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OPTIMAL CONTROL OF THE STATIONARY QUANTUM
DRIFT-DIFFUSION MODEL∗

A. UNTERREITER† AND S. VOLKWEIN‡

Abstract. In this work an optimal control problem for a stationary quantum drift diffusion
(QDD) model is analyzed. This QDD model contains four space-dependent observables: The non-
negative particle density of electrons, the electrostatic potential, the quantum quasi-Fermi potential
and the current density. The goal is to optimize the shape of quantum barriers in a quantum diode.
Existence of optimal solutions is proved. Moreover, first-order necessary optimality conditions are
derived.
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1. Introduction
Ultra-small semiconductor devices exhibit electronic performances relying intrin-

sically on quantum-mechanical effects. In particular, in certain switching situations
the electric current flowing through the device depends in a non-monotone way on
the applied voltage. This important phenomenon is known as negative differential
resistance (NDR) effect. Aside from finding tractable mathematical models for NDR
effects, the question of optimizing the system’s parameters with respect to desired per-
formances has raised considerable attention in the literature; see, e.g., in [4, 6, 7, 12]
for optimal control of a drift-diffusion model. Furthermore, we refer to [8], where an
inverse problem for semiconductor equations was considered that arises in modelling
a laser beam induced current (LBIC). For engineering aspects we refer to [15, 16, 17].

In this work we want to optimize the shape of quantum barriers in a quantum
diode to achieve for a given external voltage VD an optimal current Id. The quantum
diode consists of several sandwiched crystals of different ground energy levels whose
gaps are described by the quantum barrier function B. The quantum diode’s perfor-
mance is overall determined by the location, the width and the ground energy values
of the involved crystals. While the crystals’ locations are more or less limited by
technological possibilities, their length and their quality (thus, their ground energy’s
value) are variable. In particular, one can optimize length and quality to get as close
as possible to a desired IV-curve.

It is the present paper’s plan to investigate a mathematical model for this opti-
mization procedure. The goal of the optimization is to determine amongst a class of
admissible barrier functions the optimal B to achieve a desired IV-curve. We suppose
the set of admissible barrier functions to be parameterized by ` variables ranging in
the set of admissible controls Uad.

The paper is organized in the following manner: In Section 2 we introduce the
stationary quantum drift diffusion (QDD) model, prove existence of H1solutions and
derive a-priori bounds. The optimal control problem is formulated in Section 3. Exis-
tence of optimal solutions is shown utilizing the a-priori bounds derived in Section 3.
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86 OPTIMAL CONTROL OF THE STATIONARY QDD MODEL

We present first-order necessary optimality conditions in Section 4.

2. The quantum drift diffusion model
The investigations concern a stationary, i.e., time-independent, unipolar QDD

model constituted by a system of coupled partial differential equations. The spatial
variable x ranges in the devices’ domain W . Having in mind realistic shapes for
ultra-small devices we assume W to be a cuboid in d space dimensions, d=1,2 or
d=3:

W =]0,L1[×...×]0,Ld[ with L1,.. .,Ld >0. (A1)

Typically the diode’s boundary Γ splits into a contact region ΓD and an insulating
region ΓN . It is quite realistic to assume that ΓD consists of two opposing lateral
surfaces

ΓD ={0,L1}× [0,L2]× ...[0,Ld], (A2)

while the insulating region is ΓN =Γ\ΓD. Obviously, ΓN =∅ for d=1.

2.1. The model equations. In the framework of the stationary QDD model
the diode’s performance is described by four space-dependent observables: The non-
negative electron’s particle density n, the electrostatic potential V , the quantum quasi-
Fermi potential F and the current density ~J . The diode’s parameters are the effective
mass of electrons m, the temperature of the electron gas T , the positive, constant mo-
bility of electrons µ, the positive, constant permittivity of the diode’s underlying crys-
tal ε, the time-independent, non-negative doping profile C, and the time-independent
quantum barrier function B :W →R. The quantum barrier function B represents the
ground energy’s gap of one (or more) crystals with respect to a reference crystal. B
vanishes in regions, where the reference crystal is present, whereas B does not van-
ish in a crystal whose ground energy is different from the reference crystal’s ground
energy. We suppose

B,C ∈L∞(W ). (A3)

For the notion of Lebesgue and Sobolev spaces we refer the reader to [1], for instance.
The quantum quasi-Fermi potential F acts as the electron’s velocity potential,

~J =µn∇F in W.

Corresponding to the conservation of mass the current density is divergence free:

∇· ~J =0 in W.

The electrostatic potential V is self-consistent, i.e.,

−ε ∆V = q (n−C) in W,

where ε≈11.6 ·10−12 As
Vm is the — assumingly: constant — dielectricity constant of

the underlying crystal, and the quantum quasi-Fermi potential F is

F =− ~
2

6m

∆
√

n√
n

+kBT logn+qV +B in W,

where ~≈6.626 ·10−34Js is Planck’s constant, kB≈1.38 ·10−23 J
K is Boltzmann’s con-

stant and q≈1.6 ·10−19As is the elementary charge. The term − ~2
6m

∆
√

n√
n

is Bohm’s
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Quantity s Order of magnitude (SI units)

x L 7.5 ·10−8

n C 1024

V Uth =kBT/q 6.6 ·10−3

C C 1024

F kBT 10−21

B kBT 10−21

~J µCkBT/L 3.5 ·1010

Table 2.1. Scaling factor s for the involved quantities satisfying Quantity = s times scaled
Quantity.

quantum potential; see [2]. The effective electron mass m is typically about one tenth
of the electron mass at rest m≈10−31kg; see [12, 13].

It is convenient to introduce scaled variables. In Table 2.1 we give the scaling
factor s for the involved quantities: Quantity = s times scaled Quantity. Moreover,
we use µ=2.08Am2

J and T =77K. In what follows we denote the scaled variables with
the same symbol as the corresponding unscaled variables. The scaled model equations
read

~J =n ∇F in W , (2.1a)

∇· ~J =0 in W, (2.1b)

−λ2 ∆V =n−C in W , (2.1c)

F =−ε2 ∆
√

n√
n

+log(n)+V +B in W , (2.1d)

where

0<ε2 =
~2

6kBTmL2
≈3 ·10−3,

and via ε≈11.6 ·10−12,

0<λ2 =
εUth

qCL2
≈8.5 ·10−4.

It is convenient to use rather ρ=
√

n than n. Equations (2.1) become

~J =ρ2 ∇F in W , (2.2a)

∇· ~J =0 in W , (2.2b)

−λ2 ∆V =ρ2−C in W , (2.2c)

F =−ε2 ∆ρ

ρ
+log(ρ2)+V +B in W . (2.2d)

Appropriate boundary conditions for (2.2) are obtained due to the following consid-
erations, where ν : Γ→Rd is the outward normal vector:
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a) We wish to optimize the current flowing through the device for a given ex-
ternal voltage VD. VD is applied along the contact region ΓD, hence

V =VD on ΓD.

b) The electron density ρ2 along ΓD depends on the device and on the surround-
ing electronic circuit. If VD is “close to the equilibrium value”, i.e., VD≈0,
it will be quite reasonable to assume ρ2 do be “almost independent of VD”.
As a consequence,

ρ=ρD on ΓD.

Possible choices for ρD are ρD=“variational minimum value of an energy
functional”, see [11], or ρD =

√
C leading to vanishing space charge on ΓD;

see [12].

c) In (2.2) the unknown function F can be viewed as a potential for the velocity
field for electrons. Hence one has to prescribe F along the contact region ΓD

where the current enters the device.

F =FD on ΓD.

In thermal equilibrium VD =0 there is no current at all which canonically
leads to FD =0 (or another constant). If VD 6=0 then there will a current
flow through the device and FD has to be changed. Thus, FD depends on
VD. A possible choice is FD =VD; see [12].

d) Along the insulating region the electric field is expected to have no component
orthogonal to the device. Thus

∂V

∂ν
=0 on ΓN .

e) Along the insulating region the current density ~J has only tangential compo-
nents. As ρ 6=0 can be expected we deduce via ~J =ρ2∇F ,

∂F

∂ν
=0 on ΓN .

f) The quantum mechanical Bohm potential −ε2 ∆ρ
ρ , the diffusion potential

log(ρ2), the drift potential V and the barrier potential B all contribute to
the velocity field ∇F and thus determine ~J . Aside from the barrier potential
B, one has to expect that none of these contributions has a component or-
thogonal to the device. Via d) and e) we deduce ∂ log(ρ2)

∂ν =0 on ΓN . As we
expect ρ 6=0, we deduce

∂ρ

∂ν
=0 on ΓN .
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We obtain

−∇·(ρ2∇F )=0 in W, (2.3a)

−ε2∆ρ=ρ
(
F −V −B− log(ρ2)

)
in W, (2.3b)

−λ2∆V =ρ2−C in W, (2.3c)

F =FD, ρ=ρD, V =VD on ΓD, (2.3d)

∂F

∂ν
=

∂ρ

∂ν
=

∂V

∂ν
=0 on ΓN . (2.3e)

For the sake of brevity we set

Hb =H1(W )∩L∞(W ),

which is a Banach space supplied with the canonical norm

‖ϕ‖b =‖ϕ‖H1(W ) +‖ϕ‖L∞(W ) for ϕ∈Hb.

