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STABILITY OF A TRAFFIC FLOW MODEL WITH NONCONVEX
RELAXATION∗

TONG LI† AND HAILIANG LIU‡

Abstract. This paper is concerned with the nonlinear stability of traveling wave solutions for
a quasi-linear relaxation model with a nonconvex equilibrium flux. The study is motivated by and
the results are applied to the well-known dynamic continuum traffic flow model, the Payne and
Whitham (PW) model with a nonconcave fundamental diagram. The PW model is the first of its
kind and it has been widely adopted by traffic engineers in the study of stability and instability
phenomena of traffic flow. The traveling wave solutions are shown to be asymptotically stable under
small disturbances and under the sub-characteristic condition using a weighted energy method. The
analysis applies to both non-degenerate case and the degenerate case where the traveling wave has
exponential decay rates at infinity and has an algebraic decay rate at infinity, respectively.
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1. Introduction
We study the following quasi-linear relaxation model{

ut +vx =0,
vt +g(u)x =− 1

ε (v−f(u)) (1.1)

subject to the initial data

(u,v)(x,0)=(u0,v0)(x)→ (u±,v±) as x→±∞, v±=f(u±) (1.2)

where

g′(u)>0 (1.3)

ε>0, and the equilibrium flux f is nonconvex. A strict sub-characteristic condition

−
√
g′(u)<f ′(u)<

√
g′(u) (1.4)

is imposed for all u under consideration. Sub-characteristic condition (1.4) is a nec-
essary condition for linear stability (Whitham [24]) and for nonlinear stability with
convex equilibrium fluxes (Liu [13]).

The purpose of this paper is to show the existence and stability of the traveling
wave solutions of (1.1) satisfying (1.4) and (1.12) with any nonconvex equilibrium
flux f . When f is a nonconvex function, the standard energy method used in [13, 16]
does not work. To overcome this difficulty, a weighted energy method, in the spirit of
Matsumura and Nishihara [19], was developed in Liu, Wang and Yang [18] for semi-
linear relaxation system, i.e. (1.1) with g(u)=au. For the quasi-linear relaxation
system with nonconvex relaxation to be studied in this paper, we are able to adapt
the weighted energy method performed in [18] to the current setting. As will be clear
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102 STABILITY OF A TRAFFIC FLOW MODEL

in the course of our weighted energy analysis, the nonlinearity of g together with the
nonconvexity of f does require tricky estimates.

Our motivation for this study comes from the study of traffic flow. The system
of equations (1.1) arises from a nonequilibrium continuum model of traffic flows with
a nonconcave fundamental diagram: Payne [22] and Whitham [24] (PW) model{

ρt +(ρv)x =0,
vt +vvx + c2

0
ρ ρx = 1

τ (ve(ρ)−v) (1.5)

where τ >0 is the relaxation time, c0 is the traffic sound speed coefficient and ve(ρ) is
the desired speed. The first equation in (1.5) is a conservation law, while the second
one describes drivers’ acceleration behavior. The acceleration consists of a relaxation
to the static equilibrium speed-density relation and an anticipation which expresses
the effect of drivers reacting to conditions downstream. The PW model (1.5) is the
first of its kind, namely, dynamic continuum models. It has been adopted by many
traffic engineers in their study of stability and instability phenomena of traffic flow
Helbing [2], Jin and Zhang [4] and Kerner and Konhäuser [7]. It has also been studied
by mathematicians Schochet [23], Lattanzio and Marcati [9] and Li [12].

In the relaxation limit, τ→0+, the leading order of the relaxation system (1.5)
is the LWR (Lighthill, Whitham and Richards) model

ρt +(q(ρ))x =0 (1.6)

where

q(ρ)=ρve(ρ) (1.7)

is the equilibrium flux which is the so-called fundamental diagram in traffic flow.
Fundamental diagram gives a correspondence of vehicle density to the flow rate

in traffic. Nonconcave fundamental diagrams are observed in real traffic Helbing [2],
Knospe, Santen, Schadschneider and Schreckenberg [8] and Figure 1.1. Furthermore,
a nonconcave fundamental diagram is a necessary condition in obtaining complicated
traffic flow patterns such as stop-and-go waves, the self-organized oscillatory behavior
and chaotic behavior in traffic Jin and Zhang [4], Kerner and Konhäuser [7] and Li [12],
in the unstable regions, i.e., outside the stable region (1.4), or in the so-called super-
characteristic case Jin and Katsoulakis [5]. It would be interesting to investigate,
under the sub-characteristic condition (1.4), the nonlinear stability of traveling wave
solutions for PW model (1.5) with a nonconcave fundamental diagram (1.7). The
nonlinear stability result is a direct consequence of the sub-characteristic condition
(1.4) and the weighted energy method in the spirit of [10, 14, 18, 19].

