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DIFFUSE INTERFACE ENERGIES CAPTURING THE EULER
NUMBER: RELAXATION AND RENOMALIZATION*

QIANG DUT, CHUN LIUf, ROLF RYHAMS$, AND XIAOQIANG WANGY

Abstract. We introduce a set of new interfacial energies for approximating the Euler number of
level surfaces in the phase field (diffuse-interface) representation. These new formulae have simpler
forms than those studied earlier in [Q. Du, C. Liu and X. Wang, Retrieving topological information
for phase field models, SIAM J. Appl. Math., 65, 1913-1932, 2005], and do not contain higher order
derivatives of the phase field function. Theoretical justifications are provided via formal asymptotic
analysis, and practical validations are performed through numerical experiments. Relaxation and
renormalization schemes are also developed to improve the robustness of the new energy functionals.

Key words. FEuler number, topological index, implicitly defined surfaces, phase field, diffuse
interface, interfacial energy, surface tension, bending energy, vesicle membrane

AMS subject classifications. 57M50, 74A50, 74599, 92C05

1. Introduction

The Euler number, or Euler-Poincare index, is a topological index which can pro-
vide statistical information to classify types of surfaces and also be an indicator of crit-
ical topological events and possibly hysteresis in a dynamic process. When using the
direct representation of surfaces, critical events, e.g., change of topology, are often as-
sociated with a singular transition, and thus necessitate re-meshing/reparametrizaion.
Such singular transitions are difficult to treat. They require extensive computational
efforts in doing detailed constructions, but more importantly, if dealt with in an
ad hoc or artificial fashion, the correct physics or energetics may not even hold.
Consequently, the detection and treatment of topological events present interesting
and challenging problems that have been widely studied through various approaches
[15, 17, 18, 21, 23, 24, 27]. There is also considerable interest in topological feature
preservation in areas such as computer graphics and shape optimization [1, 14, 16, 26].

In contrast to most direct methods, the phase field (or diffuse interface) model uses
an implicitly defined interface representation which is indifferent to most topological
changes [2, 3, 4, 5, 6, 19]. A change of the topology is in general not detectable by
changes in the surface or mean curvature energy [11]. Hence it is desirable to introduce
a new interfacial energy which can provide statistics on the interface topology.

In this paper we study approximations of the Euler number of an interface T,
which is implicitly defined by the zero level set of a phase field function ¢ defined in
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a computational domain Q C R3, by functionals of the following form:

Xegb):_ 1 /Q<A¢—€%W'(¢))p(¢)dw- (1.1)

4mcpe

For the remainder of this paper we assume that W is the double welled potential,
W (t) = (t*—1)%/4, but more general W may also be applicable. The constant ¢ is a
normalization parameter, depending on W and p, as specified later. In this work we
study x. for p of the form p(t)=d((1—t3)")/dt =—2n(1—t*)""1t for n > 1.

In [11], several formulae for the computation of the Euler number were introduced
in the phase field context. For instance,

Xo(¢) 1 1 2, Vo-V?-Vo
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where the subscript o is used to denote the old definition, A(M) is the sum of the
determinant of the three principal minors of a 3 by 3 matrix M and c is a constant
explicitly given based on the computational domain {2.. The authors also studied
several simplified forms under a special ansatz and a simple approximation of the
index of curves in two dimensional space, which are related to the functional (1.1)
considered in this paper with p(t)=1.

Some advantages of the new interfacial energy are: (1.1) is relatively easy to
compute while (1.2) requires the evaluation of the Hessian matrix containing second
order derivatives, and (1.1) effectively avoids using high order derivative terms after
an integration by part on the term Ag. In addition, (1.1) is well defined for ¢ € H?(Q)
while (1.2) is not in general. Moreover, its variational derivative, in weak form,

(@)= [ (HOTT0+ 5IVOP @0+ 520507 (@l ) o,

TCoE 2¢2

contains differentiations of order less than two. It thus becomes feasible that (1.1) may
be used as constraints for schemes where the energy functional provides control on
the higher order space derivatives, like those found in the Cahn-Hilliard formulation
or approximations of elastica [20, 22].

This paper is divided as follows: In section 2, we give the preliminary derivation
of the new phase field energy for approximating the Euler number. In section 3, we
present some numerical simulation for a class of phase field functions where the new
formula (1.1) is in good agreement with the actual Euler number. In section 4, through
comparisons of the numerical simulations obtained with different formulae, we develop
some relaxation and renormalization procedures for the accurate approximation of the
Euler number with the new formulae in more general cases. We also provide some
formal justification to the relaxation procedure. Finally, we end the paper with some
conclusions in section 5.