For k∈N we set

(Hb)k =Hb× ...×Hb︸ ︷︷ ︸
k−times

endowed with the natural product topology. Recall that in the one-dimensional case
H1(W ) is continuously embedded in L∞(W ) and we deduce Hb =H1(W )∩L∞(W )=
H1(W ). We assume henceforth

FD, ρD, VD ∈Hb (A4)

and

essinf
x∈W

ρD(x)>0. (A5)

In (2.3) the square of the electron density ρ=ρ(x)≥0, the quantum quasi-Fermi
level F =F (x), and the electric potential V =V (x) are unknowns. The current density
is given by ~J =ρ2∇F .

Equations (2.3) possibly have several solutions. Existence of weak solutions in
H1 - shorthanded as “H1solutions” - is established in [3, 13, 18]. H1solutions of (2.3)
belong to the Sobolev space

H◦=H1
0 (W ∪ΓN )=

{
ϕ∈H1(W )

∣∣ϕ=0 on ΓD

}
.

Since ΓD consists of two opposing lateral surfaces the Sobolev space H◦ allows for a
Poincaré inequality: there exists a constant CP >0 such that

∫

W

ϕ2dx≤CP

∫

W

|∇ϕ|2dx for all ϕ∈H◦. (2.4)

As a consequence, the bilinear form

〈ϕ,ψ〉H◦ =
∫

W

∇ϕ ·∇ψdx for ϕ,ψ∈H1
0 (W )

is an inner product in H◦ and (H◦,〈·,·〉H◦) is a Hilbert space.

Definition 2.1. The triple (F,ρ,V ) is a H1solution of (2.3) if and only if
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1) F −VD, ρ−ρD, V −VD ∈H◦; F ∈L∞(W );
2) ρ≥0 a.e. in W ;
3) for all ϕ∈H◦,

∫

W

ρ2∇F ·∇ϕdx=0, (2.5a)
∫

W

ε2∇ρ ·∇ϕdx=
∫

W

ρ
(
F −V −B− log(ρ2)

)
ϕdx, (2.5b)

∫

W

λ2∇V ·∇ϕdx=
∫

W

(
ρ2−C)ϕdx; (2.5c)

where in (2.5b) and in the sequel

0 · log(02)=02 · log(02)=0.

Remark 2.2. Since the space dimension d does not exceed 3 a variational formulation
characterizing ρ is available: ρ is the minimizer of

E(%)=Equ(%)+Eel(%)+
∫

W

%2 (B−F )dx

— if d≤3 we have ∀ρ,F ∈H1(W ): ρ2F ∈L1(W ) ensuring directional derivatives of E
exist in all directions φ∈H1 such that we indeed can pass for the minimizer of E to
(2.5b) — in the H1(W )-weakly closed, convex set ρD +H◦ (see [3]), where

Equ(ρ)=ε2

∫

W

|∇ρ|2dx+
∫

W

ρ2 (log(ρ2)−1)dx

is the quantum internal energy, i.e., Bohm’s interaction energy plus the classical in-
ternal energy,

Eel(%)=
1
2

∫

W

|∇V◦|2dx+
∫

W

ρ2V ∗dx,

is the electrostatic energy, where V◦ solves

−λ2∆V◦=%2−C, V◦∈H◦,

uniquely in H◦ and V ∗ solves

−λ2∆V ∗=0, V ∗−VD ∈H◦,

uniquely in H1(W ), i.e., the function V ∗ is the Laplace-extension of the boundary
data VD.

Remark 2.3.
a) The functional E has at most one minimizer in ρD +H◦; see [11].
b) In Definition 2.1 we require F ∈L∞(W ). Due to the maximum principle one

can deduce F ∈L∞(W ) from (2.5a) via FD ∈L∞(W ) - provided one has a
priori estimates ensuring infW ρ>0. However, available proofs of infW ρ>0
in turn rely on F ∈L∞(W ). So by requiring F ∈L∞(W ) we do not want to
make things unnecessarily sophisticated here.
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c) Due to available results the assumption F∞(W ) is seemingly not very restric-
tive: up to now is not known whether (2.3) has H1solutions F 6∈L∞(W ).

d) With the same notations as in Definition 2.1-4) the function V =V◦+V ∗ is
the unique H1(W )-weak solution of

−λ2∆V =ρ2−C, V −VD ∈H◦.

Furthermore, for each triple (C,F,B)∈ (L∞(W ))3 and each ρ minimizing E
in ρD +H◦, the pair (ρ,V ) satisfies (2.5b), (2.5c).

e) Concerning the electrostatic energy we deduce via Poincaré’s inequality

1
2

∫

W

|∇V◦(ρ2−C)|2dx

≤ CP meas(W )
2λ4

(
‖ρ‖2L∞(W ) +‖C‖L∞(W )

)2

for all ρ∈L∞(W ),

where here and in the sequel “meas” is the Lebesgue measure.

Now we establish the existence of a H1solution and a-priori estimates. The proof
can be found in the appendix.

Theorem 2.4. Let (A1)-(A5) and

ε, λ>0 (A6)

hold. Then (2.3) has a H1solution and there is a constant C >0 depending on W , ε,
λ, ‖ρD‖b, ‖VD‖b, ‖C‖L∞(W ), ‖FD‖b, such that for each H1solution (F,ρ,V ),

‖F‖b +‖ρ‖b +‖V ‖b≤CeCe
‖B‖L∞(W )

. (2.6)

2.2. The current. The Dirichlet boundary ΓD splits into two (disjoint) parts

Γ1
D ={0}×WD and Γ2

D ={L1}×WD

with WD =]0,L2[×...×]0,Ld[. The current Ii(F,ρ) flowing through Γi
D, i=1 or i=2,

is given by

Ii(F,ρ)=(−1)iq

∫

WD

( ~J ·~e1)(zi,x2,... ,xd)d(x2,.. .,xd)

=(−1)iq

∫

WD

(
ρ2∇F ·~e1

)
(zi,x2,... ,xd)d(x2,.. .,xd), (2.7)

where z1 =0, z2 =L1 and ~e1 =(1,0,... ,0)T . We set

I(F,ρ)= I1(F,ρ).

In (2.7) we have to evaluate the gradient ∇F along ΓD which will not be possible
for any F in H1(W ). This technical difficulty can easily be handled by using an
alternative formula for I(F,ρ):
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• If d=1 then W =]0,L1[ and the current density J = ~J will be constant. Thus,

I(F,ρ)=− q

L1

∫ L1

0

J ·1dx for d=1. (2.8)

• For d>1 then we introduce for arbitrary l∈]0,L1[ the cuboid

Wl =]0,l[×]0,L2[×...×]0,Ld[⊂W.

Recall that ~J is divergence-free and that there is no current-flow across the
Neumann-boundary. Therefore, we obtain for l∈]0,L1[

0=
∫

Wl

∇· ~J dx=
∫

∂Wl

~J ·νds

=−
∫

Γ1
D

~J ·~e1ds+
∫

Γ2
D

~J ·~e1ds+
∫

ΓN∩∂Wl

~J ·νds

=
∫

WD

(
( ~J ·~e1)(l,x2,... ,xd)−( ~J ·~e1)(0,x2,... ,xd)

)
d(x2,... ,xd).

Consequently, we deduce from (2.7)

I(F,ρ)= I1(F,ρ)=(−1)q
∫

WD

(
~J ·~e1

)
(0,x2,... ,xd)d(x2,.. .,xd)

=−q

∫

WD

(
~J ·~e1

)
(l,x2,... ,xd)d(x2,.. .,xd) for l∈]0,L1[,

such that via integration from l=0 to l=L1,

I(F,ρ)=− q

L1

∫

W

~J ·~e1dx=− q

L1

∫

W

ρ2∇F ·~e1dx for d∈{2,3}. (2.9)

In the sequel we use formulae (2.8) and (2.9) as definitions of I(F,ρ), see Section 3.

3. The optimal control problem
In this section we introduce the optimal control problem to determine amongst

a class of admissible barrier functions the optimal B to achieve a desired IV-curve.
Further, we prove existence of optimal solutions.

We suppose the set of admissible barrier functions to be parametrized by `, `∈N∗,
variables. Uad is the set of admissible controls. We assume:





The set Uad, ∅ 6=Uad⊆R` of control parameters is
compact. The mapping

B :W ×Uad→R
is bounded and for all x∈W the partial function
B(x;·) is in C(2,1)(Uad). The set of all partial functions

Bad ={B(·;u1,.. .,u`) : (u1,.. .,u`)∈Uad}
is the set of admissible barrier functions.