Using Chapman-Enskog expansion [13], the leading order of the relaxation system
(1.1) is

v=f(u),

ut +f(u)x =0. (1.8)

The first order approximation to (1.1) is

v=f(u)−ε(g′(u)−f ′(u)2)ux,



TONG LI AND HAILIANG LIU 103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 1.1. A Fundamental Diagram q(ρ) of Traffic Flow

ut +f(u)x =ε((g′(u)−f ′(u)2)ux)x. (1.9)

Since (1.9) is dissipative provided that sub-characteristic condition (1.4) is satisfied,
then similar to the diffusion, the relaxation term has smoothing and dissipative ef-
fects for the hyperbolic conservation laws. The stability of viscous shock waves with
non-convex flux was investigated by several authors, cf. [6], [14], [19], [20]. Subse-
quently the stability of relaxation shock waves for a semi-linear relaxation system [3]
with nonconvex flux was studied in [18, 17]. Other related results include: Li [10]
established the nonlinear stability of a planar gaseous Chapman-Jouguet(CJ) deto-
nation wave by the weighted energy method. Li [11] also obtained the well-posedness
results for a relaxation model of traffic flow with nonconcave fundamental diagrams.
Lattanzio and Marcati [9] showed the convergence to the equilibrium solution as the
relaxation parameter τ tends to zero for (1.5) with a concave (quadratic) fundamental
diagram. The asymptotic behavior of solutions of a p−system with convex relaxation
was recently studied in [25]. Consult [15] for a bird’s-eye view of results obtained for
a class of relaxation systems, in particular of those introduced in [3].

Under the scaling (x,t)→ (εx,εt), equation (1.1) becomes{
ut +vx =0,
vt +g(u)x =f(u)−v. (1.10)

The behavior of the solution (u,v) of (1.1) and (1.2) at any fixed time t as ε→0+ is
equivalent to the long time behavior of (u,v) of (1.10) as t→∞.

This paper is organized as follows: in Section 2, we start with a discussion about
how the system (1.1) arises from a nonequilibrium continuum model of traffic flows
with a nonconcave fundamental diagram. We then show that there exist traveling
wave solutions for (1.10), i.e.,

(u,v)(x,t)=(U,V )(x−st)≡ (U,V )(z)

satisfying

(U,V )(z)→ (u±,v±) as z→±∞, v±=f(u±) (1.11)

with shock speed s being sub-characteristic

−
√
g′(u)<s<

√
g′(u). (1.12)
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The corresponding jump (u−,u+) is an admissible shock of (1.8). That is, the con-
stants u± and s satisfy the Rankine-Hugoniot condition

−s(u+−u−)+f(u+)−f(u−)=0 (1.13)

and the entropy condition

Q(u)≡f(u)−f(u±)−s(u−u±)
{
<0 for u+<u<u−,
>0 for u−<u<u+.

(1.14)

Given such a traveling wave, the main result on its asymptotic stability is stated
in Section 2. The stability results are established for both the non-degenerate case,
f ′(u+)<s<f ′(u−), and the degenerate case, say, f ′(u+)=s<f ′(u−). The meanings
of stability are different which are dictated by different decay rates of the traveling
wave at far fields. In the non-degenerate case, the traveling wave has exponential decay
rates as x→±∞. Thus the traveling wave is stable against small initial perturbations
which are in H2. However, in the degenerate case, the traveling wave has an algebraic
decay rate as x→+∞. Thus it is stable against small initial perturbations which
are in H2∩L2

〈x〉+ . Once the stability result is established, further convergence rates
to the underlying traveling wave can be similarly explored as in [17], though details
are not provided in this paper. In Section 3, the problem is reformulated in terms
of perturbations to the underlying traveling wave. The main result thus follows from
the local existence and the a priori estimate. Section 4 is devoted to establishing the
desired a priori estimates.

Notations: Hereafter, C denotes a generic positive constant. L2 denotes the space
of square integrable functions on R with the norm

||f ||=
(∫

R

|f |2dx
)1/2

.

Without any ambiguity, the integral region R will be omitted. Hj(j >0) denotes the
usual j-th order Sobolev space with norm

||f ||Hj = ||f ||j =

(
j∑

k=0

||∂k
xf ||2

)1/2

.

For a weight function w>0, L2
w denotes the space of measurable functions f satisfying√

wf ∈L2 with the norm

||f ||w =
(∫

w(x)|f(x)|2dx
)1/2

.

Hj
w denotes the weighted Sobolev space with norm

||f ||Hj
w

= ||f ||j =

(
j∑

k=0

||∂k
xf ||2w

)1/2

.

When w(x)=(1+x2)α/2, we denote L2
w =L2

α.



TONG LI AND HAILIANG LIU 105

2. Preliminaries and Theorem
First, we show how a system of equations (1.1) arises from a nonequilibrium

continuum model (1.5) of traffic flows.
In Lagrangian formulation, PW model (1.5) is equivalent to

{
γt−vx =0,
vt +p(γ)x = w(γ)−v

τ

(2.1)

where γ= 1
ρ , p(γ)= c2

0
γ and w(γ)=v∗( 1

γ ). Moreover

w′′(γ)=
1
γ3
q′′
(

1
γ

)
(2.2)

where the fundamental diagram q is defined in (1.7). Thus w is nonconcave since q is
nonconcave.

