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STRONG SOLUTIONS OF LÉVY NOISE DRIVEN SDE’S WITH

IRREGULAR COEFFICIENTS∗

THILO MEYER-BRANDIS† AND FRANK PROSKE‡

Abstract. We give a method to represent strong solutions of stochastic differential equations
driven by Lévy processes, explicitly. Furthermore we employ these explicit representations to study
strong solutions of a certain class of SDE’s, whose coefficients are not necessarily Lipschitz continuous.
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1. Introduction
In recent years stochastic differential equations (SDE’s) for Lévy processes have

become of much current interest for applications to mathematical finance, neurobi-
ology and other areas of natural sciences. In this paper we want to demonstrate
how white noise concepts for Lévy processes can be effectively used to solve a fully
non-linear problem. More precisely, we present a method which enables us to de-
termine solutions of SDE’s driven by Lévy processes, explicitly. Moreover, this ap-
proach provides criteria for the existence of strong solutions of a certain class of SDE’s
whose coefficients are not Lipschitz continuous. To find explicit solutions is usually
a challenging and difficult task of both theoretical and practical significance. We are
convinced that our method grants new insights into the nature of solutions of Lévy-
Itô SDE’s. In addition, it exhibits potential to yield dividends in other important
applications.

In [15] the authors apply concepts from Gaussian white noise analysis to represent
solutions of SDE’s driven by a Brownian motion. Consider the 1-dimensional Itô-
diffusion

dYt = b(Yt)dt+σ(Yt)dBt, Y0 =y, 0≤ t≤T,

where b is the drift, σ the diffusion coefficient and Bt the Brownian motion. It is
proven in [15] that under certain conditions on b and σ a (global) strong solution Yt

of the SDE takes the explicit form

Yt =Ebµ
[
u(B̂t)M¦

T

]
, (1.1)

where

M¦
T =exp¦





∫ T

0


Wt +

b
(
u(B̂t)

)

σ
(
u(B̂t)

)− 1
2
σp

(
u(B̂t)

)

dB̂t

−1
2

∫ T

0


Wt +

b
(
u(B̂t)

)

σ
(
u(B̂t)

)− 1
2
σp

(
u(B̂t)

)


¦2

dt
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
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130 EXPLICIT STRONG SOLUTIONS OF LÉVY SDE’S

and where u is a solution of the ordinary differential equation

up=σ(u), u(0)=y.

Here Ws =Ws(ω) is the (singular) white noise and ¦ is the Wick product with respect
to the white noise probability space (Ω,F ,µ). The process B̂t = B̂t(ω̂) is an auxiliary
Brownian motion on the probability space

(
Ω̂,F̂ ,µ̂

)
, which is a copy of the initial

white noise space. The formula involves (stochastic) Bochner integrals on the Hida
distribution space (S)∗ .

Using Lévy white noise theory, we adapt these ideas in this paper to Lévy-Itô
diffusions, i.e. jump diffusions of the type

dYt = b(Yt−)dt+σ(Yt−)dBt +γ(Yt−)dLt, Y0 =y, 0≤ t≤T, (1.2)

where b,σ,γ :R−→R are measurable functions, Bt a Brownian motion and Lt a pure
jump Lévy process with Lévy measure ν(dx).

As in the purely Gaussian case we deduce under certain conditions on b,σ,γ and
ν a general solution formula for this SDE. To the best of our knowledge, results about
explicit strong solutions of SDE’s are only in existence for continuous processes as
driving noise. For example, [33] obtain explicit chaos expansions of strong solution’s
of SDE’s driven by a Brownian motion. However, the kernels of the expansions must
be determined as solutions of systems of ODE’s or PDE’s. Another approach is due
to [4], [28] who construct strong solutions of SDE’s driven by Brownian motion from
solutions of ODE’s, pathwisely. However, these methods reveal the deficiency to fail,
if the coefficients of the SDE are not regular enough.

In the second part of the paper we mainly focus on SDE’s driven by Brownian
motion and give two first applications of the explicit representation. In Section 4
we state explicit chaos expansions of strong solutions. In Section 5 we establish an
existence and uniqueness result for strong solutions of SDE’s with irregular drift co-
efficients, i.e. with coefficients, which are e.g. not necessarily Lipschitz continuous,
Sobolev differentiable or continuous. In this context we also formulate a convergence
Theorem and a comparison Theorem for SDE’s with irregular coefficients. We estab-
lish an L2-integrability criterion on the drift b to guarantee existence of unique strong
solutions of distorted Brownian motions. To the best of our knowledge, this is the
weakest condition known to ensure strong solutions of distorted Brownian motions.

The study of SDE’s with less ”nicely” behaved coefficients is important, since they
arise in a broad range of stochastic control problems. Strong solutions of Brownian
motion driven SDE’s with non-Lipschitzian coefficients are treated e.g. by [30], [31],
[32], [35], [36], [6], [7], [14]. Recently, new ideas were developed in [5]. In the current
literature one finds a scarce number of results pertaining to strong solutions of Lévy-
Itô diffusions with irregular coefficients. Let us mention that [1] derives a condition
in the case of symmetric stable processes of order α>1, which guarantees strong
solutions and pathwise uniqueness. This condition can be regarded as an analogue
of the Yamada-Watanabe condition for the Brownian motion case, which presumes
continuity on the coefficient γ. Other results on this topic can be e.g. found in [34]
and [2]. With this paper we aim at contributing to a better understanding of Lévy-Itô
diffusions.

The paper is organized as follows: In Section 2 we recall some concepts from
white noise theory for Lévy processes, developed in [17], [18] and [23]. In Section
3, for convenience of transparency we first focus on pure jump Lévy processes and
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derive a general solution formula for SDE’s in this case. Then we turn to the general
case. Section 4 deals with explicit chaos expansions of strong solutions. Section 5 is
devoted to the existence and uniqueness of strong solutions of SDE’s with irregular
drift coefficients.

2. White noise framework
In this Section we provide a brief review of some concepts of a white noise theory

for Lévy processes, developed in [18] and [23]. For general information about white
noise theory the reader is referred to the excellent accounts of [8], [11] and [20].

Let us recall that a Lévy process L(t) is a stochastic process on R+, which has
independent and stationary increments starting at zero, i.e. L(0)=0. The process
L(t) is by its nature a càdlàg semimartingale, which is uniquely determined by the
characteristic triplet

(Bt,Ct,µ̂)=(a · t,σ · t,dtν(dx)), (2.1)

where a, σ are constants and where ν is the Lévy measure on R0 :=R−{0}. We
denote by π the product measure π(dt,dx) :=dtν(dx). For more information about
Lévy processes consult e.g. [3], [27] or [10].

To avoid unnecessary technical complications we first recapitulate our white noise
framework in the case of pure jump Lévy processes, that is we consider Lévy processes
in (2.1) with a=σ =0. At the end of this Section we shortly explain the extension of
the pure jump setting to the general case.

In the following we denote by S(Rd) the Schwartz space on Rd. The space S p(Rd)
is the dual of S(Rd), that is the space of tempered distributions. We want to work with
a white noise measure, which is constructed on the nuclear algebra S̃ p(X), introduced
in [18]. The space S̃(X) is defined as the quotient algebra

S̃(X)=S(X)/Nπ, (2.2)

where S(X) is a subspace of S(X), given by

S(X) :=
{

ϕ∈S(R2) :ϕ(t,0)=(
∂

∂x
ϕ)(t,0)=0

}
(2.3)

and where the closed ideal Nπ in S(X) is defined as

Nπ :={φ∈S(X) :‖φ‖L2(π) =0}. (2.4)

The space S̃(X) is a (countably Hilbertian) nuclear algebra. We indicate by S̃ p(X)
its dual.