2. Simple approximation of the Euler number

In this section, we validate (1.1) for a restricted class of phase field functions ¢..
First we recall some basic geometric identities in terms of the signed distance function
d. Let I' C © be a smooth, embedded surface without boundary and d(x)=|dist(x,I')]|
if x lies outside of the region enclosed by I' and d(z)= —|dist(x,T")| otherwise. The
function d is smooth in some neighborhood of I' wherein d satisfies |Vd|=1 and
0=V-(V2dVd)=Vd-VAd+tr((V3d)?). It is clear that Vd(z) is the outward pointing
unit normal n of I' and it is easy to check that Ad(z)=tr(V?d)=2H where H is the
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mean curvature. The matrix V2d has three eigenvalues 0, k; and k; where H =
(k1+k2)/2 and K =kyko. The new energy (1.1) relies on the following observation

2K =2k1ky = (k1+k2)? — (kI +K3)
=(Ad)? —tr((V3d)?) = (Ad)* +Vd-VAd
— V- (VdAd). (2.1)
Suppose that the phase field function takes the form of a particular one dimensional

profile in the direction normal to the surface: ¢.=q(d/e) where q(t)=tanh(t/v/2).
Let P(t)=(1—1t2)" so that p(t)=dP(t)/dt and define

00:2/_00 P(q(s))ds. (2.2)

Using integration by parts, the co-area formula [13], and identities |[Vd|=1 and (2.1),
we get as e converges to 0 that

Xe(ge) 1 1 o1 e N
9 Ircge /Q(A<ZS =W (¢)>P(¢)d = el /Q ¢'(d/€)Adp(g(d/€))d
=71 " [ adva-vP(q(d/e)de= 1 ! / V- (VdAd)P(q(d/e))dx
TCoE JQ TCo€E Jo
YT bl . . L _x(™)
—47TC06/_OOP(q( / ))/{d_r}v (VdAd)dSd 47T/Fde =

Note that the x(I')/2 given here is actually half of the conventional Euler number
X(T) of a surface defined in standard texts. For convenience and easy comparison
with an earlier work [11], this convention is made throughout the present paper and
the readers are reminded of this obvious difference. Without loss of generality, we
also assume here that the signed distance function is smooth in all of Q (else, we may
consider a modified distance function which is smooth and takes a constant value
d/2 outside some d-neighborhood of I'). The limit in the above relation follows from
elementary properties of the tanh function.

We have derived the Euler number formula under the pretext that ¢ enjoys a
restrictive structural assumption. However, there are cases, such as in the leftmost
graph of figure 4.2, where the formula (1.1) grossly over-estimates the Euler number
and the structural assumption no longer holds. The relaxation and renormalization
procedures devised in section 4 are aimed at partially amending this problem.

3. Preliminary numerical experiments

First we present some numerical experiments using our new Euler number func-
tional for p(t)=4(t>—1)t and co=8v/2/3. The three-dimensional numerical experi-
ments are performed in a computational domain [—7,7]3. For the spatial discretiza-
tion, a Fourier spectral method is used with a 64 x 64 x 64 mesh unless otherwise
noted. Mesh refinements are often performed to ensure the accuracy of the numerical
results.

In our first experiment, we validate (1.1) for ¢ which takes exactly the hyperbolic
tangent profile normal to a surface. Consider the cases of a sphere and a torus, we
take the parameter values e =1.768h =0.17355 so that enough resolution of the phase
field profile is assured. We let ¢(x) =tanh((0.657 — |x|)/(v/2¢)) for a sphere of radius
r=0.65m, while for the torus, we let ¢(z)=tanh((0.257 — [(x1 —0.57cos8)? + (x5 —
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TABLE 3.1. Numerically computed Euler number.

Shape \ Formula || New formula (1.1) | Old formula (1.2)
Sphere 1.0000 0.9995
Torus 0.0003 0.0112

0.5msinf)? 4 x3]'/2/(v/2€)) where 6 =cos™!(x1/|x|). Table 3 gives the Euler numbers
Xe(¢e)/2 calculated by formulae (1.1) and (1.2) respectively, note again that the values
computed are approximations of x(T")/2 which are just half of the conventional Euler
number values for surfaces (e.g., x(I') =2 for a sphere, and x(I")/2 matches with the
values for the sphere in the table and in the plots). From the data, it is obvious that
both formulae give relatively good approximations.

Euler Number
i

0 02 04 06 08 1 1.2 14 16
Time

Fic. 3.1. Vesicle deformation and its Euler number calculated by (1.1) at different times.