Now replacing γ by u and v by −v in (2.1), we arrive at the quasi-linear relaxation
model (1.1) with g(u)=−p(u), f(u)=−w(u) and ε= τ .

Moreover,

g′(u)=−p′(u)=
c20
u2
>0.

Therefore condition (1.3) is satisfied. The equilibrium flux f in (1.1) is nonconvex
since w is nonconcave.

We now look for traveling wave solutions with shock profiles for the relaxation
system (1.10). Substituting

(u,v)(x,t)=(U,V )(z), z=x−st

into (1.10), we have {−sUz +Vz =0,
−sVz +g(U)z =f(U)−V. (2.3)

Hence

(g′(U)−s2)Uz =f(U)−V. (2.4)

Integration of the first equation of (2.3) over (±∞,z) using boundary condition (1.11)
yields

−sU+V =−su±+v±=−su±+f(u±). (2.5)

Combining (2.4) and (2.5), we obtain

Uz =
Q(U)

g′(U)−s2 (2.6)

where

Q(U)≡f(U)−f(u±)−s(U−u±) (2.7)
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and

s=
v+−v−
u+−u− =

f(u+)−f(u−)
u+−u− .

Therefore the Rankine-Hugoniot condition for the equilibrium equation (1.8) is satis-
fied by the end states of the traveling wave of the relaxation system (1.10).

Since (2.6) is a scalar ordinary differential equation of U , the trajectories satisfying
the boundary condition (1.11) necessarily connect adjacent equilibria u− and u+. It
is easy to check that there is a trajectory from u− to u+ if and only if condition

(u+−u−)
Q(U)

g′(U)−s2 >0

holds for u lies strictly between u+ and u−. By virtue of (1.12) and entropy condition
(1.14), this implies

Q(u)(u+−u−)>0

for u lies strictly between u+ and u−. Thus there is a trajectory from u− to u+ if
and only if

u=
{
u−, x−st<0
u+, x−st>0 (2.8)

is an admissible shock for the equilibrium equation (1.8).
Without loss of generality, we study only the following case:

u+<u− or Q<0 and Uz<0. (2.9)

The shock wave satisfying (2.9) corresponds to a physical shock for the equilibrium
traffic flow model (1.6). Then the ordinary differential equation (2.6) with boundary
condition (1.11) has a unique smooth solution. Moreover, if

f ′(u+)<s<f ′(u−) or Q′(u±) 6=0, (2.10)

then

Q(U)∼−|U−u±| as U→u±.

Hence

|(U−u±,V −v±)(z)|∼ exp(−c±|z|) as z→±∞ (2.11)

for some constants c±>0.
While

s=f ′(u+) or Q′(u+)=0, (2.12)

the so-called degenerate case, and as U→u+

Q(U)∼−|U−u+|1+k+ (2.13)

where k+>0 is an integer such that

Q′(u+)= ···=Q(k+)(u+)=0 but Q(k++1)(u+) 6=0, (2.14)
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then

|(U−u+,V −v+)(z)|∼z− 1
k+ as z→+∞. (2.15)

Thus we have the following results on the existence of traveling wave solutions.

Lemma 2.1. Assume that (1.13), (2.9) hold. Then there exists a traveling wave
solution (U,V )(x−st) of (1.10) and boundary condition (1.11), which is unique up
to a shift and the speed is sub-characteristic (1.12). Moreover, the convergence rates
(2.11) and (2.15) hold when k+ =0 and k+>0 in (2.13), respectively.

For the initial disturbances, without loss of generality, we assume∫ +∞

−∞
(u0−U)(x)dx=0. (2.16)

For a pair of traveling wave solutions given by Lemma 2.1, we let

(φ0,ψ0)(x)=
(∫ x

−∞
(u0−U)(y)dy,(v0−V )(x)

)
. (2.17)

Our goal is to show that the solution (u,v)(x,t) of (1.10), (1.2) exists globally and
approaches the traveling wave solution (U,V )(x−st) under the sub-characteristic con-
dition (1.4) as t→∞, the main theorem is as follows.

Theorem 2.2. (Stability) Suppose that conditions (1.4), (1.13) and (1.14) hold. Let
(U,V )(x−st) be a traveling wave solution determined by (2.16) with speed satisfying
(1.12). Then it holds:
(i) In the non-degenerate case, f ′(u+)<s<f ′(u−). There exists a constant ε0>0
independent of (u±,v±) such that if ||u0−U ||2 + ||v0−V ||2 + ||φ0,ψ0||≤ε0, the initial
value problem (1.10), (1.2) has a unique global solution (u,v)(x,t) satisfying

(u−U,v−V )∈C0(0,∞;H2)∩L2(0,∞;H2).