From the Bochner-Minlos theorem we deduce that there exists a unique proba-
bility measure µ on the Borel sets of S̃ p(X) such that

∫
eSp(X)

ei〈ω,φ〉dµ(ω)=exp
(∫

X

(eiφ−1)dπ

)
(2.5)

for all φ∈S̃(X), where 〈ω,φ〉 :=ω(φ) denotes the action of ω∈S̃ p(X) on φ∈S̃(X).
The measure µ on Ω= S̃ p(X) is called the (pure jump) Lévy white noise probability
measure.
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In the sequel we consider a compensated Poisson random measure

Ñ(dt,dx)=N(dt,dx)−ν(dx)dt

associated with a Lévy process L(t), which is defined on the white noise probability
space

(Ω,F ,P )=
(
S̃ p(X),B(S̃ p(X)),µ

)
.

By using generalized Charlier polynomials Cn(ω)∈
(
S̃(X)b⊗n

)p
(dual of the n-th com-

pleted symmetric tensor product of S̃(X) with itself) it is possible to construct an
orthogonal L2(µ)−basis {Kα(ω)}α∈J defined by

Kα(ω)=
〈
C|α|(ω),δb⊗α

〉
, (2.6)

where J is the multiindex set of all α=(α1,α2,...) with finitely many non-zero compo-
nents αi∈N0. The symbol δb⊗α denotes the symmetrization of δ⊗α1

1 ⊗ ...⊗δ
⊗αj

j , where
{δj}j≥1 ⊂S̃(X) is an orthonormal basis of L2 (R×R0,dtν(dx)).

So every X ∈L2(µ) has the unique representation

X =
∑

α∈J
cαKα

with Fourier coefficients cα∈R. Moreover we have the isometry

‖X‖2L2(µ) =
∑

α∈J
α!c2

α (2.7)

with α! :=α1! α1!... for α∈J . The Lévy-Hida test function space (S) consists of all
f =

∑
α∈J cαKα∈L2(µ) such that

‖f‖20,k :=
∑

γ∈Jm

α!c2
α(2N)kα <∞ (2.8)

holds for all k∈N0 with weights (2N)kα =(2 ·1)kα1(2 ·2)kα2 ...(2 · l)kαl , if Index(α) := l.
The space (S) is given the projective topology, induced by the norms (‖·‖0,k)k∈N0 in
(2.8). The Lévy-Hida distribution space, denoted by (S)∗ is the topological dual of
(S). So we obtain the following Gel’fand triple

(S) ↪→L2(µ) ↪→ (S)∗. (2.9)

We can endow (S)∗ with the structure of a topological algebra by introducing the
Wick product ¦, defined by

(Kα ¦Kβ)(ω)=(Kα+β)(ω), α,β∈J . (2.10)

The product is linearly extensible to (S)∗×(S)∗ . It can be proven e.g. that

〈Cn(ω),fn〉¦〈Cm(ω),gm〉=
〈
Cn+m(ω),fn⊗̂gm

〉
(2.11)
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for fn∈ S̃(X)b⊗nand gm∈S̃(X)b⊗m (see [18]).

A nice feature of the Lévy-Hida distribution space is that it carries the white noise
•
Ñ(t,x) of the Poisson random measure Ñ(dt,dx), that is the formal Radon-Nikodym
derivative of Ñ(dt,dx) defined as

•
Ñ(t,x)=

∑

k≥1

δk(t,x)Kα(ω)

is in (S)∗ dtν(dx)−a.e. The Wick product relates to stochastic integrals w.r.t. to
Ñ(dt,dx) in the following way: If Y (t,x,ω) is a predictable process, fulfilling the

condition E
∫ T

0

∫
R0

Y 2(t,z,ω)dtν(dz)<∞, then Y (t,z,ω)¦
•
Ñ(t,z) is λ×ν-Bochner in-

tegrable in (S)∗ and

∫ T

0

∫

R0

Y (t,z,ω) Ñ(dt,dx)=
∫ T

0

∫

R0

Y (t,z,ω)¦
•
Ñ(t,z)dtν(dz). (2.12)

An analogous relation is also valid for the Brownian motion. See [18] or [21] for
definitions.

One of our main tools in the study of Lévy-Itô diffusions is the Lévy Hermite
transform H, which is used to give a characterization of distributions in (S)∗ (see
characterization theorem 2.3.8 in [18]). Similar to the Gaussian case the definition of
H rests on the basis {Kα(ω)}α∈J in (2.6). The Lévy Hermite transform of X(ω)=∑

α cαKα(ω)∈ (S)∗, denoted by HX or X̃, is defined by

HX(z)= X̃(z)=
∑
α

cαzα∈C , (2.13)

where z =(z1,z2,...)∈CN, i.e. in the space of C−valued sequences, and where
zα =zα1

1 zα2
2 ... We have that HX(z) in (2.13) is absolutely convergent on the infinite

dimensional neighborhood

Kq(R) :=



(z1,z2,...)∈CN :

∑

α6=0

|zα|2 (2N)qα <R2



 (2.14)

for some 0<q≤R<∞. For example, the Hermite transform of
•
Ñ(t,x) can be evalu-

ated as

H(
•
Ñ(t,x))(z)=

∑

k≥1

δk(t,x)zk. (2.15)

The Hermite transform translates the Wick product into an ordinary (complex) prod-
uct, that is

H(X ¦Y )(z)=H(X)(z) ·H(Y )(z). (2.16)

As a consequence of theorem 2.3.8 in [18] the last relation can be generalized to Wick
versions of complex analytical functions g: If the function g :C−→C can be expanded
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into a Taylor series around ξ0 =H(X)(0) with real valued coefficients, then there exists
a unique distribution Y ∈ (S)∗ such that

H(Y )(z)=g (H(X)(z)) (2.17)

on Kq(R) for some 0<q≤R<∞. We set g¦(X)=Y.
For example, the Wick version of the exponential function exp can be written as

exp¦X =
∑

n≥0

1
n!

X¦n. (2.18)

Let us now outline how the preceding concepts and results can be generalized to
capture the case of Lévy processes with Brownian motion and a pure jump part (see
[23]). Indicate by µG the Gaussian white noise measure on the measurable space

(ΩG,FG)=(S p(R),B(S p(R))).

Further recall the construction of the orthogonal L2(µG) basis {Hα(ω)}α∈J , given by

Hα(ω)=
∏

j≥1

hαj
(〈ω,ξj〉),

where 〈ω, ·〉=ω(·) and where ξj resp. hj ,j =1,2,... are the Hermite functions resp.
Hermite polynomials. Using µJ to denote the pure jump white noise measure on
(ΩJ ,FJ)=(S̃ p(X),B(S̃ p(X))), we can define the Lévy white noise measure µ as the
product measure µG×µJ on

(Ω,F)=(ΩG×ΩJ ,FG⊗FJ). (2.19)

Set

Lγ(ω)=Lγ(ω1,ω2)=Hα(ω1)Kβ(ω2), (2.20)

if γ =(α,β)∈I :=J 2. Thus (Lγ(ω)γ∈I constitutes an L2(µ)−basis with norm expres-
sion

‖Lγ‖2L2(µ) =γ!,

where γ! :=α!β! for γ =(α,β)∈I.
As in the pure jump setting, we employ the basis (Lγ(ω)γ∈I to establish the

concepts of Hida space, Wick product or Hermite transform to the mixture of Gaussian

and pure jump Lévy noise. We also define the white noise
•
Bt of Brownian motion as

an element in the Hida distribution space:

•
Bt :=

∑

k

ξk(t)Hεk
. (2.21)

Finally note that by choosing an appropriate basis the above described white
noise theory can be established on any time interval [0,T ] instead of the complete
time line R (which is used in the next section).
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3. Explicit representation of strong solutions of Lévy-Itô diffusions
Let (Ω,F ,µ) be a white noise probability space as defined in 2.19 with time

horizon [0,T ], corresponding Brownian motion Bt and Lévy jump measure N(dt,dx).
We denote by {Ft}t≥0 the augmented filtration generated by Bt and N(dt,dx). In the
sequel of this paper we assume the Lévy measure ν(dx) corresponding to N(dt,dx) to
integrate x2 and to be equivalent to the Lebesgue measure, that is

ν(dx)=ϕ(x)dx, (3.1)

where ϕ(x) is strictly positive. Further, we require the corresponding Lévy process
to be of finite variation, which means we have the following representation of the
uncompensated Lévy process:

Lt =
∫ t

0

∫

R0

xN(ds,dx).