(A7)

The gradient ∇uB(·;u) is a row vector with ` components. Let us present an example
for the set Uad and Bad.
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Example 3.1. Let φ :Rd×]0,∞[→ [0,∞[ be a function in C∞c (Rd× ]0,1/10[ ) such
that for all ε∈ ]0,1/10[ the function φ(·,ε) is supported in ]−1,1[×Rd−1. φ may be
generated via mollifying a step function, where ε is a mollifying parameter. We obtain
Φ : ]−1,1[×WD×]0,∞[→R by restricting φ to ]−1,1[×WD×]0,∞[. Then we choose
θ1,.. .,θm∈]0,L1[ with 0<θ1 <...<θm <L1 and we set δ :=min{θj−θj−1 : 2≤ j≤m}
for m∈N. Putting, e.g.,

Uad =[a,A]m× [δ/10,9δ/10]m× [1/100,1/20]

for some a,A∈R with 0≤a<A and defining B :W ×Uad→R by

B(x;α1,.. .,αm,ξ1,... ,ξm,ε)=
m∑

j=1

αjΦ
(x1−θj

ξj
,x2,... ,xd,ε

)
,

we obtain a function B meeting the requirements of (A7) with `=1+2m. Obviously
each B is the sum of re-scaled, shifted, compactly supported test functions whose
supports do not intersect. 3

For control parameters u∈Uad the quantum barrier function is B(·;u) and the
state variables F , ρ, and V are H1solutions of the scaled QDD model (2.3) which has,
according to Theorem 2.4, for given B(·;u) at least one H1solution.

We proceed by introducing the cost functional J :Hb×Hb×R`→ [0,∞) by

J(F,ρ,u)=
1
2
|I(F,ρ)−Id|2 +

∑̀

i=1

βi

2
|ui|2,

where the current functional is

I(F,ρ)=− q

L1

∫

W

ρ2∇F ·~e1dx,

Id∈R is a given desired current, and the βi’s are positive regularization scalars.

Lemma 3.2. The current functional I :Hb×Hb→R is twice continuously Fréchet-
differentiable and its second Fréchet derivative is Lipschitz-continuous.

A proof of Lemma 3.2 is given in the appendix.

Lemma 3.3. The cost functional J is weakly (lower semi-)continuous. Moreover, J is
twice continuously Fréchet-differentiable and its second Fréchet derivative is Lipschitz-
continuous.

Proof. First we show that the cost J is weakly continuous. For this purpose let
{(Fn,ρn,un)}n∈N be a sequence in Hb×Hb×R` with

(Fn,ρn,un)⇀ (F ∗,ρ∗,u∗) in Hb×Hb×R` as n→∞.

Since H1(W ) is compactly embedded in L4(W ) for d≤3 (see [1]), we have
(
ρn

)2→ (
ρ∗

)2 in L2(W ) as n→∞.

Moreover, ∇Fn ⇀∇F ∗ in L2(W ;Rd) as n→∞ which implies

lim
n→∞

− q

L1

∫

W

((
ρn

)2∇Fn−(
ρ∗

)2∇F ∗
)
·~e1dx=0.
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Consequently,

lim
n→∞

∣∣I(Fn,ρn)−Id

∣∣2 =
∣∣I(F ∗,ρ∗)−Id

∣∣2. (3.1)

Since un→u∗ in R` we directly infer that

lim
n→∞

|un
i |2 = |u∗i | for 1≤ i≤ `. (3.2)

From (3.1) and (3.2) it follows that J is weakly continuous and consequently weakly
lower semi-continuous as well.
Due to Lemma 3.2 the operator I is twice continuously Fréchet-differentiable. Conse-
quently, J is twice continuously Fréchet-differentiable at any (F̄ , ρ̄,ū)∈Hb×Hb×R`.
For directions (F,ρ,u),(F̃ , ρ̃,ũ)∈Hb×Hb×R` the first and second derivatives are

∇J(F̄ , ρ̄,ū)(F,ρ,u)=
(
I(F̄ , ρ̄)−Id

)∇I(F̄ , ρ̄)(F,ρ)+
∑̀

i=1

βiūiui (3.3)

and

∇2J(F̄ , ρ̄,ū)
(
(F̃ , ρ̃,ũ),(F,ρ,u)

)

=∇I(F̄ , ρ̄)(F,ρ)∇I(F̄ , ρ̄)(F̃ , ρ̃)+
∑̀

i=1

βiũiui

+
(
I(F̄ , ρ̄)−Id

)∇2I(F̄ , ρ̄)
(
(F̃ , ρ̃),(F,ρ)

)
,

(3.4)

where ∇I and ∇2I are given by formulas (A.8) and (A.9) in the appendix, respec-
tively. Since the mapping (F̄ , ρ̄) 7→∇2I(F̄ , ρ̄) is Lipschitz-continuous, we conclude that
(F̄ , ρ̄,ū) 7→∇2J(F̄ , ρ̄,ū) is Lipschitz-continuous as well.

Remark 3.4. Advanced numerical optimization methods — like sequential quadratic
programming (SQP) techniques — are known to have second-order rate of convergence
properties provided the cost functional and the constraints are twice continuously
Fréchet-differentiable with at least locally Lipschitz-continuous second derivatives.
Due to Lemma 3.3 the cost functional has these smoothness properties. The smooth-
ness properties of the constraints will be addressed in Lemma 4.1.

To deal with the QDD model in an abstract form, let us define the closed subset
Xad of the Banach space X =(Hb)3×R` and the Hilbert space Y as follows

Xad =(Hb)3×Uad Y =(H◦)3×
(
H1/2(ΓD)′

)3
,

endowed with their natural product topology. Recall that H◦=H1
0 (W ∪ΓN ). We

identify the dual Y ′ of Y with

(H ′
◦)

3×(
H1/2(ΓD)

)3
.

Next we introduce the non-linear operator

e=(e1,e2,e3,e4,e5,e6) :X→Y ′
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via

〈e1(x),ϕ〉H′◦,H◦ =
∫

Ω

ρ2∇F ·∇ϕdx,

〈e2(x),ϕ〉H′◦,H◦ =
∫

W

ε2∇ρ ·∇ϕ+ρ
(
V +B(·;u)+log(ρ2)−F

)
ϕdx,

〈e3(x),ϕ〉H′◦,H◦ =
∫

W

λ2∇V ·∇ϕ+(C−ρ2)ϕdx

for ϕ∈H◦ and

e4(x)= τD(F −FD), e5(x)= τD(ρ−ρD), e6(x)= τD(V −VD),

where x=(F,ρ,V,u)∈X, B =B(·;u) and

τD :H1(Ω)→H1/2(ΓD)

is the canonical (continuous, surjective) projection from H1(Ω) onto H1/2(ΓD).

Remark 3.5. One can also work on the affine space xD +X with the element xD =
(FD,%D,VD,0)∈X and avoid the introduction of the constraints ei, i=4,5,6 without
getting any different results.

The optimal control problem can be expressed in an abstract form as

minJ(F,ρ,u) s.t. x=(F,ρ,V,u)∈Xad and e(x)=0 in Y ′. (P)

Theorem 3.6. Suppose (A1)-(A7). Then (P) has at least one global optimal solution
x∗=(F ∗,ρ∗,V ∗,u∗)∈Xad.

Proof. By (A7) we have Uad 6=∅. Due to Theorem 2.4, the set

E =
{
x=(F,ρ,V,u)∈X

∣∣e(x)=0 in Y ′}

is non-empty. Due to (A7), there is a constant c1 >0 with ‖B(·;u)‖L∞(W )≤ c1 for all
u∈Uad.
Suppose that for chosen u∈Uad the triple (F,ρ,V )∈H3

b is a H1solution of (2.3) with
B =B(·;u). Then we infer from (2.6) that F , ρ, and V are bounded in Hb and there
exists a ζ≥0 with

ζ =inf {J(F,ρ,u)|(F,ρ,V,u)∈Xad satisfies (2.3) weakly}.

Let us consider a minimizing sequence {xn}n∈N, xn =(Fn,ρn,V n,un), in Xad, i.e.,
ζ =limn→∞J(Fn,ρn,un) holds. We define the sequence {Bn}n∈N via Bn =B(·;un),
n∈N. Then xn satisfies (2.3) for all n∈N. Since Uad is a compact subset of R`, there
is u∗∈Uad such that, eventually by passing to a subsequence but without changing
notations, un→u∗ in R`. This implies that

Bn→B∗=B(·;u∗) as n tends to ∞. (3.5)

Moreover, we find from (2.6) that that

(Fn,ρn,V n)⇀ (F ∗,ρ∗,V ∗) in H1(W )3 as n→∞ (3.6)
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and ‖Fn‖L∞(W ) +‖ρn‖L∞(W ) +‖V n‖L∞(W ) is bounded, see Theorem 2.4. Let x∗=
(F ∗,ρ∗,V ∗,u∗). Next we prove that (F ∗,ρ∗,V ∗) solves (2.3) weakly. Since H1(W ) is
compactly embedded into L4(W ) for d≤3, we infer

ρn→ρ∗ in L4(W ) as n→∞, (3.7)

which implies that

(
ρn

)2→ (
ρ∗

)2 in L2(W ) as n→∞. (3.8)

From ∇Fn ⇀∇F ∗ in L2(W ;Rd) as n tends to ∞ and from (3.8) we infer

lim
n→∞

∫

W

(
ρn

)2∇Fn ·∇ϕdx=
∫

W

(
ρ∗

)2∇F ∗ ·∇ϕdx for all ϕ∈H◦, (3.9)

i.e., e1(x∗)=0 in H ′
◦. Utilizing (3.7) we deduce via the continuity of the function

φ : [0,+∞[→R, φ(t)= t logt for t>0 and φ(0)=0 that

lim
n→∞

log
(
ρn(x)2

)
=log

(
ρ∗(x)1

)
for x∈W a.e. (3.10)

Furthermore, ‖ρn‖L∞(W ) is bounded. Hence, there exists a constant c2 >0 such that

‖2ρn logρn‖L∞(W )≤ c2.