Furthermore, the solution satisfies

sup
x∈R

|(u,v)(x,t)−(U,V )(x−st)|→0 as t→+∞. (2.18)

(ii) In the degenerate case, f ′(u+)=s<f ′(u−). There exists a positive constant ε1
such that if ||u0−U ||2 + ||v0−V ||2 +‖(φ0,φ0,z,ψ0)‖〈z〉+ ≤ε1, then the Cauchy problem
(1.10), (1.2) has a unique global solution (u,v)(x,t) satisfying

(u−U,v−V )∈C0(0,∞;H2∩L2
〈z〉+)∩L2(0,∞;H2∩L2

〈z〉+),

and

sup
x∈R

|(u,v)(x,t)−(U,V )(x−st)|→0 as t→+∞,

where

〈z〉+ =
{√

1+z2, z≥0,
1, z <0.

Regarding this stability result, two remarks are in order.
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REMARK 2.3. The above results will be proved by weighted L2 estimates by taking
an appropriate weight function w=w(U) (3.8) which is dictated by the decay rates
(2.11) or (2.15) of the traveling wave at far fields. In the non-degenerate case (i)
f ′(u+)<s<f ′(u−), the weight w=w(U) is uniformly bounded

C−1≤w≤C (2.19)

where C>0 is a constant. The traveling wave is stable against small initial pertur-
bations which are in H2.

However, in the degenerate case (ii), say, f ′(u+)=s<f ′(u−), the traveling wave
has an algebraic decay rate

|(U−u+,V −v+)(z)|∼z−1/k+ , as z→+∞

and |Q(U)|∼ |U−u+|1+k+ as U→u+, as stated in Lemma 2.1. This when combined
with our choice of the weight w=w(U) defined in (3.8) leads to

w(U)∼〈z〉+ as z→+∞. (2.20)

The traveling wave is stable against small initial perturbations which are inH2∩L2
〈z〉+ .

REMARK 2.4. With the above stability result at hand, convergence decay rates to
underlying traveling waves can be further explored following the analysis in [17] for
the study of a semi-linear relaxation system. The result may be stated as follows: if
initial perturbations have additional decay rates in space, in the sense that(∫ x

−∞
(u0−U)(y)dy,(u0−U)(x),(v0−V )(x)

)
∈L2

α

for any number α>0. Then such a spatial decay rate can be transformed into the
corresponding decay rate in time, i.e.,

sup
R
|(u,v)(x,t)−(U,V )(x−st)|≤C(1+ t)−α/2

for some constant C>0 depending on initial perturbations measured in the L2
α norm.

Technical details are chosen to be omitted.

3. Reformulation of the Problem
The proof of Theorem 2.2 is based on weighted L2 energy estimates. The key

condition for the stability is the sub-characteristic condition (1.4). Depending on the
decay rates (2.11) or (2.15) of the traveling wave U at far fields, the meanings of
stability are different in the sense that U is stable against small initial perturbations
which are in H2 or in H2∩L2

〈x〉+ , respectively. Proper choice of weight function w
is a crucial step in our proof. Such a weight function w is chosen so that we prove
stability for both non-degenerate and degenerate cases as stated in Theorem 2.2.

We firstly rewrite the problem (1.10), (1.2) using the moving coordinate z=x−st.
Under the assumption of (2.16), we will look for a solution of the following form:

(u,v)(x,t)=(U,V )(z)+(φz,ψ)(z,t), (3.1)

where (φ,ψ) is in some space of integrable functions which will be defined later.
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We substitute (3.1) into (1.10), by virtue of (2.3), and integrate the first equation
once with respect to z, to have that the perturbation (φ,ψ) satisfies{

φt−sφz +ψ=0,
ψt−sψz +(g(U+φz)−g(U))z =f(U+φz)−f(U)−ψ. (3.2)

The first equation of (3.2) gives

ψ=−(φt−sφz). (3.3)

Substituting (3.3) into the second equation of (3.2), we get a closed equation for φ

L(φ)≡ (φt−sφz)t−s(φt−sφz)z−(g′(U)φz)z +φt +λφz =−F (U,φz) (3.4)

where

λ=Q′(U)=f ′(U)−s

and

F (U,φz)=F1 +F2

with

F1 :=f(U+φz)−f(U)−f ′(U)φz (3.5)

F2 :=−(g(U+φz)−g(U)−g′(U)φz)z =(G(U,φz)φ2
z)z (3.6)

and

G(U,φz) :=−
∫ 1

0

∫ 1

0

g′′(U+θηφz)θdθdη

is the error term due to nonlinearity of function g.
The corresponding initial data for (3.4) becomes

φ(z,0)=φ0(z), φt(z,0)=sφ′0(z)−ψ0 =φ1(z). (3.7)

The asymptotic stability of the profile (U,V ) means that the perturbation (φz,ψ)
decays to zero as t→+∞. The left hand side of (3.4) contains a first-order term
with speed λ which plays the essential role of governing the large-time behavior of the
solution.