We also presume that there exists an orthonormal basis {δk}k∈N of L2(π) such that

sup
s,x
|δk(s,x)|=O(1) for k−→∞. (3.2)

We then consider the following Lévy-Itô diffusion

dYt = b(Yt−)dt+σ(Yt−)dBt +γ(Yt−)dLt (3.3)

= b(Yt−)dt+σ(Yt−)dBt +
∫

R0

γ(Yt−)xN(dt,dx),

Y0 =y, 0≤ t≤T ,

where b,σ :R−→R and γ :R−→R+ are measurable functions.
In this Section we suppose there exists a square integrable strong solution Yt∈

L2(µ) of (3.3), that is Yt fulfils the stochastic differential equation (3.3) and is adapted
to the filtration Ft. This is for example the case under the usual Lipschitz and linear
growth assumptions on the coefficients). The objective of this Section is then to
employ the white noise concepts presented in Section 2 in order to give an explicit
representation of Yt. To this end we first consider the pure jump case of equation
(3.3), i.e. b,σ≡0, before we state the result for the mixed Lévy-Itô diffusion.

Remark 3.1. We remark that even if due to notational convenience we only consider
time homogeneous coefficients in (3.3) in this paper, the concepts and techniques pre-
sented below go through without difficulties for coefficients that depend additionally
on t. Also we point out that all results except Subsection 5.2 are valid in all finite
dimensions.

Notation 3.2. Throughout the remaining parts of the paper we will use the sym-
bol ̂ to define a copy (Ω̂,F̂ ,µ̂) of our initial white noise space as well as to de-
note the corresponding copied objects on this new stochastic basis. For example,
L̂t =

∫ t

0

∫
R0

xN(ω̂,ds,dx) denotes a Lévy process that is a copy of Lt on the auxiliary

probability space (Ω̂,F̂ ,µ̂).

3.1. Pure jump diffusion. Let Yt∈L2(µ) be a unique strong solution of the
Lévy process driven diffusion

dYt =γ(Yt−)dLt

=
∫

R0

γ(Yt−)xN(dt,dx), Y0 =y, 0≤ t≤T. (3.4)
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Assume the Lévy measure is such that

∫ T

0

∫

R0

(
ϕ( x

γ(Ls−) )

ϕ(x)γ(Ls−)
−1

)2

ν(dx)ds<∞ (3.5)

and define the martingale

Vt(ω)=
∫ t

0

∫

R0

{
ϕ( x

γ(Ls−) )

ϕ(x)γ(Ls−)
−1

}
Ñ(ω,ds,dx).

Consider the Doleans-Dade exponential E (Vt) and suppose it is a martingale. Using
the white noise concepts presented in Section 2, we are able to derive a general solution
formula for Yt in (3.4).

Theorem 3.3. Let ρ be a Borel measurable function from R to R such that ρ(Yt)∈
L2(µ). Then, under the above specified assumptions, ρ(Yt (ω)) is given by

Ey
bµ
[
ρ
(
L̂t

)
J¦T

]
(3.6)

where

J¦T =exp¦
∫ T

0

∫

R0

log¦




(
1+

•
Ñ(ω,s, x′

γ(bLs−)
)

)
ϕ

(
x′

γ(bLs−)

)

ϕ(x′)γ(L̂s−)




N(ω̂,ds,dx′)

¦exp¦
∫ T

0

∫

R0




1−

(
1+

•
Ñ(ω,s, x′

γ(bLs−)
)

)
ϕ

(
x′

γ(bLs−)

)

ϕ(x′)γ(L̂s−)




ν(dx′)ds.

Here the Wick product ¦ is with respect to ω and the integrals occurring in (3.6) are
(stochastic) Bochner integrals on the Lévy-Hida space.

Proof. The Hermite transform of the solution Yt∈L2(µ) can be expressed in the
following way (see Theorem 2.7.10 in [9])

H(ρ(Yt))(z)=Ey
µ

[
ρ(Yt)E

(∫ T

0

∫

R0

φz(s,x)Ñ(ω,ds,dx)

)]

=Ey
bµ

[
ρ(Ŷt)E

(∫ T

0

∫

R0

φz(s,x)Ñ(ω̂,ds,dx)

)]
, (3.7)

where φz(s,x)=H(
•
Ñ(s,x))(z)=

∑
k zkδk(s,x), z∈CNc and Ñ(ds,dx)=N(ds,dx)−

ν(dx)ds. Note that

E
(∫ T

0

∫

R0

φz(s,x)Ñ(ds,dx)

)

=exp

{∫ T

0

∫

R0

log(1+φz(s,x))N(ds,dx)−
∫ T

0

∫

R0

φz(s,x)ν(dx)ds

}
.
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The first step is to check that we can extract the Hermite transform in (3.7), that is
that the Bochner integral

Ey
bµ

[
ρ(Ŷt)exp¦

∫ T

0

∫

R0

log¦(1+
•
Ñ(ω,s,x))N(ω̂,ds,dx)

¦exp¦
∫ T

0

∫

R0

−
•
Ñ(ω,s,x)ν(dx)ds

]
(3.8)

exists. For this purpose it is sufficient to show that

Ey
bµ

[
sup

z∈Kq(R)

∣∣∣∣∣ρ(Ŷt)E
(∫ T

0

∫

R0

φz(s,x)Ñ(ω̂,ds,dx)

)∣∣∣∣∣

]
<∞

for some q,R. We find the estimate

sup
z∈Kq(R)

|φz(s,x)|≤R

∥∥∥∥∥
•
Ñ(s,x)

∥∥∥∥∥
0,−2

ds×ν−a.e.,

where ‖·‖0,−2 is the norm for distributions, which corresponds to the norm ‖·‖0,2 (see
Section 2). Then by (3.2) there exists an M >0 such that

sup
z∈Kq(R)

|φz(s,x)|≤RM ds×ν−a.e.

So we get

Ey
bµ

[
sup

z∈Kq(R)

∣∣∣∣∣ρ(Ŷt)E
(∫ T

0

∫

R0

φz(s,x)Ñ(ω̂,ds,dx)

)∣∣∣∣∣

]

≤Ey
bµ




∣∣∣ρ(Ŷt)
∣∣∣E




∫ T

0

∫

R0

R

∥∥∥∥∥
•
Ñ(s,x)

∥∥∥∥∥
0,−2

Ñ(ω̂,ds,dx)




exp
∫ T

0

∫

R0

2R

∥∥∥∥∥
•
Ñ(s,x)

∥∥∥∥∥
0,−2

ν(dx)ds


.

Since
∫ T

0

∫

R0

2R

∥∥∥∥∥
•
Ñ(s,x)

∥∥∥∥∥

2

0,−2

ν(dx)ds<∞

we have that E

∫ T

0

∫
R0

R

∥∥∥∥∥
•
Ñ(s,x)

∥∥∥∥∥
0,−2

Ñ(ω̂,ds,dx)


 is square integrable which yields

with the help of Hölder

Ey
bµ

[
sup

z∈Kq(R)

∣∣∣∣∣ρ(Ŷt)E
(∫ T

0

∫

R0

φz(s,x)Ñ(ω̂,ds,dx)

)∣∣∣∣∣

]

≤ .const ·Ey
bµ
[
ρ(Ŷt)2

]
Ey
bµ


E




∫ T

0

∫

R0

R

∥∥∥∥∥
•
Ñ(s,x)

∥∥∥∥∥
0,−2

Ñ(ω̂,ds,dx)




2

<∞
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and (3.8) is well defined.
Next, in virtue of the Girsanov theorem for random measures (see [10]), it follows

that we can rewrite (3.7) as

H(ρ(Yt))(z)=Ey
Q

[
ρ
(
Ŷt

)]

where Q is the probability measure, given by

dQ=E
(∫ T

0

∫

R0

φz(s,x)Ñ(ds,dx)

)
dµ̂

and where Ŷ under Q is a jump process whose jump measure has the predictable
compensation

ν∗(ds,dx)=(1+φz(s,x))ν(dx)ds.