Applying Lebesgue’s dominated convergence theorem (see, e.g. [14]) we obtain

lim
n→∞

∫

W

2ρn log
(
ρn

)
ϕdx=

∫

W

2ρ∗ log
(
ρ∗

)
ϕdx for all ϕ∈H◦.

From (3.6) and (3.7) we conclude for all ϕ∈H◦,

lim
n→∞

〈e2(xn),ϕ〉H′◦,H◦ = 〈e2(x∗),ϕ〉H′◦,H◦ . (3.11)

Again applying (3.6) and (3.7) we find that, for all ϕ∈H◦,

lim
n→∞

〈e3(xn),ϕ〉H′◦,H◦ = 〈e3(x∗),ϕ〉H′◦,H◦ . (3.12)

Now we turn to the constraint e4(xn)=0. By assumption, FD ∈Hb. Hence,

Fn−FD ⇀F ∗−FD in H◦ as n→∞.

Moreover, Fn−FD ∈H◦ for all n∈N. Thus, F ∗−FD ∈H◦ and

e4(x∗)= τ(F ∗−FD)=0. (3.13)

Analogously, we obtain

e5(x∗)=e6(x∗)=0. (3.14)

Summarizing, (3.9), (3.11)-(3.14) imply e(x∗)=0. By Lemma 3.3 the cost functional
is weakly continuous.
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4. First-order necessary optimality conditions
This section is devoted to study first-order necessary optimality conditions for

(P). If a constrained qualification holds, there exist Lagrange multipliers satisfying a
coupled dual system of three elliptic equations.

Problem (P) is a non-convex programming problem so that different local minima
may occur. Typically a numerical method will approximates a local minimum close
to its starting value. Hence, we do not restrict our investigations to global solutions
of (P). We assume a fixed reference solution x∗=(F ∗,ρ∗,V ∗,u∗) and investigate
certain first-order optimality conditions. For that purpose we introduce the Lagrange
functional L :X×Y →R associated with (P):

L(x,p)=J(F,ρ,u)+〈e(x),p〉Y ′,Y

=
1
2
|I(F,ρ)−Id|2 +

∑̀

i=1

βi

2
|ui|2 +

∫

Ω

ρ2∇F ·∇pF dx

+
∫

W

ε2∇ρ ·∇pρ +ρ
(
V +B(·;u)+log(ρ2)−F

)
pρdx,

+
∫

W

λ2∇V ·∇pV +(C−ρ2)pV dx+〈τD(F −FD),pFD
〉H1/2(ΓD)′,H1/2(ΓD)

+〈τD(ρ−ρD),pρD
〉H1/2(ΓD)′,H1/2(ΓD) +〈τD(V −VD),pVD

〉H1/2(ΓD)′,H1/2(ΓD),

where x=(F,ρ,V,u)∈X and p=(pF ,pρ,pV ,pFD
,pρD

,pVD
)∈Y .

Due to Lemma 3.3 the cost functional J is continuously Fréchet differentiable and
its second derivative is Lipschitz-continuous in X. In the next lemma we state that
the operator e is twice continuously Fréchet-differentiable. A proof is given in the
appendix.

Lemma 4.1. For every x̄=(F̄ , ρ̄,V̄ ,ū)∈X with essinfW ρ̄>0 the mapping x̄→e(x̄)∈
Y ′ is twice continuously Fréchet-differentiable and its second Fréchet-derivatiuve is
locally Lipschitz-continuous.

To formulate first-order necessary optimality conditions we have to ensure that
the solution x∗ to (P) is a regular point.

Definition 4.2. Let x̄=(F̄ , ρ̄,V̄ ,ū) be a feasible point for (P), i.e.,

x̄∈F(P)=
{
x̄∈X

∣∣e(x̄)=0 in Y ′ and x̄∈Xad

}
.

Then, x̄ is called a regular point if the linearization ∇e(x̄) :X→Y ′ of the operator e
at x̄ is surjective.

Due to Lemma 4.1 the linear operator ∇e(x̄) is bounded provided essinfW ρ̄>0
is satisfied. Certainly, ∇e(x∗) will be surjective if for any given element f =
(fF ,fρ,fV ,fFD

,fρD
,fVD

)∈Y ′ there exists a solution x=(F,ρ,V,u)∈X of

∇e(x∗)x=f in Y ′. (4.1)
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The element x∈X is a solution of (4.1) if and only if
∫

W

(
(ρ∗)2∇F +2ρ∗ρ∇F ∗

) ·∇ϕdx= 〈fD,ϕ〉H′◦,H◦ , (4.2a)
∫

W

ε2∇ρ ·∇ϕ+ρ(V ∗+B∗+log
(
(ρ∗)2

)−F ∗)ϕdx

+
∫

W

(
ρ∗(V +∇uB∗u−F )+2ρ

)
ϕdx= 〈fρ,ϕ〉H′◦,H◦

,

(4.2b)

∫

W

λ2∇V ·∇ϕ+2ρ∗ρϕdx= 〈fV ,ϕ〉H′◦,H◦ (4.2c)

for all ϕ∈H◦ and

F =fFD
, ρ=fρD

, V =fVD
in H1/2(ΓD), (4.2d)

where B∗=B(·;u∗) and ∇uB∗=∇uB(·;u∗)T . System (4.2) is the variational formu-
lation of the coupled linear elliptic system

−∇·((ρ∗)2∇F +2ρ∗∇F ∗ρ
)
=fD in W, (4.3a)

−ε2∆ρ+ρ(V ∗+B∗+log
(
(ρ∗)2

)−F ∗+2) (4.3b)

+ρ∗
(
V +∇uB∗u−F

)
=fρ in W,

−λ2∆V +2ρ∗ρ=fV in W, (4.3c)
F =fFD

on ΓD, (4.3d)
ρ=fρD

on ΓD, (4.3e)
V =fVD

on ΓD, (4.3f)
∂F

∂ν
=

∂ρ

∂ν
=

∂V

∂ν
=0 on ΓN . (4.3g)

Due to the lack of coercitivity it is far from obvious that, settled on grounds of the
Fredholm alternative, (4.3) has a weak solution. On the other hand it is seemingly
also quite difficult to verify that (4.3) has no solution: The universe of linear (opera-
tor) equations is certainly much larger than the set of linear (operator) equations for
which the solvability question can be settled just in terms of the involved parameters.
Comparing the situation with the finite-dimensional case (aside from the use of deter-
minants which provide to the authors’ knowledge no tractable concept extendable to
infinite-dimensional settings): Unless rather specific information about the coefficient
matrix of a linear system (positivity, self-adjointness whatsoever) are available one
will not be able to say anything about the set of solutions — except, of course, that
the probability that a n times n linear system with, let us say, somewhere uniformly
distributed coefficients is uniquely solvable is one. So from which properties of the
coefficients could we deduce unique solvability in case of “unstructuredness”? Even
in the finite-dimensional case the authors have no answer to that question and we
do not think things become easier in infinite dimensional settings. As a conclusion,
to decide whether ∇e(x∗) is surjective or not is not in the authors’ scope. Possibly,
further numerical investigations may allow to gain more insight in the subject.

On the other hand, for practical purposes the existence of associated Lagrange
multipliers is quite useful to obtain information on the local minimizer x∗. Since we
are interested in these information let us assume

∇e(x∗) :X→Y ′ is surjective. (A8)
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Remark 4.3. If ∇e(x∗) is not surjective from X→Y ′ but its extension on a larger
space X̃, X densely embedded into X̃, possesses specific properties (weakly singular
optimal control problem [9]) one can also prove existence of Lagrange multipliers.

If (A8) is satisfied, the point x∗ is a regular point. The KKT theorem [10,
Theorem 3.2] implies that there exists a unique associated Lagrange multiplier p∗=
(p∗F ,p∗ρ,p

∗
V ,p∗FD

,p∗ρD
,p∗VD

)∈Y satisfying

∇(F,ρ,V )e(x∗)?p∗=−∇(F,ρ)J(F ∗,ρ∗,u∗) in (H ′
b)

3, (4.4)

where ∇(F,ρ,V )e(x∗)? :Y → (H ′
b)

3 is the dual operator of ∇(F,ρ,V )e(x∗), i.e.,

〈∇(F,ρ,V )e(x∗)?p,(F,ρ,V )〉
(H′

b)
3,Hb

= 〈∇(F,ρ,V )e(x∗)(F,ρ,V ),p〉
Y ′,Y

for all (F,ρ,V,p)∈ (Hb)3×Y . Certainly, (4.4) and the first-order necessary optimality
condition

∇(F,ρ,V )L(x∗,p∗)=0 in (H ′
b)

3

are equivalent.
In the following proposition we state that the Lagrange multipliers satisfy a cou-

pled linear elliptic system.

