2−π/2|, so that (x1,x2) and J(x1,x2) lie
on the same Φ-curve. Extend J to the whole cube [0,π]3 by letting J(x1,x2,x3)=
(J(x1,x2),x3) whenever |x1−π/2| 6= |x2−π/2|. Notice that J is defined for almost all
points in the cube (and we will from now on disregard the rest) and J2 =Id. Each of
the streamlines of u is symmetric either across the plane x1 =π/2 or across x2 =π/2,
and hence the points x and J(x) lie on the same streamline of u.

Let us now assume ψ∈H1(2C;4πT) with 2C=4πT×(2πT)2 satisfies

u ·∇ψ=0 and ψ(x1 +2π,x2,x3)=ψ(x1,x2,x3)−2π. (3.12)

(which is the analogue of (3.7)) and assume without loss of generality that ψ is
real. Extend J to 2C by J(x1 +pπ,x2 +qπ,x3 +rπ)=J(x1,x2,x3)+π(p,q,r) for any
p∈{0,1,2,3} and q,r∈{0,1} so that one still has that x and J(x) lie on the same
streamline of u. The condition u ·∇ψ=0 implies that ψ is constant on almost all
streamlines of u. In particular, for almost all x we have ψ(x)=ψ(J(x)). At the
same time we know that the restriction of ψ to almost every plane x3 =C is an
H1(4πT×2πT;4πT) function. This means that for almost every plane x3 =C ∈ (0,π)
the restriction of ψ to it (which we call ψ̄) belongs to H1(4πT×2πT;4πT) and satisfies
ψ̄(x)= ψ̄(J(x)) for almost all x=(x1,x2)∈4πT×2πT.

Next we choose r0 such that if Bj =B((jπ,0),r0), then
∫

Bj
|∇ψ̄(x)|2dx<π/32 for

j=0,1,2. It is then easy to show that for each j=0,1,2 the set Rj of all r∈ (0,r0)
such that

esssup
θ
ψ̄(jπ+rcosθ,rsinθ)−essinf

θ
ψ̄(jπ+rcosθ,rsinθ)<

π

2

satisfies |Rj |>3r0/4. This is because

π

32
>

∫

Bj

|∇ψ̄|2dx≥
∫

(0,r0)\Rj

∫ 2π

0

r

∣

∣

∣

∣

1

r

∂ψ̄

∂θ

∣

∣

∣

∣

2

dθdr

≥
∫

(0,r0)\Rj

1

2πr

(
∫ 2π

0

∣

∣

∣

∣

∂ψ̄

∂θ

∣

∣

∣

∣

dθ

)2

≥ π|(0,r0)\Rj |
8r0

.

Let R0 =
⋂2

j=0Rj so that |R0|>r0/4, and let r∈R0. Then the values ψ(x) for almost
all points x on the circle Cj(r)={(jπ+rcosθ,rsinθ)|θ∈ [0,2π)} lie within an interval
|Ij(r)|≤π/2. Since ψ̄(rcosθ,rsinθ)= ψ̄(π−rcosθ,rsinθ) and ψ̄(π+rcosθ,rsinθ)=
ψ̄(2π−rcosθ,rsinθ) for almost all (r,θ)∈R0×(−π/4,π/4) (because ψ̄(x)= ψ̄(J(x))),

we have that for almost all r∈R0, the values ψ̄(x) for almost all x∈⋃2
j=0Cj(r) lie

within the interval I0(r)=
⋃2

j=0 Ij(r) with |I0(r)|≤3π/2. But this contradicts the
second condition in (3.12) because C2(r)=C0(r)+(2π,0). Therefore there is no ψ∈
H1(2C;4πT) which satisfies (3.12), and hence (3.8) holds for e=e1.

We note that our analysis can also be performed on other 3D flows from [7], for
example, on the flow given by

Φ(x1,x2)=2cos
√

3x1cosx2 +cos

(

2x2−
π

2

)

, W (x3)=sinx3,

whose cells form a hexagonal 3D honeycomb lattice. Using the fact that Φ(x1,x2)=
−Φ(R(x1,x2)), with R the reflection across any of the lines x2 =kx1− π

2 , k=±
√

3,0,
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one can show as above that the streamlines of the flow are symmetric across the planes
given by these three equations, and again conclude (3.8).
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[10] M. Freidlin and J. Gärtner, On the propagation of concentration waves in periodic and random

media, Soviet Math. Dokl., 20, 1282–1286, 1979.
[11] A. Fannjiang and G. Papanicolaou, Convection enhanced diffusion for periodic flows, SIAM

Jour. Appl. Math., 54, 333–408, 1994.
[12] S. Heinze, Large convection limits for KPP fronts, Max Planck Institute for Mathematics

Preprint Nr., 21, 2005.
[13] S. Heinze, G. Papanicolau and A. Stevens, Variational principles for propagation speeds in

inhomogeneous media, SIAM J. Appl. Math., 62(1), 129–148, 2001.
[14] A. Kiselev and L. Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion

equations with advection, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18, 309–358, 2001.
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