The process Yt can be rewritten in terms of its jump measure denoted by N ′(dt,dx) :

dYt =
∫

R0

xN ′(dt,dx),

where the Q−compensation ν′(ω,ds,dx) of N ′(ds,dx) is given by the relation

∫ T

0

∫

R0

f(x)ν′(ω,ds,dx)=
∫ T

0

∫

R0

f(γ(Ys−)x)(1+φz(s,x))ν(dx)ds (3.9)

for all ν′−integrable f . The substitution x′=γ(Ys−)x on the right hand side of the
latter relation yields

∫ T

0

∫

R0

f(x)ν′(ω,ds,dx)=
∫ T

0

∫

R0

f(x′)πz(ω,s,x′)dx′ds,

where

πz(ω,s,x′)=(1+φz(s,
x′

γ(Ys−)
)) ·ϕ(

x′

γ(Ys−)
) · 1

γ(Ys−)
.

Note that with

θz(ω̂,s,x′)=
ϕ(x′)

πz(ω̂,s,x′)
−1

we have that

Ey
Q

[
E

(∫ t

0

∫

R0

θz(ω̂,s,x′)(N ′−ν′)(ω̂,ds,dx′)
)]

=1

because we assumed E (Mt) to be a martingale. By invoking the Girsanov theorem
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again, we get that

Ey
Q

[
ρ
(
Ŷt

)]

=Ey
Q

[
ŶtE

(∫ T

0

∫

R0

θz(ω̂,s,x′)(N ′−ν′)(ω̂,ds,dx′)

)

E−1

(∫ T

0

∫

R0

θz(ω̂,s,x′)(N ′−ν′)(ω̂,ds,dx′)

)]

=Ey
Q′

[
ŶtE−1

(∫ T

0

∫

R0

θz(ω̂,s,x′)(N ′−ν′)(ω̂,ds,dx′)

)]

=Ey
Q′

[
ρ
(
Ŷt

)
exp

{∫ T

0

∫

R0

log(
1

θz(ω̂,s,x′)+1
N ′(ω̂,ds,dx′))

}

·exp

{∫ T

0

∫

R0

(1− 1
θz(ω̂,s,x′)+1

)ν(dx′)ds

}]
(3.10)

=Ey
bµ


ρ

(
L̂t

)
exp





∫ T

0

∫

R0

log




(
1+φ(s, x′

γ(bLs−)
,z)

)
ϕ

(
x′

γ(bLs−)

)

ϕ(x′)γ(L̂s−)


N(ω̂,ds,dx′)





·exp





∫ T

0

∫

R0


1−

(
1+φz(s, x′

γ(bLs−)
)
)

ϕ
(

x′

γ(bLs−)

)

ϕ(x′)γ(L̂s−)


ν(dx′)ds








(3.11)

where

dQ′=E
(∫ T

0

∫

R0

θz(ω̂,s,x′)(N ′−ν′)(ω̂,ds,dx′)

)
dQ.

Here we have employed the relation (3.9) to derive identity (3.10), and identity (3.11)
is due to the fact that Yt under Q′ has the same law as Lt under µ.

Therefore we obtain the relation

H(ρ(Yt))(z)=

=Ey
bµ


ρ

(
L̂t

)
exp





∫ T

0

∫

R0

log




(1+φz(s, x′

γ(bLs−)
))ϕ( x′

γ(bLs−)
)

ϕ(x′)γ(L̂s−)


N(ω̂,ds,dx′)





·exp





∫ T

0

∫

R0


1−

(1+φz(s, x′

γ(bLs−)
))ϕ( x′

γ(bLs−)
)

ϕ(x′)γ(L̂s−)


ν(dx′)ds






 (3.12)

and also
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Ey
bµ


 sup

z∈Kq(R)

∣∣∣∣∣∣
ρ
(
L̂t

)
exp





∫ T

0

∫

R0

log




(1+φz(s, x′

γ(bLs−)
))ϕ( x′

γ(bLs−)
)

ϕ(x′)γ(L̂s−)


N(ω̂,ds,dx′)





∣∣∣∣∣∣

·
∣∣∣∣∣∣
exp





∫ T

0

∫

R0


1−

(1+φz(s, x′

γ(bLs−)
))ϕ( x′

γ(bLs−)
)

ϕ(x′)γ(L̂s−)


ν(dx′)ds





∣∣∣∣∣∣




=Ey
bµ

[
sup

z∈Kq(R)

∣∣∣∣∣ρ(Ŷt)E
(∫ T

0

∫

R0

φz(s,x)Ñ(ω̂,ds,dx)

)∣∣∣∣∣

]
<∞

for z∈Kq(R) with some 0<q,R<∞. Consequently we can extract the Hermite trans-
form on both sides of (3.12), which concludes the proof.

Remark 3.4. A sufficient condition for (3.5) to hold is that ν(dx) has a singularity
of order 1 around 0, i.e. ϕ(x)=O(1/x) when x→0. An important example of a Lévy
process, which satisfies the above assumptions, is a class of Gamma processes. In this
case one can e.g. choose {ξn⊗ψm}n,m∈N as an orthonormal basis of L2(π), where ξn

are Hermite functions and ψm Laguerre functions of order 1
2 . Since it is known that

ξn, ψm are uniformly bounded [29] one sees that (3.2) is fulfilled.

Remark 3.5. A set of sufficient conditions to ensure that E (Vt) is a martingale is
that γ is bounded and that

M ≥
ϕ( x

γ(y) )

ϕ(x)γ(y)
>0

holds for all x,y∈R, where M is a constant.

Remark 3.6. The formula (3.3) necessitates stochastic integration of the form
∫ t

0

∫

R0

Φ(ω,s,x)N(ω,ds,dx),

where Φ is a process on the conuclear space (S)∗ and N is the Poisson random measure.
For general information about stochastic integration on conuclear spaces with respect
to Poisson random measures we refer to [12].

In particular, if ρ= id and E (Mt) is a martingale we get:

Corollary 3.7. The solution Yt ∈L2(µ) in (3.1) has the form

Y =Ey
bµ


L̂texp¦{

∫ T

0

∫

R0

log¦




(1+
•
Ñ(ω,s, x′

γ(bLs−)
))ϕ( x′

γ(bLs−)
)

ϕ(x′)γ(L̂s−)


N(ω̂,ds,dx′)

¦exp¦{
∫ T

0

∫

R0


1−

(1+
•
Ñ(ω,s, x′

γ(bLs−
))ϕ( x′

γ(bLs−)
)

ϕ(x′)γ(L̂s−)


ν(dx′)ds


.
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3.2. Mixed Lévy-Itô diffusion. Let now Yt∈L2(µ) be a unique strong
solution of the Lévy-Itô diffusion (3.3) where our stochastic basis is the white noise
space (2.19). In addition to the above specified assumptions on coefficients and the
Lévy measure we restrict σ to be a strictly positive and continuously differentiable,
and ν(dx) to have only support on the positive half line. Further we consider the
strictly increasing function Λ :R→R, given by

Λ(y) :=

{∫ y

x
1

σ(u)du, y >x

−∫ x

y
1

σ(u)du, y≤x,

and define the function γ∗(y,x) as

γ∗(y,x)=Λ
(
Λ−1(y)+γ(Λ−1(y))x

)−y,

which is invertible in x>0 for all y. Assume

Ut(ω)=
∫ t

0

((
b

σ

)
(Λ−1(Bs))− 1

2
σp(Λ−1(Bs))

)
dBs

and

Vt(ω)=
∫ t

0

∫

R0

(
ϕ(γ∗−1(L̂s−,x′))

ϕ(x′)
∂γ∗−1

∂x′
(L̂s−,x′)

)
Ñ(ω,ds,dx)

as well as the corresponding Doleans-Dade exponentials E (Ut) and E (Vt) are martin-
gales. Then we can state the analogue to Theorem 3.3:

Theorem 3.8. Let ρ be a Borel measurable function from R to R such that ρ(Yt)∈
L2(µ). Then, under the above specified assumptions, ρ(Yt (ω)) is given by