Proposition 4.4. Let (A8) hold. The Lagrange multipliers p∗F , p∗ρ and p∗V satisfy
the following coupled linear system

−∇(
(ρ∗)2∇p∗F )−ρ∗p∗ρ =−(I(F ∗,ρ∗)−Id)∇F I(F ∗,ρ∗) (4.5a)

−ε∆p∗ρ +2ρ∗∇F ∗ ·∇p∗F −2ρ∗p∗V (4.5b)

+(V ∗+B∗+log
(
(ρ∗)2

)−F ∗+2)p∗ρ =−(I(F ∗,ρ∗)−Id)∇ρI(F ∗,ρ∗)

−λ2∆p∗V +ρ∗p∗ρ =0 (4.5c)

weakly in H◦, together with homogeneous Neumann boundary conditions on ΓN .
Moreover,

p∗FD
=(ρ∗)2

∂p∗F
∂ν

, pρD
=ε

∂p∗ρ
∂ν

, p∗VD
=λ2

∂p∗ρ
∂ν

in H1/2(ΓD)′.

Proof. Since (p∗F ,p∗ρ,p
∗
V )∈ (H◦)3 the functions p∗F , p∗ρ and p∗V satisfy homogeneous

Dirichlet boundary conditions on ΓD. We choose an arbitrary (F,ρ,V )∈ (Hb)3. Recall
that the gradient ∇uB(·;u∗) is a row vector. As outlined in the proof of Lemma 4.1,
see appendix, we have

〈∇(F,ρ,V )e(x∗)?p∗,(F,ρ,V )〉
(H′

b)
3,(Hb)3

= 〈∇(F,ρ,V )e(x∗)x,p∗〉
Y ′,Y

=
∫

W

(2ρ∗ρ∇F ∗+(ρ∗)2∇F ) ·∇p∗F dx

+
∫

W

ρ
(
V ∗+B(·;u∗)+log

(
(ρ∗)2

)−F ∗+2
)
p∗ρdx

+
∫

W

ε∇p∗ρ ·∇ρ+ρ∗(V +∇uB(·;u∗)u−F )p∗ρdx
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+
∫

W

λ2∇p∗V ·∇V −2ρ∗p∗V ρdx

+〈p∗FD
,F 〉

H1/2(ΓD)′,H1/2(ΓD)
+〈p∗ρD

,ρ〉
H1/2(ΓD)′,H1/2(ΓD)

+〈p∗VD
,V 〉

H1/2(ΓD)′,H1/2(ΓD)
. (4.6)

Choosing F ∈H1
0 (W ) and ρ=0, V =0, u=0 we derive from (4.6), (4.4) and (3.3)

〈
(Id−I(F ∗,ρ∗))∇F I(F ∗,ρ∗),F

〉
H′

b,Hb

=
∫

W

(ρ∗)2∇p∗F ·∇F −ρ∗p∗ρF dx= 〈−∇·((ρ∗)2∇p∗F )−ρ∗p∗ρ,F 〉H′
b,Hb

, (4.7)

which gives (4.5a) in H−1(W ). Since H◦ is dense in H1
0 (W ), (4.7) holds in H ′

◦. From
(4.4), (4.6), and (4.7) we infer that

0=
〈
(Id−I(F ∗,ρ∗))∇F I(F ∗,ρ∗),F

〉
H′

b,Hb
−

∫

W

(ρ∗)2∇p∗F ·∇F −ρ∗p∗ρF dx

+〈p∗FD
,F 〉

H1/2(ΓD)′,H1/2(ΓD)

=−
∫

Γ

(ρ∗)2
∂p∗F
∂ν

F ds+〈p∗FD
,F 〉

H1/2(ΓD)′,H1/2(ΓD)

for all F ∈Hb. If we choose F ∈H◦, we find that p∗F satisfies homogeneous Neumann
boundary conditions on ΓN . On the other hand, if F ∈H1

0 (W ∪ΓD) we obtain

p∗FD
=(ρ∗)2

∂p∗F
∂ν

in H1/2(ΓD)′.

Next we choose ρ∈H1
0 (W ) and F =0, V =0, u=0 we derive from (4.6), (4.4) and

(3.3)
〈
(Id−I(F ∗,ρ∗))∇ρI(F ∗,ρ∗),ρ

〉
H′

b,Hb

=
∫

W

ε∇p∗ρ ·∇ρ+2ρ∗∇F ∗ ·∇p∗F ρ+2p∗ρρdx

+
∫

W

((
V ∗+B(·;u∗)+log

(
(ρ∗)2

)−F ∗
)
p∗ρ−2ρ∗p∗V

)
ρdx

=
〈−ε∆p∗ρ +2ρ∗∇F ∗ ·∇p∗F ,ρ

〉
H′

b,Hb

+
〈
(V ∗+B(·;u∗)+log

(
(ρ∗)2

)−F ∗+2)p∗ρ−2ρ∗p∗V ,ρ
〉

H′
b,Hb

, (4.8)

which gives (4.5b) in H ′
◦. Proceeding as above we find that p∗ρ satisfies homogeneous

Neumann boundary conditions on ΓN and

p∗ρD
=ε

∂p∗ρ
∂ν

in H1/2(ΓD).

Choosing V ∈H1
0 (W ) and F =0, ρ=0, u=0 we derive from (4.6), (4.4) and (3.3)

0=
∫

W

λ2∇p∗V ·∇V +ρ∗p∗ρV dx=
〈−λ2∆p∗V +ρ∗p∗ρ,V

〉
H′

b,Hb
, (4.9)
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which gives (4.5c) in H ′
◦. As above, it follows that p∗V satisfies homogeneous Neumann

boundary conditions on ΓN and

p∗VD
=λ2

∂p∗ρ
∂ν

in H1/2(ΓD)′

so that the proposition is proved.

From (A8) we infer the variational inequality [10]

∇uL(x∗,p∗)(u−u∗)≥0 for all u∈Uad, (4.10)

which gives
〈

Dβu∗+
∫

W

ρ∗p∗ρ∇uB(·;u∗)T dx,u−u∗
〉

R`

≥0 for all u∈Uad,

where Dβ =diag(β1,.. .,β`)∈R`×` is a diagonal matrix. In particular, if u∗ is an
interior point of Uad we will obtain the implicit formula

u∗i =− 1
βi

∫

W

ρ∗p∗ρ
∂B

∂ui
(·;u∗)dx for i=1,.. .,`

for the components of the optimal control u∗.

Appendix A.

A.1. Proof of Theorem 2.4. The proof is divided into several steps.
Step 1. Given M ∈R+ we introduce the convex set

C(M)=
{
F ∈L2(W )|‖F‖L∞(W )≤M

}
,

and we define a mapping TM :C(M)→H1(W ) in three steps.
Step 1.1. Given F ∈C(M) we denote by ρ(F ) the unique minimizer of

ρ 7→E(F )(ρ)=Equ(ρ)+Eel(ρ)+Equpot(ρ)−
∫

W

ρ2F dx

in ρD +H◦. Following [3, Theorem 2.2] we have ρ(F )∈L∞(W ) with inf ρ(F )>0 and
the mapping ρ(·) is L2(W )→H1(W )-continuous.
Step 1.2. Given ρ∈L∞(W ) with inf ρ>0 it is readily seen that

−∇·(ρ∇F )=0 a.e. in W, F −FD ∈H◦

has a unique H1(W )-weak solution F◦(ρ) — i.e., there is exactly one F◦(ρ)=F ∈
FD +H◦ such that (2.5a) holds for all ϕ∈H◦. Furthermore, due to 0<ρ<+∞ weak
minimum/maximum principles allow to deduce infFD≤F◦(ρ)≤ supFD.
Step 1.3. We set TM (F )=F◦(ρ(F )). Obviously, if M >‖FD‖L∞(W ), then TM will
map C(M) into C(M). Furthermore, if (F,ρ,V ) is a H1solution of (2.3) with
essinfx∈D ρ(x)>0, then there will be an M >0 — e.g. any M with M >‖F‖L∞(W ) —
such that F ∈C(M) and F is a fixed point of TM .
Step 2. Now we derive an a priori estimate for V◦(ρ(F )2−C), where here and in the
remaining part of Step 2 we keep F ∈L∞(W ) fixed. We recall: ρ(F ) is the minimizer
of E(F ) in ρD +H◦. Since ρD ∈ρD +H◦ we have

E(F )(ρ(F ))≤E(F )(ρD). (A.1)
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From ρD ∈Hb we conclude that E(F )(ρD)<+∞. Furthermore, for all ρ∈ρD +H◦,
we have due to

∀t,κ∈ [0,+∞[ : t ·(logt−1−κ)≥−eκ,

E(F )(ρ)