First we choose the weight function w(U) introduced in [19] for the scalar viscous
conservation laws with nonconvex flux

w(U)=
(U−u+)(U−u−)

Q(U)
. (3.8)

Then w∈C2[u+,u−]. By (2.9), w≥0. Note that w is uniformly bounded in the
non-degenerate case f ′(u−)>s>f ′(u+), see (2.19). and it becomes unbounded as
z→+∞ in the degenerate case f ′(u−)>s=f ′(u+), see (2.20)

Now, we introduce the solution space of the problem (3.4), (3.7) as follows:
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X(0,T )=

{φ(z,t) : φ∈C0([0,T );H3∩L2
w)∩C1(0,T ;H2∩L2

w), φz,φt∈L2(0,T ;H2∩L2
w)}

with 0<T ≤+∞.
By virtue of (3.3), we have

ψ∈C0([0,T );H2∩L2
w)∩L2(0,T ;H2∩L2

w).

By the Sobolev embedding theorem, if we let

N(t)= sup
0≤τ≤t

{||φ(τ)||3 + ||φt(τ)||2 +‖φ(τ)‖H1
w

+ ||φt(τ)||L2
w
}, (3.9)

then

sup
z∈R

{|φ|,|φz|,|φzz,|φt|,|φtz|}≤CN(t). (3.10)

Thus Theorem 2.2 is a consequence of the following theorem.

Theorem 3.1. Under the conditions of Theorem 2.2, there exists a positive constant
δ1 such that if N(0)≤ δ1, then the problem (3.4), (3.7) has a unique global solution
φ∈X(0,+∞) satisfying

||φ(t)||23 + ||φt||22 + ||φ||2H1
w

+ ||φt||2L2
w

+
∫ t

0

||(φt,φz)(τ)||22dτ ≤CN2(0) (3.11)

for t∈ [0,+∞). Furthermore,

sup
z∈R

|(φz,φt)(z,t)|→0 as t→∞. (3.12)

For the solution φ in the above theorem, we define (φ,ψ) by (3.3). Then it becomes
a global solution of the problem (3.2) with (φ,ψ)(z,0)=(φ0,ψ0)(z), and consequently
we have the desired solution of the problem (1.10), (1.2) through the relation (3.1). On
the other hand the solution of (1.10) is unique in the space C0(0,T ;H2∩L2

w), therefore
Theorem 2.2 follows from Theorem 3.1. Global existence for φ will be derived from
the following local existence theorem for φ combined with an a priori estimate. The
estimate (3.11) gives

||φt,φz||21→0 as t→∞, (3.13)

whence we have

φ2
t +φ2

z =
∫ z

−∞
(2φtφtz +2φzφzz)(y,t)dy

≤
(∫ +∞

−∞
(φ2

t +φ2
z)dy

)1/2(∫ +∞

−∞
(φ2

tz +φ2
zz)dy

)1/2

→0 as t→∞.

Proposition 3.2. (Local existence) For any δ0>0, there exists a positive constant
T0 depending on δ0, such that if φ0∈H3∩H1

w and φ1∈H2∩L2
w, with N(0)<δ0/2,

then the problem (3.4), (3.7) has a unique solution φ∈X(0,T0) satisfying

N(t)<2N(0) (3.14)
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for any 0≤ t≤T0.

Proposition 3.3. (A priori estimate) Let φ∈X(0,T ) be a solution for a positive
constant T , then there exists a positive constant δ2 independent of T such that if

N(t)<δ2, t∈ [0,T ],

then φ satisfies (3.11) for any 0≤ t≤T .

Proposition 3.2 can be proved in the standard way, so we omit the proof, cf [21].
To prove Proposition 3.3 is our main task in the following section.

Theorem 3.1 can be proved by the continuation arguments based on Proposition
3.2 and Proposition 3.3, cf. [18].

4. Energy Estimates
In this section, we will complete the proof of our stability theorem. The stability

result is a direct consequence of the sub-characteristic condition (1.4) and the weighted
energy method in the spirit of [10, 14, 18, 19]. We establish the weighted L2 estimate
while taking the nonlinearity of function g into account.

Lemma 4.1. Under the conditions of Theorem 2.2, there is a positive constant C such
that if sub-characteristic condition (1.4) is satisfied for u∈ [u+,u−] and |u+−u−| is
sufficiently small, then

||φ(t)||2H1
w

+ ||φt(t)||2w +
∫ t

0

||(φt,φz)(τ)||2wdτ+
∫ t

0

∫
R

|Uz|φ2dzdτ

≤C
{
||φ0||2H1

w
+ ||φ1||2w +

∫ t

0

∫
R

w|F |(|φ|+ |(φt,φz)|)dzdτ
}

(4.1)

holds for t∈ [0,T ].

