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THE 3D QUASIGEOSTROPHIC FLUID DYNAMICS UNDER
RANDOM FORCING ON BOUNDARY*

JINQIAO DUAN' AND BJORN SCHMALFUSS?

Abstract. The three-dimensional baroclinic quasigeostrophic flow model has been widely used
to study basic mechanisms in oceanic flows and climate dynamics. In this paper, we consider this
flow model under random wind forcing and time-periodic fluctuations on fluid boundary (the air-
sea interface). The time-periodic fluctuations are due to periodic rotation of the earth and thus
periodic exposure of the earth to the solar radiation. After overcoming the difficulty due to the
low regularity of an associated Ornstein-Uhlenbeck process, we establish the well-posedness of the
baroclinic quasigeostrophic flow model in the state space. Then we demonstrate the existence of the
random attractors, again in the state space. We also discuss the relevance of our result to climate
modeling.
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1. Introduction

The quasigeostrophic equation (QGE) describes large scale geophysical flows. We
consider this flow model for the ocean in a three-dimensional (3D) domain. This
geophysical flow model has been formally derived as an approximation of the rotat-
ing three-dimensional primitive equations [21]. It is recently known that the three-
dimensional quasigeostrophic model is a valid approximation of the primitive equa-
tions in the limit of zero Rossby number [3, 10, 6]. Holm [16] has established the
Hamiltonian formulation for the inviscid quasigeostrophic equation. We will consider
the following version [32, 8] of the quasigeostrophic equation in terms of the stream
function ¢ (z,y, z,t):

Atpy + J (1, A) + By, = vAAY

s

with Aw = Vuz + Yyy + N2

Yz

Here z, y, z are Cartesian coordinates in zonal (east), meridional (north), vertical
directions, respectively; fo+ 8y (with fo, 8 constants) is the Coriolis parameter; N > 0
is the Brunt-Vaisala stratification frequency taking to be constant in this paper, and
v > 0is viscosity. Moreover, J(f, g) = fz9y— fy 9= is the Jacobi operator, and potential
vorticity is defined as Ay + fo + By. Note that At can be regarded as a modified
Laplacian operator where the coefficient in the vertical z direction is adjusted due to
the density stratification, and the coefficients in z, y directions are constants due to the
horizontal density homogeneity in the 3D quasigeostrophic flow model formulation.
Bennett and Kloeden [7] have also used a similar modified Laplacian viscous term
in a more complicated 3D quasigeostrophic flow model involving thermodynamics as
well as hydrodynamics.

*Received: May 1, 2002; Accepted (in revised version): August 26, 2002.

tDepartment of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA
(duanQiit.edu).

¥Department of Applied Sciences, University of Technology and Applied Sciences, Geusaer Strasse
D-06217, Merseburg, Germany (schmalfuss@in.fh-merseburg.de).

133



134 THE 3D QUASIGEOSTROPHIC FLUID DYNAMICS

Our aim is to study the potential vorticity evolution in an ocean under the in-
fluence of the atmosphere. Oceanic flows are affected (on the ocean surface) by the
short time influence due to random weather variations which are usually called ran-
dom wind forcing. This wind forcing is usually of shorter time scale than the response
time scale of the large scale oceanic flows such as the quasigeostrophic flows. So we
neglect the autocorrelation time of this fluctuating process as in [20]. We thus assume
the noise is white in time. The random white-in-time noise is described as the gener-
alized time-derivative of a Wiener process W (z,y,t) with mean zero and covariance
operator (). Moreover, oceanic flows are also affected by climatic variations due to
periodic rotation of the earth and thus periodic exposure of the earth to the solar
radiation; see [22], Chapter 6 and [17], Chapter 11.

Since the exchange between the atmosphere and an ocean takes place at the
surface of the ocean, we will consider the above quasigeostrophic equation with white
noise Neumann boundary condition and time-periodic boundary condition on the top
surface of the ocean [21]. Since there is no influence of the weather at the bottom
of the ocean, we will impose homogeneous boundary condition there. The boundary
conditions in horizontal directions are assumed to be periodic as in other recent works
[10, 3]. However, since we have a forth order differential operator at the right hand
side of the quasigeostrophic equation, we need a second group of boundary conditions,
say, for A¢, and these conditions are the ones used in [32], [§] to be specified below.