=ε2

∫

W

|∇ρ|2dx+
∫

W

ρ2(log(ρ2)−1+V ∗+B−F )dx+
1
2

∫

W

|∇V◦(ρ2−C)|2dx

≥ε2

∫

W

|∇ρ|2dx+
∫

W

ρ2(log(ρ2)−1−‖V ∗‖L∞(W )−‖B‖L∞(W )−‖F‖L∞(W ))dx

≥ε2

∫

W

|∇ρ|2dx−meas(W ) exp
(
‖V ∗‖L∞(W ) +‖B‖L∞(W ) +‖F‖L∞(W )

)
,

where meas(W ) is the Lebesgue measure of W . Utilizing

‖ϕ‖L∞(W )≤‖ϕ‖H∩L∞(W ) for all ϕ∈H1∩L∞(W )

and ‖V∗‖L∞(W )≤‖VD‖L∞(W )≤‖VD‖b we obtain

E(F )(ρ)

≥ε2

∫

W

|∇ρ|2dx−meas(W )exp
(
‖VD‖b +‖B‖L∞(W ) +‖F‖L∞(W )

)

=ε2

∫

W

|∇ρ|2dx−c1 e‖B‖L∞(W )+‖F‖L∞(W ) ,

where the constant c1 >0 depends on meas(W ), ‖VD‖Hb
, such that via (A.1),

∫

W

|∇ρ(F )|2dx≤ 1
ε2

(
E(F )(ρD)+c1 e‖B‖L∞(W )+‖F‖L∞(W )

)
. (A.2)

In order to obtain an upper estimate for E(F )(ρD) we calculate via Remark 2.3-e)
and via

∀t∈ [0,+∞[ : logt≤1+ t, t ·(logt−1)≤ t2,

E(F )(ρD)

=ε2

∫

W

|∇ρD|2dx+
∫

W

ρ2
D(log(ρ2

D)−1+V ∗+B−F )dx+
1
2

∫

W

|∇V◦(ρ2
D−C)|2dx

≤ε2‖ρD‖2H1(W ) +
∫

W

‖ρD‖4L∞(W )dx

+
∫

W

‖ρD‖2L∞(W )

(
‖V ∗‖L∞(W ) +‖B‖L∞(W ) +‖F‖L∞(W )

)
dx

+
CP meas(W )

2λ4

(
‖ρD‖2L∞(W ) +‖C‖L∞(W )

)2

≤ε2‖ρD‖2b +
∫

W

‖ρD‖4b dx

+
∫

W

‖ρD‖2b
(
‖VD‖b +‖B‖L∞(W ) +‖F‖b

)
dx

+
CP meas(W )

2λ4

(
‖ρD‖2b +‖C‖L∞(W )

)2

,
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i.e., there is a constant c2 >0 depending on meas(W ), ε, λ, CP , ‖ρD‖b, ‖VD‖b,
‖C‖L∞(W ) with

E(F )(ρD) ≤ c2

(
1+‖B‖L∞(W ) +‖F‖L∞(W )

)

≤ c2 e‖B‖L∞(W )+‖F‖L∞(W ) .
(A.3)

With the aid of Poincaré’s inequality we deduce from (A.2), (A.3),

‖ρ(F )‖H1(W )≤‖ρ(F )−ρD‖H1(W ) +‖ρD‖H1(W )

≤
√

1+CP

√∫

W

|∇(ρ(F )−ρD)|2dx+‖ρD‖b

≤
√

1+CP

√∫

W

|∇ρ(F )|2dx+
∫

W

|∇ρD|2dx+‖ρD‖b

≤
√

1+CP

(√∫

W

|∇ρ(F )|2dx+

√∫

W

|∇ρD|2dx

)
+‖ρD‖b

≤
√

1+CP

√∫

W

|∇ρ(F )|2dx+(1+
√

1+CP )‖ρD‖b

≤
√

1+CP

√
c2

ε2
e‖B‖L∞(W )+‖F‖L∞(W ) +

c1

ε2
e‖B‖L∞(W )+‖F‖L∞(W )

+(1+
√

1+CP )‖ρD‖b,

i.e., there is a constant c3 >0 depending on meas(W ), ε, λ, CP , ‖ρD‖b, ‖VD‖b,
‖C‖L∞(W ) such that

‖ρ(F )‖H1(W )≤ c3 e‖B‖L∞(W )+‖F‖L∞(W ) . (A.4)

Following [1] there is a constant c4 >0, just depending on W such that due to d=1,2
or d=3,

‖ρ(F )‖L6(W )≤ c4‖ρ(F )‖H1(W ), (A.5)

and due to [5] there is a constant c5 >0, just depending on W such that

‖V◦(ρ(F )2−C)‖L∞(W )≤
c5

λ2
‖ρ(F )2−C‖L3(W ).

We deduce from (A.5) and (A.4),

‖V◦(ρ(F )2−C)‖L∞(W )≤
c5

λ2

(
‖ρ‖2L6(W ) +meas(W )1/3‖C‖L∞(W )

)

≤ c5

λ2

(
c4‖ρ(F )‖2H1(W ) +meas(W )1/3‖C‖L∞(W )

)

≤ c5

λ2

(
c2
4c

2
3 e2‖B‖L∞(W )+2‖F‖L∞(W ) +meas(W )1/3‖C‖L∞(W )

)
,

i.e., there exists a constant c6∈R+ depending on W , ε, λ, CP , ‖ρD‖b, ‖VD‖b,
‖C‖L∞(W ) such that

‖V◦(ρ(F )2−C)‖L∞(W )≤ c6 e2‖B‖L∞(W )+2‖F‖L∞(W ) . (A.6)
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Step 3. Now we derive an a priori estimate on ‖ρ(F )‖L∞(W ), where throughout Step 3
we assume that F ∈L∞(W ) is fixed. Due to Theorem 2.2 in [3] the minimizer ρ=ρ(F )
satisfies (2.5b) for all ϕ∈H◦. A standard monotonicity argument yields the estimates

log
(
(supρ(F ))2

)−‖V ‖L∞(W )−‖B‖L∞(W )−‖F‖L∞(W )≤0,

and

log
(
(inf ρ(F ))2

)
+‖V ‖L∞(W ) +‖B‖L∞(W ) +‖F‖L∞(W )≥0,

such that via V =V◦(ρ(F )2−C)+V ∗ and via (A.6),

log
(
(supρ(F ))2

)≤‖V ∗‖L∞(W ) +c6 e2‖B‖L∞(W )+2‖F‖L∞(W ) +‖B‖L∞(W )

+‖F‖L∞(W ),

log((inf ρ(F ))2)≥−‖V ∗‖L∞(W )−c6 e2‖B‖L∞(W )+2‖F‖L∞(W )−‖B‖L∞(W )

−‖F‖L∞(W ),

i.e., there is a constant c7 >0 depending on W , ε, λ, CP , ‖ρD‖b, ‖VD‖b ,‖C‖L∞(W )

such that

exp
(−c7e

2‖B‖L∞(W )+2‖F‖L∞(W )
)≤ρ(F )≤ exp

(
c7e

2‖B‖L∞(W )+2‖F‖L∞(W )
)
. (A.7)

Step 4. We follow the lines of the proofs of Theorems 2.1, 2.2 and Lemma 2.3 in [3]
to deduce that TM :C(M)→H1(W ) is L2(W )→L2(W )-continuous and TM maps the
convex set C(M) — which is closed in L2(W ) — into H1(W ) which is precompact
in L2(W ). Furthermore, if M >‖F‖L∞(W ), then - due to the lower estimate on ρ(F )
according to (A.7), see Step 1.3 - TM maps C(M) into C(M). By Schauder’s Fixed
Point Theorem, TM has in this case a fixed point. Certainly, any fixed point of TM is
a H1solution of (2.3). Thus, (2.3) has at least one H1solution.
Step 5. Now let (F,ρ,V ) be an arbitrary H1solution of (2.3). Then there is M ∈R+

with F ∈TM and we have ρ=ρ(F ). By (A.7),

ρ(F )≤ exp
(
c7 e2‖B‖L∞(W )+2‖F‖L∞(W )

)
,

by (A.4),

‖ρ(F )‖H1(W )≤ c3 e‖B‖L∞(W )+‖F‖L∞(W )

by (A.6),

‖V ‖L∞(W ) =‖V◦(ρ(F )2−C)+V ∗‖L∞(W )

≤ c6 e‖B‖L∞(W )+‖F‖L∞(W ) +‖VD‖L∞(W ),

and by easy manipulations of Poisson’s equation there is c8 >0 depending on W , λ,
CP , ‖C‖L∞(W ) such that

‖V◦(ρ(F )2−C)‖H1(W )≤ c8

(
1+‖ρ(F )‖2L∞(W )

)
,

and due to

‖F‖L∞(W )≤‖FD‖L∞(W )≤‖FD‖b,
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and due to a standard argument we deduce
√∫

W

|∇(F −FD)|2dx≤ esssupρ(F )
essinf ρ(F )

√∫

W

|∇FD|2dx.

Consequence: there is a constant c∈R+ depending on W , ε, λ, CP , ‖ρD‖b, ‖VD‖b,
‖C‖L∞(W ), ‖FD‖b such that

‖F‖b +‖ρ‖b +‖V ‖b≤ c e2e
‖B‖L∞(W )

.

which gives (2.6).