In our second experiment, we consider the surface obtained from the minimization
of the energy

H,(¢) = /Q ‘ <A¢— S —1)¢>>2 az, (3.1)

which models the deformation of vesicle membrane configurations minimizing their
bending energy H, [10]. The variational problem is also related to a functional intro-
duced by De Giorgi which has recently attracted much attention [20, 22].

The dynamic deformation process is simulated via a gradient flow of the energy
H. [12], subject to the constraint with a constant surface area (which is related to a
functional like (4.5) in the phase field description). In the experiment, as shown in
Fig. 3.1, an initial ellipsoid shape gradually deforms to a sphere. The Euler numbers,
again referring to x.(¢.)/2 as calculated by formula (1.1), are plotted in Fig. 3.1 with
respect to time. The calculated result lacks accuracy initially, however, soon after
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a transient period, the computed values of x¢(¢.)/2 from (1.1) converge to 1.0 very
quickly.

4. Relaxation and renormalization

In some cases, the functional (1.1) does not poorly approximates well the Euler
number of the implicitly defined interface (see for example figure 4.2.) This section is
devoted to addressing this problem. First we introduce an artificial relaxation scheme
using the energy (3.1). Then we apply a renormalization of the phase field by choos-
ing n large in the weighting function p(t) = —2n(1—t2)"~'t. Some formal asymptotic
analysis is given to motivate the artificial relaxation scheme and its connection with
the optimal profile used to derive (1.1) in section 2.

Fic. 4.1. Deformation of two bubbles: Larger bubble absorbs the smaller one.

We describe the relaxation scheme by an example from the general framework of
an incompressible fluid/phase field coupling (see [9], for instance.) Let E=FE(¢)>0
be an arbitrary energy functional and consider

ui+u-Vu+Vp=vAu+E (¢)Ve, (4.1)
V-u=0, .
¢t +u-Vo=—7E'(¢). (4.3)

Here ' denotes the Euler-Lagrange variational derivative, i.e., for ve C§°(£2), we have
(E'(¢),v) =L E(¢+1tv)|s—0. The above system models the two phase flow of an in-
compressible fluid which has an interfacial energy E'= E(¢) associated with the two
phases, e.g., the surface area of the interface. Our relaxation scheme replaces the
energy E by the perturbed energy

EX(¢)=E(¢)+AH(9), (4.4)

where H. is defined in (3.1). We point out that there are three artificial parameters to
regularize the system, namely, the parameter ¢ which regularizes the sharp interface
formulation, the parameter A which introduces higher order energy contribution; and
the parameter v which regularizes the transport problem by introducing additional
dissipation. Replacing F by the perturbed energy E) in (4.1) and (4.3), we get the
following energy dissipation law

d

1
& (1P + £)) =9l - B3 ) <o.
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If the initial data are chosen so that E(¢o) and ||u|\%2(9) are bounded by some
constant M independently of €, then H.(¢) remains bounded independently of € for
all later times as well. More discussions on the well-posedness of the resulting system
involving the bending energy H. can be found in [7]. Taking A to zero, the above
system ideally returns to the original coupling only involving F.

We now consider an example, as shown in Fig. 4.1, that demonstrates the hydro-
dynamic evolution of the coarsening of two bubbles governed by (4.1-4.3), where E is
replaced by the perturbed energy (4.4) with

B0)= [ (§176P+ 1w ) as. (45)

The computation is again performed by the Fourier spectral method with a 64 x 64 x
128 grid which offers sufficient resolution. The domain is [—m, 7] X [—m, 7] X [=27,27].
The volume of all the bubbles is preserved by taking the integral of ¢ to be —419.5
at all time. The initial surface area, evaluated via (4.5), is chosen to be 61.2. For
detailed numerical procedures, we refer to [12].

— 0ld Formula
sk — New Formula
= 4F 1
®
o
E ]
4
5
-’ ]
o
o
- 1F =
OF
| L
0 02 04 08 08 1 1.2 14
Time
6 4
— Old Formula — Old Formula
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New Formula 35

Euler Number
) w
Euler Number

Time Time

Fic. 4.2. Comparison of Euler number computation using the old formula (1.2) and new
formula (1.1), with A=0,0.1 and 0.2.

Unlike the experiments in section 3, the new formula (1.1) with p(t)=4(t*—1)t
and co = 8v/2/3 does not give satisfactory results in the absence of relaxation (A=0).
In fact, it tends to over-estimate the Euler number. By increasing A, the results seem
to improve (see Fig. 4.2).

A closer look at the example reveals that during the deformation of the bubbles,
even with the relaxation, which confines the distortion of the profile of the phase
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Fic. 4.3. Contour of the phase field ¢ at t=1.13.

function ¢ near the interface, the new Euler number formula remains sensitive to the
small distortion away from the interface which is the cause of inaccuracy in the above
example, as illustrated in the contour plot in Fig. 4.3 of the phase field function (at
time t=1.13 and A=0.1). The contours lines are drawn for values in between —1 and
—0.993 with an increment of 5.0 x 107, and the two well-separated red curves give
the zero level set of ¢. The plot reveals a connected contour structure away from the
interface.