Proof. Let w :=w(U)>0 be a weight function to be determined.
Multiplying (3.4) by 2w(U)φ, we obtain

2w(U)φ ·L(φ)=−2Fw(U)φ. (4.2)

The left hand side of (4.2) can be reduced to

2[(φt−sφz)t−s(φt−sφz)z−(g′(U)φz)z]wφ+2(φt +λφz)wφ
=[2wφ(φt−sφz)]t−2wφt(φt−sφz)−2s[wφ(φt−sφz)]z

+2swzφ(φt−sφz)+2swφz(φt−sφz)−2(wg′(U)φφz)z +2wg′(U)φ2
z

+(g′(U)wzφ
2)z−(g′(U)wz)zφ

2 +(wφ2)t +(λwφ2)z−φ2(λw)z

=[wφ2 +2wφ(φt−sφz)]t−2w(φt−sφz)2 +2wg′(U)φ2
z−(g′(U)wz)zφ

2

−(λw)zφ
2 +swz(φ2)t−s2{wz(φ2)}z +s2wzzφ

2

+{−2swφ(φt−sφz)−2g′(U)wφφz +g′(U)wzφ
2 +λwφ2}z

=[wφ2 +2wφ(φt−sφz)+swzφ
2]t−2w(φt−sφz)2 +2g′(U)wφ2

z +Aφ2 +{···}z(4.3)

where

A=s2wzz−(g′(U)wz)z−(λw)z (4.4)
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and {···}z denotes the terms which will disappear after integration with respect to
z∈R.

Secondly, we calculate

2(φt−sφz)w ·L(φ)=−2F (φt−sφz)w. (4.5)

The left hand side of (4.5) is

2[(φt−sφz)t−s(φt−sφz)z−(g′(U)φz)z]w(φt−sφz)
+2w(φt−sφz)(φt−sφz +f ′(U)φz)

= [w(φt−sφz)2]t−s[w(φt−sφz)2]z +swz(φt−sφz)2

−2[wg′(U)φz(φt−sφz)]z +2g′(U)wzφz(φt−sφz)+2g′(U)wφz(φt−sφz)z

+2w(φt−sφz)2 +2wf ′(U)φz(φt−sφz)
= [w(φt−sφz)2]t +(2w+swz)(φt−sφz)2 +2g′(U)wzφz(φt−sφz)

+2wf ′(U)φz(φt−sφz)+[g′(U)wφ2
z]t− [swg′(U)φ2

z]z +s(wg′(U)zφ
2
z

−[sw(φt−sφz)2 +2g′(U)wφz(φt−sφz)]z
=[wg′(U)φ2

z +w(φt−sφz)2]t +(2w+swz)(φt−sφz)2

+s(wg′(U))zφ
2
z +2f ′(U)wφz(φt−sφz)+2g′(U)wzφz(φt−sφz)

−[sw(φt−sφz)2 +2g′(U)wφz(φt−sφz)+swg′(U)φ2
z]z. (4.6)

Hence, the combination (4.2) ×µ+ (4.5) with a positive constant µ yields

{E1(φ,(φt−sφz))+E3(φz)}t +E2(φz,(φt−sφz))+E4(φ)+{···}z

=−2Fw{µφ+(φt−sφz)} (4.7)

where

E1(φ,(φt−sφz)) = w(φt−sφz)2 +2µwφ(φt−sφz)+µ(w+swz)φ2,
E3(φz) = wg′(U)φ2

z,
E2(φz,(φt−sφz)) = (2w+swz−2µw)(φt−sφz)2

+2(f ′(U)w+g′(U)wz)φz(φt−sφz)
+(2µwg′(U)+s(wg′(U))z)φ2

z,

E4(φ)=µAφ2 (4.8)

where A is defined in (4.4). Due to (g′(U)−s2)Uz =Q(U), we have

A = −{(g′(U)−s2)w′(U)Uz +λw}z

= −{w′(U)Q(U)+Q′(U)w}z

= −{wQ}′′(U)Uz.
(4.9)

The monotonicity of the shock profile U (2.9) requires that

(wQ)′′(U)≥ν >0. (4.10)

On the other hand, we need to choose a constant µ>0 and w such that the
discriminants of Ej (j=1,2) are negative, that is, the inequalities

sup
j
Dj <0, j=1,2 (4.11)
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hold uniformly on [u+,u−], where Dj is the discriminants of the quadratics Ej(j=
1,2), respectively.

D1 =4µw[(µ−1)w−swz],

D2 =4{(f ′(U)w+g′(U)wz)2−(2µwg′(U)+s(g′(U)w)z)(2w+swz−2µw)},
and 2µwg′(U)+s(wg′(U))z>0.

For this choice of µ and w, there exist positive constants c and C such that

cw{φ2 +(φt−sφz)2} ≤ E1 ≤ Cw{φ2 +(φt−sφz)2},

cw{φ2
z +(φt−sφz)2} ≤ E2.

(4.12)

Furthermore, (1.3), (4.9) and (4.10) yield


E3 =wg′(U)φ2
z≥0,

E4 ≥µν|Uz|φ2≥0.
(4.13)

Thus the equality (4.7) together with the estimates (4.12), (4.13) give the desired
estimate (4.1) after integration with respect to t and z.

It remains to check conditions (4.10) (4.11). By definition of w (3.8), (wQ)′′(U)=
ν=2, i.e., (4.10) holds.