A.2. Proof of Lemma 3.2. We start by computing formally the first and
second directional derivative for I at (F̄ , ρ̄)∈Hb×Hb in directions (F,ρ),(F̃ , ρ̃)∈Hb×
Hb and find

∇I(F̄ , ρ̄)(F,ρ)=− q

L1

∫

W

(
2ρ̄ρ∇F̄ + ρ̄2∇F

) ·~e1dx (A.8)

and

∇2I(F̄ , ρ̄)
(
(F,ρ),(F̃ , ρ̃)

)
=− 2q

L1

∫

W

(
ρ̃ρ∇F̄ + ρ̄ρ∇F̃ + ρ̄ρ̃∇F

) ·~e1dx. (A.9)

To prove that both directional derivatives are Fréchet-derivatives we estimate
∣∣I(F̄ +F,ρ̄+ρ)−I(F̄ , ρ̄)−∇I(F̄ , ρ̄)(F,ρ)

∣∣

≤ q

L1

∫

W

∣∣(ρ2∇F̄ +(2ρ̄ρ+ρ2)∇F
) ·~e1

∣∣dx

≤ c1

(‖ρ‖2L4(W )‖∇F̄‖L2(W ) +‖ρ‖L4(W )

(
1+2‖ρ̄‖L4(W )‖ρ‖L4(W )

)‖∇F‖L2(W )

)
,

where we have introduced the positive constant c1 = q‖~e1‖L2(W )/L1. Utilizing Young’s
inequality and the continuous embedding of L∞(W ) in L4(W ) there exists a constant
c2 >0 depending on c1, ‖∇F̄‖L2(W ), and ‖ρ̄‖L4(W ) such that

∣∣I(F̄ +F,ρ̄+ρ)−I(F̄ , ρ̄)−∇I(F̄ , ρ̄)(F,ρ)
∣∣≤ c2

(
‖ρ‖2Hb

+‖ρ‖4Hb
+‖F‖2Hb

)
.

Consequently,

lim
‖(F,ρ)‖Hb×Hb

→0

|I(F̄ +F,ρ̄+ρ)−I(F̄ , ρ̄)−∇I(F̄ , ρ̄)(F,ρ)|
‖(F,ρ)‖Hb×Hb

=0.

Thus, the first directional derivative of I given by (A.8) is its first Fréchet-derivative.
Now we turn to the second derivative. Analogous to the first derivative we estimate

∣∣∇I(F̄ + F̃ , ρ̄+ ρ̃)(F,ρ)−∇I(F̄ , ρ̄)(F,ρ)−∇2I(F̄ , ρ̄)
(
(F,ρ),(F̃ , ρ̃)

)∣∣

≤ q

L1

∫

W

∣∣(2ρρ̃∇F̃ +(ρ̃)2∇F
) ·~e1

∣∣dx

≤ q‖~e1‖L2(W )

L1

(
2‖ρ‖L4(W )‖ρ̃‖L4(W )‖∇F̃‖L2(W ) +‖ρ̃‖2L4(W )‖∇F‖L2(W )

)

≤ q‖~e1‖L2(W )

L1

(‖ρ‖2L4(W )‖ρ̃‖2L4(W ) +‖∇F̃‖2L2(W ) +‖ρ̃‖2L4(W )‖∇F‖L2(W )

)
,
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where we have used Young’s inequality. Since Hb is continuously (even compactly)
embedded in L4(W ), there exists a constant c3 >0 depending on q, ‖~e1‖L2(W ), L1,
‖ρ‖L4(W ), and ‖∇F‖L2(W ) such that

∣∣∇I(F̄ + F̃ , ρ̄+ ρ̃)(F,ρ)−∇I(F̄ , ρ̄)(F,ρ)−∇2I(F̄ , ρ̄)
(
(F,ρ),(F̃ , ρ̃)

)∣∣

≤ c3‖(F̃ , ρ̃)‖2Hb×Hb
.

Hence

lim
‖(F̃ ,ρ̃)‖Hb×Hb

→0

‖∇I(F̄ + F̃ , ρ̄+ ρ̃)−∇I(F̄ , ρ̄)−∇2I(F̄ , ρ̄)(F̃ , ρ̃)‖H′
b

‖(F̃ , ρ̃)‖Hb×Hb

=0.

We conclude that the second directional derivative of I is the second Fréchet-
derivative.
To prove continuity of the mapping (F̄ , ρ̄) 7→∇2I(F̄ , ρ̄) in the operator norm let us
consider (F̄1, ρ̄1),(F̄2, ρ̄2)∈Hb×Hb. Due to linearity and by similar arguments as used
before we obtain for all (F,ρ),(F̃ , ρ̃)∈Hb×Hb the estimate

|∇2I(F̄1, ρ̄1)
(
(F,ρ),(F̃ , ρ̃)

)−∇2I(F̄2, ρ̄2)
(
(F,ρ),(F̃ , ρ̃)

)|
≤ q

L1
‖∇F̄1−∇F̄2‖L2(W )‖ρ‖L4(W )‖ρ̃‖L4(W )

+
q

L1
‖ρ̄1− ρ̄2‖L4(W )

(
‖ρ‖L4(W )‖∇F̃‖L2(W ) +‖ρ̃‖L4(W )‖∇F‖L2(W )

)
.

We deduce via ρ̄1, ρ̄2∈L∞(W ) that there is a constant c4 >0 only depending on W
such that

sup
{∣∣∣∇2I(F̄1, ρ̄1)

(
(F,ρ),(F̃ , ρ̃)

)−∇2I(F̄1, ρ̄1)
(
(F,ρ),(F̃ , ρ̃)

)∣∣∣ :

(F,ρ),(F̃ , ρ̃)∈Hb×Hb with ‖(F,ρ)‖Hb×Hb
,‖(F̃ , ρ̃)‖Hb×Hb

≤1
}

≤ c4

(
‖∇F̄1−∇F̄2‖L2(W ) +‖ρ̄1− ρ̄2‖L∞(W )

)
≤ c4‖(F̄1, ρ̄1)−(F̄2, ρ̄2)‖Hb×Hb

.

Hence, ∇2I is a (Lipschitz)-continuous function and the claim is proved.

A.3. Proof of Lemma 4.1. Let x̄=(F̄ , ρ̄,V̄ ,ū)∈X with essinfW ρ̄>0. Since
e4, e5, e6 are linear and bounded on X, these operators are Fréchet-differentiable. In
fact, for directions x=(F,ρ,V,u)∈X with essinfW (ρ̄+ρ)>0 we find

∇e4(x̄)x= τD(F ), ∇e5(x̄)x= τD(ρ), ∇e6(x̄)x= τD(V ).

Moreover, their second derivatives are zero. Let us turn to the operator e1 whose first
directional derivative at x̄ in direction x is

〈∇e1(x̄)x,ϕ〉H′◦,H◦ =
∫

W

(
2ρ̄ρ∇F̄ + ρ̄2∇F

) ·∇ϕdx for ϕ∈H◦.
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Consequently,

‖e1(x̄+x)−e1(x̄)−∇e1(x̄)x‖H′

= sup
‖ϕ‖H◦=1

∣∣∣
∫

W

(
ρ2

(∇F̄ +∇F
)
+2ρ̄ρ∇F

) ·∇ϕdx
∣∣∣

≤ sup
‖ϕ‖H◦=1

‖ρ‖2L∞(W )

(‖∇F̄‖L2(W ) +‖∇F‖L2(W )

)‖∇ϕ‖L2(W )

+2 sup
‖ϕ‖H◦=1

‖ρ̄‖L∞(W )‖ρ‖L∞(W )‖∇F‖L2(W )‖∇ϕ‖L2(W )

≤‖ρ‖2Hb

(‖∇F̄‖L2(W ) +‖F‖Hb

)
+2‖ρ̄‖L∞(W )‖ρ‖Hb

‖F‖Hb

≤ c1

(‖ρ‖2Hb
(1+‖F‖Hb

)+‖ρ‖Hb
‖F‖Hb

)
,

where the constant c1 >0 depends on ‖∇F̄‖L2(W ) and ‖ρ̄‖L∞(W ). Thus, we have

lim
‖x‖X→0

‖e1(x̄+x)−e1(x̄)−∇e1(x̄)x‖H′

‖x‖X

=0.

The directional derivative of ∇e1(x̄)x at x̄ in direction x̃=(F̃ , ρ̃,Ṽ ,ũ)∈X, is

〈∇2e1(x̄)(x,x̃),ϕ〉H′◦,H◦ =2
∫

W

(
ρ̃ρ∇F̄ + ρ̄ρ∇F̃ + ρ̄ρ̃∇F )

) ·∇ϕdx for ϕ∈H◦.