Ey
bµ
[
ρ
(
Λ−1(B̂t + L̂t)

)
M¦

T ¦J¦T
]
, (3.13)

where

M¦
T =exp¦

{∫ T

0

( •
Bs(ω)+

(
b

σ

)
(Λ−1(B̂s))− 1

2
σp(Λ−1(B̂s))

)
dB̂s−

1
2

∫ T

0

( •
Bs(ω)+

(
b

σ

)
(Λ−1(B̂s))− 1

2
σp(Λ−1(B̂s))

)¦2
ds

}
(3.14)

and

J¦T =exp¦
{∫ T

0

∫

R0

log¦
(

(1+
•
Ñ(ω,s,γ∗−1(L̂s−,x′)))

ϕ(γ∗−1(L̂s−,x′))
ϕ(x′)

∂γ∗−1

∂x′
(L̂s−,x′))

)
N(ω̂,ds,dx′)

}

¦exp¦
{∫ T

0

∫

R0

(
1−(1+

•
Ñ(ω,s,γ∗−1(L̂s−,x′)))

ϕ(γ∗−1(L̂s−,x′))
ϕ(x′)

∂γ∗−1

∂x′
(L̂s−,x′))ν(dx′)ds

)}
. (3.15)
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Also here the Wick product ¦ is with respect to ω and the integrals occurring in (3.13)
are (stochastic) Bochner integrals on the Lévy-Hida space.

Proof. W.l.o.g. we set ρ= id. For Zt :=Λ(Yt) Itô’s Lemma implies that

Zt =
((

b

σ

)
(Λ−1(Zt))− 1

2
σp(Λ−1(Zt))

)
dt+dBt +

∫

R0

(
Λ

(
Λ−1(Zt−)+γ(Λ−1(Zt−))x

)−Λ(Λ−1(Zt−))
)
N(dt,dx)

= b∗(Zt)dt+dBt +
∫

R0

γ∗(Zt− ,x)N(dt,dx),

where

b∗(y)=
(

b

σ

)
(Λ−1(y))− 1

2
σp(Λ−1(y))

and

γ∗(y,x)=Λ
(
Λ−1(y)+γ(Λ−1(y))x

)−y.

Observe that γ∗(y,x) 6=0 for all x,y and that for y given γ∗(y,x) is invertible in x>0.
To complete the proof it is sufficient to give the explicit representation for Zt.

Taking the Hermite transform we get

H(Zt)(z)

=Ey
bµ

[
ẐtE

(∫ T

0

φ′z(t)dB̂t

)
·E

(∫ T

0

∫

R0

φz(t,x)Ñ(ω̂,dt,dx)

)]
,

where φ′z(s)=H(
•

Bs)(z)=
∑

k zkξk(s) and φz(s,x)=H(
•
Ñ(s,x))(z)=

∑
k zkδk(s,x), z∈

CNc .
The rest of the proof is analogous to the line of reasoning of Theorem 3.3.

4. Application I: Chaos expansions of diffusions
In [30]-[32] the author derives chaos expansions of SDE’s of the type

dYt = b(Yt)dt+σ(Yt)dBt,

Y0 =y, 0≤ t≤T,

where the kernels are determined by iteratively solving deterministic Cauchy prob-
lems. Of course there still remains the task to solve the Cauchy problems in order
to calculate the chaos expansion. Further, this representation is only possible for
diffusions whose coefficients fulfill certain smoothness conditions. In this Section we
demonstrate how the formula (3.13) can be used to derive an explicit chaos expan-
sion of SDE’s of type (4.1) as soon as we have a strong solution Yt∈L2(µ) as in the
previous Section.

Proposition 4.1. Under the assumptions specified in Theorem 3.8, Yt can be repre-
sented as

Yt =
∑

γ∈J
cγ(t)Hγ



THILO MEYER-BRANDIS AND FRANK PROSKE 143

with explicit Fourier coefficients

cγ(t)

=Ey
bµ


Λ−1(B̂t)E

(∫ T

0

ϑs(ω̂)dB̂s

) ∑

α+β=γ

1
α!β!

(−1)|β| (ϑ·(ω̂),η)βHα(ω̂)


,

where

ϑs(ω̂) :=
b(Λ−1(B̂s))

σ(Λ−1(B̂s))
− 1

2
σp(Λ−1(B̂s))

and where

(ϑ·(ω̂),η)β =
∏

i≥1

(ϑ·(ω̂),ηi)
βi

L2 .

Proof. By using the Hermite transform it can be checked that

exp¦
{∫ T

0

•
Bs(ω)dB̂s(ω̂)− 1

2

∫ T

0

( •
Bs(ω)

)¦2
ds

}

=
∑
α

1
α!
Hα(ω̂)Hα(ω).

In addition we find

exp¦
{∫ T

0

ϑs(ω̂)
•

Bs(ω)ds

}
=exp¦

{∫ T

0

ϑs(ω̂)dBs(ω)

}

=
∑

β

1
β!

(ϑ·(ω̂),η)βHβ(ω).

Thus the statement of the theorem follows from (3.13).

Note that the Fourier coefficients are explicitly given since they are expressed
in terms of Brownian motion. The analogue expansion of the jump diffusion (3.4)
can not be given by Fourier coefficients expressed as expectations of only the Lévy
process as an underlying process. This is due to the fact that a Lévy process under
a measure change of Girsanov type in general can not be compensated to be again a
Lévy process (as is the case for Brownian motion).

5. Application II: Existence of strong solutions of SDE’s with irregular
coefficients

In this Section we want to use the explicit representation of Lévy-Itô diffusions
in order to examine questions around existence and uniqueness of strong solutions of
SDE’s

dYt = b(Yt)dt+σ(Yt)dBt,

Y0 =y, 0≤ t≤T, (5.1)

where the drift coefficient b is admitted to be irregular, i.e. we do not impose higher
regularity like Lipschitzianity or Sobolev differentiability. Putting assumptions on
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σ(y) as specified in Subsection 3.2, we have seen that we can w.l.o.g. assume σ≡1,
i.e. we will only consider distorted Brownian motions in the following. For the
discontinuous case

dYt−= b(Yt−)dt+dBt +
∫

R0

γ(Yt−)dLt,

Y0 =y, 0≤ t≤T, (5.2)

the corresponding results can be obtained under more restrictive conditions which we
will point out informally as we go along.

In Subsection 5.1 we characterize the existence and uniqueness of strong solutions
of (5.1) (resp. (5.2)) in terms of strong solutions corresponding to converging coef-
ficients. In Subsection 5.2 we then apply this characterization in order to establish
sufficient conditions for the existence and uniqueness of strong solutions. Actually,
Subsection 5.2. is the only part in this paper that can not be generalized to n dimen-
sions because we rely on the formulation of a generalized comparison result of SDE’s
with irregular coefficients.

Remark 5.1. It is important to note that the results of this paper do not depend on
the choice of the white noise space as underlying probability space. The reason is that
for any stochastic basis (Ω,P,F ,{Ft}0≤t≤T ,B,L), where Ft is a complete filtration
and B, resp. L, are an Ft-Brownian motion, resp. Ft-jump Lévy process, one can
construct the corresponding concepts of stochastic distributions, white noise and Wick
product of functionals. Consequently, our statements about strong solutions are true
on any stochastic basis and we talk indeed about strong solutions in the usual sense
of the definition.

In the light of remark 5.1 we present the following three facts of independent
interest. Let (Ω,P,F ,{Ft}0≤t≤T ,B,L) be a stochastic basis as in Remark 5.1 and
denote by {Gt}0≤t≤T the completed filtration generated by B and L.

Lemma 5.2. We can express the conditional expectation of Y ∈L2(P ) w.r.t Gt with
the help of the techniques presented in Section 3:

EP̂

[
Ŷ J̄¦t M̄¦

t

]
=EP̂

[
EP̂ [Ŷ |Ĝt]J̄¦t M̄¦

t

]
=EP [Y |Gt] (5.3)

where

J̄¦t =exp¦
∫ t

0

∫

R0

log¦(1+
•
Ñ(ω,s,x))N(ω̂,ds,dx)−

∫ t

0

∫

R0

•
Ñ(ω,s,x)ν(dx)ds,

M̄¦
t =exp¦

(∫ t

0

•
Bu(ω)dB̂u− 1

2

∫ t

0

( •
Bu(ω)

)¦2
du

)
.