Furthermore, choosing µ= 1
2 and noting (1.12), the two inequalities in (4.11) are

equivalent to

1+2s
wz

w
>0, (4.14)

(f ′(U)+g′(U)
wz

w
)2< (1+s

wz

w
)(g′(U)+s

(wg′(U))z

w
). (4.15)

By (2.6) (2.7) (2.19) (2.20) (3.8), we have

wz

w
=
w′

w
Uz =

w′

w

Q

g′(U)−s2 =O(|u+−u−|)

and

(wg′(U))z

w
=

(wg′(U))U

w
Uz =O(|u+−u−|)

which are small provided |u+−u−| is suitably small. Using this fact and sub-
characteristic condition (1.4), we derive inequalities (4.14) and (4.15). Thus condition
(4.11) is satisfied. This completes the proof of Lemma 4.1.

Next we estimate the higher order derivatives of φ. Multiplying the derivative of
(3.4) with respect to z by φz and (φt−sφz)z respectively, we have

2∂zL(φ) ·φz =−2Fzφz,

2∂zL(φ) ·(φt−sφz)z =−2Fz(φt−sφz)z.
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Letting φz =Φ, then

∂zL(φ)=(φzt−sφzz)t−s(φzt−sφzz)z−(g′(U)φz)zz +φzt +λφzz +λzφz

=L(φz)+λzφz−(g′(U)zφz)z =L(Φ)+λzΦ−(g′(U)zΦ)z. (4.16)

By a similar argument used in obtaining (4.3) and (4.6) with w=1, we have

[Φ2 +2Φ(Φt−sΦz)]t +2g′(U)Φ2
z−2(Φt−sΦz)2−λzΦ2 +2λzΦ2

+2g′(U)zΦΦz +{···}z =−2FzΦ (4.17)

and

[(Φt−sΦz)2 +g′(U)Φ2
z]t +2(Φt−sΦz)2 +2f ′(U)Φz(Φt−sΦz)

+sg′(U)zΦ2
z +2λzΦ(Φt−sΦz)−2(g′(U)Φ)z(Φt−sΦz)+{···}z

=−2Fz(Φt−sΦz). (4.18)

The combination (4.17)× 1
2+(4.18) yields

{E1(Φ,(Φt−sΦz))+E2(Φz)}t +E3(Φz,(Φt−sΦz))+G+{···}z

=−Fz{Φ+2(Φt−sΦz)} (4.19)

where

G= λz

2 Φ2 +2λzΦ(Φt−sΦz)+g′(U)zΦΦz−2(g′(U)Φ)z(Φt−sΦz),
E1(Φ,(Φt−sΦz))=(Φt−sΦz)2 +Φ(Φt−sΦz)+ 1

2Φ2,
E2(Φz)=g′(U)Φ2

z,
E3(Φz,(Φt−sΦz))=(Φt−sΦz)2 +2f ′Φz(Φt−sΦz)+(g′+sg′z)Φ

2
z.

(4.20)

After integration with respect to t and z, (4.19) together with (4.20) gives the following
estimate

||Φ(t)||21 + ||Φt(t)||2 +
∫ t

0

||(Φt,Φz)(τ)||2dτ

≤C
{
||Φ0||21 + ||Φ1||2 +

∫ t

0

∫
|G|dzdτ+

∫ t

0

∫
R

|Fz|(|Φ|+ |(Φt,Φz)|)dzdτ
}
, (4.21)

here Φ0 =φ′0 and Φ1 =φ′1.
Using the estimate (4.1) and the smallness of |u+−u−|, we obtain∫ t

0

∫
R

|G|dzdτ ≤ 1
2

∫ t

0

||(Φt,Φz)(τ)||2dτ+C
∫ t

0

∫
R

Φ2dzdτ

≤ 1
2

∫ t

0

||(Φt,Φz)(τ)||2dτ+
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+C
{
||φ0||2H1

w
+ ||φ1||2w +

∫ t

0

∫
w|F |(|φ|+ |(φt,φz)|)dzdτ

}
(4.22)

where we have used Lemma 4.1 and the Young inequality.

Substituting (4.22) into (4.21) and replacing Φ by ∂zφ, we have the following
lemma.

Lemma 4.2. Under the conditions of Theorem 2.2, there is a positive constant C such
that if sub-characteristic condition (1.4) is satisfied for all u∈ [u+,u−] and |u+−u−|
is sufficiently small, then

||∂zφ||21 + ||∂zφt||2 +
1
2

∫ t

0

||(∂zφt,∂zφz)(τ)||2dτ

≤C
{
||φ0||22 + ||φ1||21 +

∫ t

0

∫
|Fz|(|∂zφ|+ |(∂zφt,∂zφz)|)dzdτ

+||φ0||2H1
w

+ ||φ1||2w +
∫ t

0

∫
w|F |(|φ|+ |(φt,φz)|)dzdτ

}
(4.23)

holds for t∈ [0,T ].
Next we calculate the equality

∂2
zφ ·∂2

zL(φ)+2∂2
z (φt−sφz) ·∂2

zL(φ)=−Fzz(∂2
zφ+2∂2

z (φt−sφz))

in the same way as in the proof of Lemma 4.2. Set Ψ :=∂2
zφ, we have

∂2
zL(φ)=L(Ψ)−(g′(U)Φ)zzz +(g′(U)Ψz)z +(λΦ)zz−λΨz.