We calculate

‖∇e1(x̄+ x̃)−∇e1(x̄)−∇2e1(x̄)(x̃,·)‖L(X,H′)

= sup
‖x‖X=1

‖(∇e1(x̄+ x̃))x−∇e1(x̄)x−∇2e1(x̄)(x̃,x)‖H′

= sup
‖x‖X=1

sup
‖ϕ‖H◦=1

∣∣∣〈∇e1(x̄+ x̃)x−∇e1(x̄)x−∇2e1(x̄)(x,x̃),ϕ〉H′◦,H◦

∣∣∣

= sup
‖x‖X=1

sup
‖ϕ‖H◦=1

∣∣∣∣
∫

W

2
(
ρ̃ρ∇F̃ + ρ̃2∇F

) ·∇ϕdx
∣∣∣∣

≤2 sup
‖x‖X=1

(
‖ρ̃‖L∞(W )‖ρ‖L∞(W )‖∇F̃‖L2(W ;Rd) +‖ρ̃‖2L∞(W )‖∇F‖L2(W ;Rd)

)

≤ c2‖x̃‖2X
for a constant c2 >0, which depends on embedding constants of L∞(W ),L4(W ) in
Hb. Here, L(X,H ′) denotes the normed linear space of all bounded linear operators
from X to H ′ supplied with the common norm. Thus,

lim
‖x̃‖X→0

‖∇e1(x̄+ x̃)−∇e1(x̄)−∇2e1(x̄)(x̃,·)‖L(X,H′)

‖x̃‖X

=0.

Since the mapping x̄ 7→∇2e1(x̄) is linear and bounded, we conclude that ∇2e1 is
Lipschitz-continuous.
We proceed by investigating the operator e2. The first directional derivative has the
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form

〈∇e2(x̄)x,ϕ〉H′◦,H◦ =
∫

W

ρ(V̄ +B(·;ū)+log
(
(ρ̄)2

)− F̄ )ϕdx

+
∫

W

ε∇ρ ·∇ϕ+(ρ̄(V +∇uB(·;ū)u−F )+2ρ)ϕdx

for ϕ∈H◦. We derive

‖e2(x̄+x)−e2(x̄)−∇e2(x̄)x‖H′

≤ sup
‖ϕ‖H◦=1

∫

W

[(
ρV +ρ

(
B(·;ū+u)−B(·;ū)

)
+2ρ

(
log(ρ̄+ρ)− log(ρ̄)

))
ϕ

+
(−ρF + ρ̄

(
B(·;ū+u)−B(·;ū)−∇uB(·;ū)u

)
ϕ

+2ρ̄
(

log(ρ̄+ρ)− log(ρ̄)− ρ

ρ̄

)
ϕ
]
dx

≤‖ρ‖L∞(W )

(
‖V ‖L2(W ) +‖B(·;ū+u)−B(·;ū)‖

L2(W )

)

+‖ρ‖L∞(W )

(
2‖log(ρ̄+ρ)− log(ρ̄)‖L2(W ) +‖F‖L∞(W )

)

+‖ρ̄‖L∞(W )

∥∥B(·;ū+u)−B(·;ū)−∇uB(·;ū)u
∥∥

L2(W )

+2‖ρ̄‖L∞(W )

∥∥∥log(ρ̄+ρ)− log(ρ̄)− ρ

ρ̄

∥∥∥
L2(W )

.

By (A7) the mapping B is twice continuously differentiable with respect to the control
variable. Thus, there exist constants c2, c3 >0 depending on ū such that

‖B(·;ū+u)−B(·;ū)‖
L2(W )

≤ c2‖u‖R` , (A.10a)
∥∥B(·;ū+u)−B(·;ū)−∇uB(·;ū)u

∥∥
L2(W )

≤ c3‖u‖2R` . (A.10b)

Since ρ̄, ρ∈Hb with essinfW ρ̄>0 and essinfW (ρ̄+ρ)>0 there exist constant c3, c4 >0
depending on ρ̄ such that

‖log(ρ̄+ρ)− log(ρ̄)‖L2(W )≤ c4‖ρ‖Hb
, (A.10c)

∥∥∥log(ρ̄+ρ)− log(ρ̄)− ρ

ρ̄

∥∥∥
L2(W )

≤ c5‖ρ‖2Hb
. (A.10d)

From (A.10) and ‖ϕ‖L∞(W )≤‖ϕ‖Hb
for all ϕ∈Hb it follows that

‖e2(x̄+x)−e2(x̄)−∇e2(x̄)x‖H′ ≤ c6‖ρ‖Hb

(‖V ‖Hb
+‖u‖R` +‖ρ‖Hb

+‖F‖Hb

)

+c6‖ρ̄‖Hb

(
‖u‖2R` +‖ρ̄‖Hb

‖ρ‖2Hb

)
,

where c6 =max{1,c2,c32c4,2c5}>0. Using Young’s inequality there is a constant
c7 >0 depending on c6 and ρ̄ satisfying

‖e2(x̄+x)−e1(x̄)−∇e2(x̄)x‖H′ ≤ c7‖x‖2X
that implies

lim
‖x‖X→0

‖e2(x̄+x)−e2(x̄)−∇e2(x̄)x‖H′

‖x‖X

=0.
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Hence, the the first directional derivative of e2 is already the Fréchet-derivative. Next
we turn to the second directional derivative of e2 at x̄. In direction x=(F,ρ,V,u), x̃=
(F̃ , ρ̃,Ṽ ,ũ)∈X with essinfW (ρ̄+ ρ̃)>0, we find

〈∇2e2(x̄)(x̃,x),ϕ〉H′◦,H◦ =
∫

W

(
ρ
(
Ṽ +∇uB(·;ū)ũ+

2ρ̃

ρ̄
− F̃

)
+ ρ̃V

)
ϕdx

+
∫

W

(
ρ̃(∇uB(·;ū)u−F + ũT∇uuB(·;ū)uρ̄)

)
ϕdx

for ϕ∈H◦. Then, we obtain

‖∇e2(x+ x̃)−∇e2(x̄)−∇2e2(x̄)(x̃,·)‖L(X,H′)

= sup
‖x‖X=1

sup
‖ϕ‖H◦=1

∫

W

ρ
(
B(·;ū+ ũ)−B(·;ū)−∇uB(·;ū)ũ

)
ϕ

+2ρ

(
log(ρ̄+ ρ̃)− log(ρ̄)− ρ̃

ρ̄

)
ϕ

+ ρ̄
(∇uB(·;ū+ ũ)u−∇uB(·;ū)u− ũT∇uuB(·;ū)u

)
ϕ

+ ρ̃
(∇uB(·;ū+ ũ)u−∇uB(·;ū)u

)
ϕdx

≤‖B(·;ū+ ũ)−B(·;ū)−∇uB(·;ū)‖L2(W ;Rd)‖ũ‖R`

+2
∥∥∥log(ρ̄+ ρ̃)− log(ρ̄)− ρ̃

ρ̄

∥∥∥
L2(W )

+‖ρ̄‖L∞(W )‖∇uB(·;ū+ ũ)−∇uB(·;ū)− ũT∇uuB(·;ū)‖L2(W ;Rd)

+‖ρ̃‖L∞(W )‖∇uB(·;ū+ ũ)−∇uB(·;ū)‖L2(W ;Rd).

From (A7) we conclude that

‖∇uB(·;ū+ ũ)−∇uB(·;ū)− ũT∇uuB(·;ū)‖L2(W ;Rd) =o
(‖ũ‖R`

)

so that there is a constant c8 >0 depending on x̄ such that

‖∇e2(x+ x̃)−∇e2(x̄)−∇2e2(x̄)(x̃,·)‖L(X,H′)

≤ c8

(
‖ũ‖3R` +‖ρ̃‖2Hb

+‖ρ̃‖L∞(W )‖ũ‖R`

)
+o

(‖ũ‖R`

)
=o

(‖x̃‖X

)
.

Consequently,

lim
‖x̃‖X→0

‖∇e2(x+ x̃)−∇e2(x̄)−∇2e2(x̄)(x̃,·)‖L(X,H′)

‖x̃‖X

=0

and the second derivative ∇2e2(x̄)(x̃,·) is already the second Fréchet-derivative.
By (A7) the mapping u 7→∇uuB(·;u) is locally Lipschitz-continuous. Hence,
∇2e2(x̄)(x̃,·) is locally Lipschitz-continuous as well.
Finally we study the operator e3. Its directional derivative at the point x̄ in any
direction x∈X is given by

〈∇e3(x̄)x,ϕ〉H′◦,H◦ =
∫

W

λ2∇V ·∇ϕ−2ρ̄ρϕdx for ϕ∈H◦.
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Then we estimate

‖e3(x̄+x)−e3(x̄)−∇e3(x̄)x‖H′

≤ sup
‖ϕ‖H◦=1

∫

W

∣∣ρ2ϕ
∣∣dx≤

√
meas(W )‖ρ‖2L∞(W ). (A.11)

From (A.11) we directly conclude that∇e3 is Fréchet-differentiable and the directional
derivative coincides with the first Fréchet-derivative. Setting

〈∇2e3(x̄)(x,x̃),ϕ〉H′◦,H◦ =−2
∫

W

ρρ̃ϕdx

we obtain

‖∇e3(x̄+ x̃)−∇e3(x̄)−∇2e3(x̄)x̃‖L(X,H′) =0

so that e3 is twice Fréchet-differentiable with second Fréchet-derivative ∇2e3 given
above. Since∇2e3(x̄) does not depend on x̄, the second Fréchet-derivative is Lipschitz-
continuous on X.
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