Lemma 5.3. For a functional Y =f(B,L) ∈L2(P ) we have the following transforma-
tion property which will be crucial in our proofs

ϕ(Y )=EP̂

[
ϕ(Ŷ ) J̄¦t M̄¦

t

]
(5.4)

for all measurable ϕ :R→R such that ϕ(Y )∈L2(P ).
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These first two properties are seen immediately by taking the Hermite transform.

Lemma 5.4. If (Ω′,P ′,F ′,{F ′t}0≤t≤T ,B′,L′) is another stochastic basis, then we can
’lift’ a functional Y ′=f(B′,L′)∈L2(P ′) to our initial stochastic basis and represent
f(B,L) on (Ω,P,F ,{Ft}0≤t≤T ,B,L) as

EP ′ [Y ′J ′¦T M ′¦
T ] (5.5)

where

J ′¦T =exp¦
(∫ T

0

∫

R0

log¦(1+
•
Ñ(ω,s,x))N ′(ω′,ds,dx)−

∫ T

0

∫

R0

•
Ñ(ω,s,x)ν(dx)ds

)

M ′¦
T =exp¦

(∫ T

0

•
Bu(ω)dB′

u−
1
2

∫ T

0

( •
Bu(ω)

)¦2
du

)
.

Lemma 5.4 follows from the fact that the Fourier coefficients of (5.3) and (5.5) are
the same. In passing we can note that Lemma 5.4 extends immediately a well known
result for continuous SDE’s (see f.ex. [?]): In the above notation let f be the function
such that a square integrable strong solution of (5.2) is given by f(B,L). Then for
the same function f the functional f(B′,L′) is a strong solution corresponding to the
basis (Ω′,P ′,F ′,{F ′t}0≤t≤T ,B′,L′).

5.1. A convergence theorem for SDE’s with irregular coefficients.
Let b,bn :R−→R, n=1,2,..., be measurable functions such that

bn(y)→ b(y) (5.6)

almost everywhere (denoted a.e.) with respect to the Lebesgue measure and

Ey
µ

[
exp

(∫ T

0

sup
n

b2
n(B̂t)dt

)]
<∞. (5.7)

We assume that for bn, n=1,2,..., the corresponding distorted Brownian motion (5.1)
admits a strong solution Y bn

t which has the representation of Theorem 3.8

Y bn
t =Ey

bµ

[
B̂texp¦

(∫ T

0

•
(Bu +bn(B̂u))dB̂u− 1

2

∫ T

0

(
•

Bu +bn(B̂u))¦2du

)]
. (5.8)

Lemma 5.5. Define

Yt :=Ey
bµ

[
B̂texp¦

(∫ T

0

•
(Bu +b(B̂u))dB̂u− 1

2

∫ T

0

(
•

Bu +b(B̂u))¦2du

)]
. (5.9)

Then Yt is an element in the Hida distribution space.

Proof. It is sufficient to show that

Ey
bµ

[
sup

z∈Kq(R)

∣∣∣∣∣B̂texp

(∫ T

0

φz(u)+b(B̂u)dB̂u− 1
2

∫ T

0

(φz(u)+b(B̂u))2du

)∣∣∣∣∣

]
<∞



146 EXPLICIT STRONG SOLUTIONS OF LÉVY SDE’S

for some q, R, where φz(s)=H(
•

Bu)(z). Because of condition (5.7) we can define the
probability measure dµ∗

dbµ =E(
∫ t

0
b(B̂u)dB̂u) and we get

Ey
bµ

[
sup

z∈Kq(R)

∣∣∣∣∣B̂texp

(∫ T

0

φz(u)+b(B̂u)dB̂u− 1
2

∫ T

0

(φz(u)+b(B̂u))2du

)∣∣∣∣∣

]

=Ey
µ∗

[
|B̂t| sup

z∈Kq(R)

∣∣∣∣∣exp

(∫ T

0

φz(u)dB∗
u−

1
2

∫ T

0

φ2
z(u)du

)∣∣∣∣∣

]

≤ const.Ey
µ∗

[
sup

z∈Kq(R)

∣∣∣∣∣exp

(∫ T

0

2φz(u)dB∗
u−

∫ T

0

φ2
z(u)du

)∣∣∣∣∣

] 1
2

where B∗
u = B̂t−b(B̂t) is Brownian motion under µ∗. For the last inequality we used

Hölder and the fact that by condition (5.7) B̂t is square integrable under µ∗. Further,
it can be proven with the help of Fernique that

Ey
µ∗

[
sup

z∈Kq(R)

∣∣∣∣∣exp
∫ T

0

4φz(u)dB∗
u

∣∣∣∣∣

]
<∞

for some q, R (see Lemma 3.1 in [15]).We thus get by using Hölder again

Ey
µ∗

[
sup

z∈Kq(R)

∣∣∣∣∣exp

(∫ T

0

2φz(u)dB∗
u−

∫ T

0

φ2
z(u)du

)∣∣∣∣∣

]

≤Ey
µ∗

[
sup

z∈Kq(R)

∣∣∣∣∣exp
∫ T

0

4φz(u)dB∗
u

∣∣∣∣∣

] 1
2

Ey
µ∗

[
sup

z∈Kq(R)

∣∣∣∣∣exp
∫ T

0

2φ2
z(u)du

∣∣∣∣∣

] 1
2

≤∞.

The result follows.

Lemma 5.6. Suppose that the integrability condition (5.7) holds. Then Yt given by
(5.9) is square integrable for all t.

Proof. Note that by property (5.3), property (5.4) and the calculations in the last
proof we get

(
Ey
bµ

[
B̂texp¦

(∫ T

0

•
(Bu +b(B̂u))dB̂u− 1

2

∫ T

0

(
•

Bu +b(B̂u))¦2du

)])2

=

(
Ey

µ∗

[
B̂texp¦

(∫ t

0

•
BudB∗

u−
1
2

∫ t

0

( •
Bu

)¦2
du

)])2

=

(
Ey

µ∗

[
E[B̂t|F∗t ]exp¦

(∫ t

0

•
BudB∗

u−
1
2

∫ t

0

( •
Bu

)¦2
du

)])2

=Ey
µ∗

[(
E[B̂t|F∗t ]

)2

exp¦
(∫ t

0

•
BudB∗

u−
1
2

∫ t

0

( •
Bu

)¦2
du

)]

≤Ey
µ∗

[(
B̂t

)2

exp¦
(∫ t

0

•
BudB∗

u−
1
2

∫ t

0

( •
Bu

)¦2
du

)]
, (5.10)
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where F∗t denotes the filtration generated by B∗. By property (5.5) the object in
(5.10) is a ’lifting’ of a square integrable random variable and the result follows.

With the help of the characterization of convergence in stochastic distribution
spaces through the Hermite transform we are now ready to state the following con-
vergence theorem for SDE’s with irregular coefficients.

Theorem 5.7. Assume b and bn, n=1,2,..., fulfill conditions (5.6) and (5.7). If there

exists a subsequence Y
bnj

t , j =1,2,..., that converges in probability for all t∈ [0,T ],
then there exists a unique square integrable strong solution of (5.1) with coefficient b
given through Yt in (5.9). Conversely, assume there exists a square integrable strong
solution of (5.1) with coefficient b, then this solution is uniquely given through Yt in

(5.9) and there exists a subsequence Y
bnj

t , j =1,2,..., converging to this solution in
L2(µ) for all t∈ [0,T ].