——Old Formula 4 —— 0ld Formula

New Formula(n=2) New Formula(n=2)
New Formula(n=4) 35 New Formula(n=4)
New Formula(n=6) New Formula(n=6)

&
'
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—— Old Formula —— Old Formula
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New Formula(n=4) 25 New Formula(n=4)
— New Formula(n=6) — New Formula(n=6)

Euler Number
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.
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Time Time

Fi1c. 4.4. The improvement of xe(¢e)/2 due to the combination of relazation and renormaliza-
tion: A is taken to be 0.1, 0.2, 0.4 and 0.8, with each plot showing results for n=2,4 and 6.
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Fi1G. 4.5. The improvement of xe(de)/2 due to the combination of relazation and renormaliza-
tion: computed Euler number from the old formula (1.2) and from (1.1) with n being 2, 4 and 6,
with each plot showing results for A=0.1, 0.2, 0.4 and 0.8.

In order to compensate for the sensitivity displayed in the above study, we in-
troduce a renormalization of the Euler number formula. Here, we study the cases
p(t)=—2n(1—12)""1t for n=2,4 and 6 where co =8v/2/3,641/2/35 and 1024+/2/693
respectively. For large n, the extra factor (1—¢?)"~! removes the contribution away
from the interface where ¢ is typically close to +1.

The numerical results of y.(¢.)/2 given in Fig. 4.4 and Fig. 4.5 illustrate the
effect of the relaxation and renormalization in the calculation of the Euler number by
the new diffuse interface energies. A comparison with the results computed via the
old formula (1.2) is also provided which again illustrates the robustness and accuracy
of the latter. But as explained before, it is advantageous to employ the newer and
simpler energies developed in this paper for many applications, such as for topology
control purposes. Our experiments show that combining both the A—relaxation and
the n—renormalization is a very effective approach and it leads to significantly more
accurate results under the new formulation.

We now briefly discuss why the introduction of the particular relaxation energy
(3.1) via (4.4) possibly improves the approximation by the Euler number formula.
Recall that in the derivation/validation of (1.1) (section 2), the phase fields are lim-
ited to those profiles satisfying ¢(z)=tanh(d(z)/(v/2¢)). More generally, the phase
field profile may satisfy the ansatz ¢(x) = q(d(x)/€) +€eh(z) + O(€?) for some arbitrary
profile ¢ and for some well-behaved function h. For fixed A, the relaxation scheme
guarantees that H.(¢) is bounded independently of e. This, in combination with the
ansatz, implies that ¢(t) =tanh(¢/v/2) and h=0. To see this, we may simply expand
H.(¢) in € or refer to the calculation given in [8, 25]. The uniform H, bound tends to
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enforce an optimal profile for the phase field, thereby leading to the accuracy of the
approximation x(¢).

Finally, we want to point out the limitation and validity of the above approxi-
mation/regularization. Although the relaxation using the bending (Willmore) energy
(3.1) does provide better control of the profile across the transition layer (hence as-
suring a more accurate Euler number calculation), it may well change the original
dynamical problem. For instance, the presence of the bending energy may alter the
interaction mechanism of the interface and flow fields, especially when the interface
has regions of large curvature. Again, we elaborate that the key point of this paper
is to introduce a simpler formula to compute the Euler number which relies more
significantly on the profile of the transition layer. The relaxation and renormalization
may be seen as ways to capture the Euler number but we do not at all claim these are
optimal or even necessary. We are investigating more robust methods for maintaining
the optimal profile and calculating the Euler number.

5. Conclusion

In summary, built upon earlier works on phase field membrane modelling, we
developed a few new formulations of interfacial energies for estimating the Euler
number of a free surface described by a phase field function. While in the previous
work [11], we have sought a formula with more generality, the emphasis here is to
look for more specialized but still effective formulae. The new energy given here
is simpler and of a more attractive form. It does not need to involve high order
derivatives and thus is more suitable to be used as a control and/or constraint in
various applications. The simplifications are made possible by exploring the special
optimal profile structures of phase field models, which may be induced by energy
relaxation. The numerical experiments show that the new formula can be successfully
implemented to retrieve topological information.

Of course, the Euler number alone does not determine completely the topology of
an interface. Further studies on computing other topological indices as well as more
extensive numerical experiments will be carried out in the future.

Acknowledgment. The authors would like to thank the referee for providing
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