A straightforward calculation gives

[(Ψt−sΨz)2 +g′(U)Ψ2
z +Ψ(Ψt−sΨz)+

1
2
Ψ2]t +(Ψt−sΨz)2

+2f ′(U)Ψz(Ψt−sΨz)+(g′(U)+sg′(U)z)Ψ2
z +4λzΨ(Ψt−sΨz)

+
3
2
λzΨ2 +λzzΨφz +2λzzφz(Ψt−sΨz)+{···}z

=−Fzz[Ψ+2(Ψt−sΨz)]+J. (4.24)

By the smallness of |u+−u−|
J =[(g′(U)Φ)zzz−(g′(U)Ψz)z] · [Ψ+2(Ψt−sΨz)]

≤ 1
3
|(Φt,Φz)|2 +C|(Φ,Ψ)|2.

Thus, noting Ψ=φzz, we have from (4.24) that

||∂2
zφ(t)||21 + ||∂2

zφt||2 +
1
3

∫ t

0

||(∂2
zφt,∂

2
zφz)(τ)||2dτ−C

∫ t

0

(||∂2
zφ||2 + ||φz||2)dτ

≤C
{
||φ0||23 + ||φ1||22 + |

∫ t

0

∫
Fzz(∂2

zφ+2∂2
z (φt−sφz))dzdτ |

}
(4.25)
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where we have used the fact that ∂j
z{λ, g′(U)} is a smooth bounded function and

the Young inequality for mixed terms such as 4λzΨ(Ψt−sΨz) and 2λzzφz(Ψt−sΨz).
Combining successively the estimate (4.1), (4.23) and (4.25), we have

||φ(t)||23 + ||φt(t)||22 + ||φ(t)||2H1
w

+ ||φt(t)||2w +
∫ t

0

∫
|λz|φ2dzdτ+

∫ t

0

||(φt,φz)||22dτ

≤C
{
||φ0||23 + ||φ1||22 + ||φ0||2H1

w
+ ||φ1||2w

+
∫ t

0

∫
(w|F |(|φ|+ |(φt,φz)|)+ |Fz|(|∂zφ|+ |(∂zφt,∂zφz)|))dzdτ

+
∣∣∣∣
∫ t

0

∫
Fzz(∂2

zφ+2∂2
z (φt−sφz))dzdτ

∣∣∣∣
}
. (4.26)

Noting (3.5) (3.6), we have

|F1|=O(1)(φ2
z), |F1z,F2|=O(1)(φ2

z +φ2
zz),

|F1zz,F2z|=O(1)(φ2
z +φ2

zz + |φzφzzz|),

|F2zz|=O(1)(|φzzφzzz|+ |φzφzzzz|).
Due to the nonlinearity of function g, there are terms containing fourth order deriva-
tives of φ in F2zz. In order to close the energy estimate, the last term on the right
hand side of (4.26) ∣∣∣∣

∫ t

0

∫
Fzz(∂2

zφ+2∂2
z (φt−sφz))dzdτ

∣∣∣∣
needs to be handled via proper integration by parts. As an example, we estimate the
following sub-term∫ t

0

∫
2G(U,φz)φzφzzzzφzztdzdτ

=2
∫ t

0

∫
((G(U,φz)φzφzzzφzzt)z−G(U,φz)φzφzzzφzzzt

−(G(U,φz)φz)zφzzzφzzt)dzdτ

=
∫ t

0

∫
(G(U,φz)φz)tφ

2
zzz−2(G(U,φz)φz)zφzzzφzzt)dzdτ

−
∫
G(U,φz)φzφ

2
zzz(z,t)dz+

∫
G(U,φz)φzφ

2
zzz(z,0)dz

where G(U,φz) is defined in (3.6). Other sub-terms can be estimated similarly. We
get rid of the fourth order derivatives and the energy estimates will be closed at the
derivatives up to third order. Thus by virtue of (3.10), the integrals on the right hand
side of (4.26) is majored by

CN(t)
∫ t

0

||(φt,φz)||22dτ,
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then we have

N2(t)+
∫ t

0

||(φt,φz)||22dτ+
∫ t

0

∫
|λz|φ2dzdτ ≤N2(0)+CN(t)

∫ t

0

||(φt,φz)||22dτ.

Therefore, by assuming N(T )≤ 1
2C , we obtain the desired estimate

N2(t)+
∫ t

0

||(φt,φz)||22dτ ≤CN2(0), for t∈ [0,T ].

Thus the proof of Proposition 3.3 is completed. Q.E.D.
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