Proof. First we verify that H(Y bn
t )(z)→H(Yt)(z) for n−→∞ pointwise bound-

edly for z∈CNc . Some calculations including Hölder give
∣∣∣H(Yt)(z)−H(Y bn

t )(z)
∣∣∣

=

∣∣∣∣∣E
y
bµ

[
B̂texp

(∫ T

0

(φz(u)+b(B̂u))dB̂u− 1
2

∫ T

0

(φz(u)+b(B̂u))2du

)]

−Ey
bµ

[
B̂texp

(∫ T

0

(φz(u)+bn(B̂u))dB̂u− 1
2

∫ T

0

(φz(u)+bn(B̂u))2du

)]∣∣∣∣∣

≤


const.Ey

bµ




(∫ T

0

(b(B̂u)−bn(B̂u))dB̂u

)2



+const.Ey
bµ




(∫ T

0

∣∣∣(φz(u)+b(B̂u))2−(φz(u)+bn(B̂u))2
∣∣∣du

)2







1
2

·sup
n

Ey
bµ

[
B̂2

t

∣∣∣∣∣exp

(∫ T

0

2(φz(u)+bn(B̂u))dB̂u−
∫ T

0

(φz(u)+bn(B̂u))2du

)∣∣∣∣∣

] 1
2

.

By condition (5.7) and calculations similar to the ones done in the proof of Lemma 5.5
one sees that the last factor is bounded. Then, using the fact that Brownian motion
does not stay in a given set of Lebesgue measure zero for a.a. u∈ [0,T ] and dominated
convergence on the first factor yields the desired convergence of Hermite transforms.

Now assume w.l.o.g. Y bn
t , n=1,2,..., converges in probability for all t∈ [0,T ].

Because H(Y bn
t )(z)→H(Yt)(z) the limit in probability must be Yt. Given ϕ∈Cb(R)

we find in the same way as above

H(ϕ(Y bn
t ))(z)

=Ey
bµ

[
ϕ(B̂t)exp

(∫ T

0

φz(u)+bn(B̂u)dB̂u− 1
2

∫ T

0

(φz(u)+bn(B̂u))2du

)]

−→Ey
bµ

[
ϕ(B̂t)exp

(∫ T

0

φz(u)+b(B̂u)dB̂u− 1
2

∫ T

0

(φz(u)+b(B̂u))2du

)]
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for n−→∞, for all z∈CNc . But we also find because of convergence in probability (by
possibly taking a subsequence)

H(ϕ(Y bn
t ))(z)−→H(ϕ(Yt))(z) for n−→∞.

This shows the transformation property (5.4) is valid for Yt with ϕ∈Cb(R) and by an
approximation argument we get for all ϕ :R→R such that ϕ(Yt)∈L2(µ) that

ϕ(Yt)=Ey
bµ

[
ϕ(B̂t)exp¦

(∫ T

0

•
(Bu +b(B̂u))dB̂u− 1

2

∫ T

0

(
•

Bu +b(B̂u))¦2du

)]
. (5.11)

We proceed to prove that Yt actually solves (5.1). For this purpose we need to have
process Yt has a continuous modification. One easily sees that property (5.4) carries
over to increments of the type Yt−Ys, 0≤s,t≤T. In particular we get for ϕ(y)=y2

the relation

(Yt−Ys)
2

=Ey
bµ

[(
B̂t−B̂s

)2

exp¦
(∫ T

0

•
Bu +b(B̂u)dB̂u− 1

2

∫ T

0

(
•

Bu +b(B̂u))¦2du

)]
.

The latter leads to

Ey
µ

[
(Yt−Ys)

2
]
=Ey

bµ

[(
B̂t−B̂s

)2

exp

(∫ T

0

b(B̂u)dB̂u− 1
2

∫ T

0

b2(B̂u)du

)]

≤ const.|t−s|2 .

Then Kolmogorov’s Lemma provides a continuous modification of Yt. For a moment
let z∈RNc . Since B̂t is a weak solution of (5.1) for the drift b(y)+φz(t) with respect
to the measure dµ∗=E(

∫ T

0
(φz(u)+b(B̂u))dB̂u)dµ we obtain that

H(Yt)(z)

=Ey
bµ

[
B̂texp

(∫ T

0

φz(u)+b(B̂u)dB̂u− 1
2

∫ T

0

(φz(u)+b(B̂u))2du

)]

=Ey
µ∗

[
B̂t

]
=Ey

µ∗

[∫ T

0

φz(u)+b(B̂u)du

]

=
∫ t

0

Ey
bµ

[
b(B̂u)exp

(∫ T

0

φz(u)+b(B̂u)dB̂u− 1
2

∫ T

0

(φz(u)+b(B̂u))2du

)]
du

+H(Bt)(z).

So by assumption and (5.11) applied to b it follows that

H(Yt)(z)=H(
∫ t

0

b(Yu)du)(z)+H(Bt)(z).

Since both sides of the last relation have analytical extensions to z∈CNc we see that

Yt =
∫ t

0

b(Yu)du+Bt.
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One sees easily that a solution of (5.1) is unique in law (see e.g. Prop. 5.3.10 in [13]).
Then Yt is a unique strong solution which by Theorem 3.8 takes the form (5.9).

Conversely, assume there exists a strong solution. Again by uniqueness in law
and Theorem 3.8 this solution must be given by Yt. Using Hölder and condition (5.7)
it is easy to see that

∥∥∥Y bn
t

∥∥∥
2

L2(µ)
≤M <∞,

as well as

∥∥∥∥
(
Y bn

t

)2
∥∥∥∥

2

L2(µ)

≤M <∞.

Thus the sequences Y bn
t as well as (Y bn

t )2, n=1,2,..., are relatively compact in L2(µ)

in the weak sense. This implies that there exists a subsequence of Y
bnj

t and (Y
bnj

t )2

which converges to elements Zt,Z
′
t∈L2(µ) weakly. By the convergence of Hermite

transforms we must have

Zt =Yt =Ey
bµ

[
B̂texp¦

(∫ T

0

•
(Bu +b(B̂u))dB̂u− 1

2

∫ T

0

(
•

Bu +b(B̂u))¦2du

)]

Z ′t =Ey
bµ

[
(B̂t)2 exp¦

(∫ T

0

•
(Bu +b(B̂u))dB̂u− 1

2

∫ T

0

(
•

Bu +b(B̂u))¦2du

)]
.

However, since property (5.11) is valid for Yt we see that Z ′t =(Zt)2. This implies
L2(µ) convergence of a subsequence as desired.

Remark 5.8. For equation (5.2) including jumps one sees from the last proof that a
corresponding result can be obtained by supposing sufficient integrability onH(J¦T )(z)
where J¦T is given in (3.15). However, we need in addition to have the coefficients
γn(y)→γ(y) for all y, and not only a.a y, because we are dealing with finite variation
jump processes.

5.2. A sufficient criteria for strong solutions. In this subsection we want
to apply Theorem 5.7 in order to state a sufficient criteria for a strong solution of SDE
(5.1). Furthermore we formulate a comparison result for SDE’s with irregular coeffi-
cients. We recall that the results go through also for time inhomogeneous coefficients.
The main achievment of this Subsection is formulated as follows:

Theorem 5.9. Let us require that for b :R−→R the integrability condition

Ey
µ

[
exp

(∫ T

0

b2(B̂t)dt

)]
<∞ (5.12)

holds. Then there exists a unique square integrable strong solution Yt of (5.1), which
is explicitly given by (5.9).

Further, if b1,b2 :R−→R are two coefficients for which (5.12) holds and such that
b1(y)≤ b2(y) for y∈R, then the corresponding strong solutions Y b1

t , Y b2
t fulfill

Y b1
t (ω)≤Y b2

t (ω)
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almost surely for all t∈ [0,T ].

We divide the proof of Theorem 5.9 into several help lemmas.

Lemma 5.10. Let ϕ :R−→R be a lower semicontinuous bounded function. Then
there is a sequence of bounded increasing Lipschitz functions ϕn :R−→R such that
ϕn(y)↗ϕ(y) for all y∈R.

Proof. Let us define the sequence of functions

ϕn(x)= inf
p∈R

{ϕ(p)+n |x−p|}.

It is clear from the definition that ϕn(x)↗ for all x and that ϕn≤ϕ. Now for ε>0
choose pε such that

ϕn(x)≥ϕ(pε)+n |x−pε|−ε

≥ϕ(pε)+n |y−pε|+n |x−pε|−n |y−pε|−ε

≥ϕ(pε)+n |y−pε|−n |x−y|−ε

≥ϕn(y)−n |x−y|−ε.

So by interchanging the roles of x and y we obtain that

|ϕn(x)−ϕn(y)|≤n |x−y|.

In order to prove the convergence of ϕn we take for every n∈N a pn such that

ϕ(x)≥ϕn(x)≥ϕ(pn)+n |x−pn|− 1
n

.

Since ϕ is bounded we deduce that

pn−→x.

Because of

ϕ(x)≤ lim inf
n−→∞

ϕ(pn)

and

ϕ(x)≥ϕn(x)≥ϕ(pn)− 1
n

it follows that

ϕn(x)↗ϕ(x) for all x,

which was the result to prove.

Lemma 5.11. Suppose b1,b2 :R−→R are both lower semicontinuous or both upper
semicontinuous functions such that b1(y)≤ b2(y) for y∈R. Further assume that (5.12)
holds for bi, i=1,2. Then Y b1

t ,Y b2
t given by (5.8) are strong solutions of equation (5.1)

and

Y b1
t (ω)≤Y b2

t (ω)
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almost surely for all t∈ [0,T ].

Proof. Consider first the case when b1,b2 are lower semicontinuous bounded func-
tions. By Lemma 5.10 we have Lipschitz functions gn such that gn↗ b1 for all x.
For the coefficients gn we know there exist corresponding strong solutions Y gn

t . By
the usual comparison theorem (see e.g. [13]) and Theorem 5.7 we have Y gn

t ↗Y b1
t in

L2(µ) as n→∞ (at least for a subsequence). Also Theorem 5.7 tells us that b1 admits
a strong solution Y b1

t . In the same way we get a strong solutions Y b2
t . Further, since

Y gn

t ≤Y b2
t for all n and for a subsequence Y gn

t ↗Y b1
t a.s it follows that Y b1

t ≤Y b2
t a.s..

For general unbounded lower semicontinuous functions b1,b2 we can use truncation
and the same arguments as before, now on a sequence of increasing (decreasing) lower
semicontinuous bounded coefficients, in order to obtain the result.

If now u1, u2 are upper semicontinuous functions such that condition (5.12) holds
as well as u1≤u2, then by definition we observe that b2(x) :=−u1(−x) and b1(x) :=
−u2(−x) are lower semicontinuous functions satisfying (5.12) and b2(x)≥ b1(x). We
know from before that there exist unique strong solutions Y

(1)
t ,Y

(2)
t such that

dY
(i)
t = bi(Y

(i)
t )dt−dBt, i=1,2

and

Y
(1)
t (ω)≤Y

(2)
t (ω) a.s..

Thus X
(1)
t :=−Y

(2)
t , X

(2)
t :=−Y

(1)
t are the corrresponding strong solutions of 5.1 for

u1, u2 such that

X
(1)
t (ω)≤X

(2)
t (ω) a.s..

We can now proceed to prove Theorem 5.9:

Proof. (Theorem 5.9) Assume first that b is bounded. By virtue of the theorem
of Vitali-Caratheodory (see e.g. [25]) there exists a sequence of (bounded) upper
semicontinuous functions un such that

un≤ b

and

un(x)−→ b(x) a.e.

(at least for a subsequence). Define the functions

bn =
n

sup
k=1

uk.

Since the supremum of a finite number of upper semicontinuous functions is upper
semicontinuous we see that bn enjoys the same property and

bn↗ b a.e.

Thus with the help of Theorem 5.11 and Theorem 5.7 we conclude with similar argu-
ments as in the proof of Theorem 5.11 that b admits a unique strong solution. Also
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for two coefficients b1,b2 :R−→R such that b1(y)≤ b2(y) for y∈R we get by similar
arguments as in the proof of Theorem 5.11 that for all t∈ [0,T ]

Y b1
t (ω)≤Y b2

t (ω) a.s..

For general unbounded coefficients b the result follows by truncation and the same
type of arguments as above applied to sequences of monotonic growing bounded co-
efficients.

Using Theorem 5.9 we give a deterministic integrability condition on the drift
which assures the existence of a unique strong solution of (5.1).

Theorem 5.12. Assume that ∫ ∞

N

b2(y)dy <∞

for all N ∈R as well as

b(y)=O(1) for y−→−∞.

Then there exists a unique strong solution Yt which has the explicit representation
(5.9).

For the proof of Theorem 5.12 we resort to the following result of Yor and Salminen
[26]:

Lemma 5.13. Let f be a non-negative measurable function which satisfies the as-
sumptions of Theorem 5.12. Denote by B

(ν)
t =Bt +νt a Brownian motion with drift

ν >0 and set I∞(f)=
∫∞
0

f(B(ν)
s )ds. Then there exists a γ >0 such that for all y

Ey [exp(γI∞(f))]<∞. (5.13)

In particular, if f(y)≤CN∗ for all y≤N∗,N∗∈R , then (5.13) is valid for

γ <min{ ν

2
∫∞

N∗ f(y)dy
,

ν2

4CN∗
}. (5.14)

Proof. (Theorem 5.12) By Lemma 5.13 we obtain that

Ey
µ

[
exp(γ

∫ T

0

b2(B(ν)
s )ds))

]
<∞

for a γ >0 and all y. W.l.o.g. let y =0. It follows from Girsanov’s theorem that Bt−νt
is a Brownian motion with respect to the measure µ̄=E(νBT )dµ. Thus we get

Ey
µ

[
exp

(∫ T

0

b2(Bs)ds

)]

=Ey
µ̄

[
exp

(∫ T

0

b2(B̂s +νs)ds

)
E(−νBT )

]

=Ey
µ̄

[
exp

(∫ T

0

b2(B̂s +νs)ds

)
E(−ν(B̂T +νT ))

]

≤Ey
µ̄

[
exp

(
2
∫ T

0

b2(B̂s +νs)ds

)] 1
2

Ey
µ̄

[
E2(−ν(B̂T +νT ))

] 1
2

<∞, if γ >2.
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Because of relation (5.14) we can choose ν >0 large enough such that γ >2. This
shows that (5.12) is fulfilled. So the result follows from Theorem 5.9.

Example 5.14. Consider the drift

b(y)=
{ 1

4√y , if 0<y≤1
0 else

.

Then b satisfies the conditions of Theorem 5.4. Thus

dYt =χ(0,1](Yt)
1

4
√

Yt

dt+dBt

has a unique strong solution.

Remark 5.15. In Theorem 5.9 we presented an alternative proof to a result of
Zvonkin [35], where the special case of bounded drift coefficients were treated. Let
us mention that Zvonkin was the first, who studied strong solutions of SDE’s with
irregular coefficients. We also remark that our result is novel. To the best of our
knowledge this result provides the weakest known integrability condition on the (time
homogeneous) drift coefficient to elicit unique strong solutions. For similar results
we refer to the recent papers [14], [7], where the authors require a higher order of
integrability on the drift.

Remark 5.16. Concerning the Lévy-Itô diffusion including jumps we point out that
we can attain a similar result to Theorem 5.9 by applying comparison results for jump
diffusions ([24]) just as in the above arguments. However since comparison theorems
for jump SDE’s are more restrictive we are only able to capture the case of coefficients
γ in (5.2), which are piecewise monotone.

Remark 5.17. A central step in the proof of Theorem 5.9 was the approximation
of the a priori distributional object Yt in (5.9) by strong solutions of (5.1). We
used the (almost everywhere) convergence of the strong solutions to Yt to deduce the
transformation property (5.4). The latter property was essential for the verification of
Yt as a strong solution of (5.1). At the moment we are not able to extend the results
of this Subsection to the multidimensional or even infinite dimensional case since our
proofs heavily rely on comparison results for SDE’s. To overcome this deficiency
it is e.g. conceivable to exploit the Skorohod embedding technique to achieve a.e-
convergence.

Acknowledgements. We thank F. E. Benth for helpful comments and discus-
sions.
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