Due to the time-dependent random and time-periodic boundary conditions, we
are dealing with a nonautonomous dynamical system with random influences. We
will show how to find attractors for such a dynamical system. The existence and
interpretation of climatic attractors have been controversial and have caused a lot of
debate [19]. A low dimensional climatic attractor was regarded as an indication that
the main feature of long-time climatic evolution may be viewed as the manifestation
of a deterministic dynamics. Our result is about random attractors, and thus the long
time regimes that such attractors may represent still carry the stochastic information
of the geophysical flow system. Stochastically forced QGE has been used to investigate
various mechanisms in geophysical flows [15, 18, 27, 4].

The plan for this paper is as follows. The QGE will be transformed into a random
evolution equation with homogeneous and deterministic boundary conditions. We
thus need an Ornstein-Uhlenbeck process fulfilling our dynamical random or time-
periodic boundary conditions. This transformation will be introduced in Section 2.

In Section 3 we investigate the coefficients of the transformed evolution equation
and further obtain a global existence and uniqueness result and some regularity result.
A difficult issue here is the low regularity of the above Ornstein-Uhlenbeck process.

In Section 4, we study the random dynamics of the transformed QGE. Based on
the uniqueness result above, the transformed evolution equation generates a nonau-
tonomous dynamical system. In addition, if we restrict this system to discrete time
steps of the period of the periodic rotation of the earth, we obtain a random dynam-
ical system. This random dynamical system has a random attractor. This result can
be extended to the dynamical system on the real-time axis.

The Section 5 contains the proofs. Finally, we summarize our results in Section
6.

2. 3D Quasigeostrophic Flow Model
Let O = (0,2m)? be the cube which is a model for a part of the ocean. The
differential operator A is defined by

A =0,y + Oy + (FO.),
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with F := ]C—‘i In the following, we investigate the 3D QGE flow model [21, 26, 32]:

Adpy + J(1h, A) + oo, = vAAY. (2.1)

We impose the following boundary conditions for this equation. Let O.. 9, O..ar,- -
be the faces of the cube O, then we assume periodic boundary conditions in z, y
directions:

/‘/}|Oo,-,- :1/}|021r,-,- 1/Jz|Oo,.,. :1/)z|021r,.,.

and similar for the faces O.g ., O. 2. together with derivative in y direction. With
respect to the z direction, ¢ fulfills homogeneous Neumann boundary conditions on
top and bottom boundaries:

¢Z|O.,.,0 =0, ¢Z|O-,-,27r =0.

Note that we could also consider Dirichlet boundary conditions on these faces. More-
over, At is supposed to be periodic in z,y directions:

A’(,b|00 = A¢|OQ7{,.,. A¢$|OO’.,. = A¢m|02",.’.

and similar for the faces O.p,., O. 2x,. with derivative in y direction. On the top of
the ocean we impose white noise Neumann boundary conditions as in [32, 8, 7], while
on the bottom we define homogeneous Neumann conditions. Namely, we impose that

A -
66—n¢ = A7, =0 on bottom boundary O. ., (2.2)
and
aaA—dJ = A, = W + u,sin(27t) on top boundary O.,. 2, (2.3)
n

where W (z,y,t) is a temporal white noise, up(z,y) is the spatial profile for the time-
periodic fluctuations at the air-sea interface, and n denotes the unit outer normal
vector. We note that other boundary conditions may be considered for this flow
model.

In addition, we impose the zero-mean condition

/ $dO =0,  and / AydO = 0.
o o
We also assume an appropriate initial condition

1/1(.1‘,y,2,0) = 1/]0(1‘,]],2).

Later on we will see that we can find an Ornstein-Uhlenbeck stochastic process n
satisfying the linear differential equation

m=vAn,  n0)=no (2.4)

where 7 fulfills the same (partially random) boundary conditions as Ae.

We now formally transform the QGE equation to a partial differential equation
with random coefficients but with homogeneous and deterministic boundary condi-
tions.
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To do so we introduce the solution operator G of the following elliptic problem:
A¢=f

on O with periodic boundary conditions in z, y directions and homogeneous Neumann
boundary conditions in z direction. Here f is an element in a Hilbert space to be
specified below.

We now set

w:= Ay —n, (2.5)
and rewrite equation (2.1) as

w, — vAu 4+ J(G(u),u) + BG(u), =
= — J(Gn),u) — J(Gw),n) — I(Gm),m) — BG()a u(0) = uo

where u satisfies homogeneous Neumann boundary conditions in z direction and peri-
odic boundary conditions in z, y directions. Equation (2.6) will serve as a main model
for our investigation in the rest of this paper.

3. Well-Posedness of 3D Quasigeostrophic Flows

In this section we consider the well-posedness of the transformed QGE (2.6). We
treat equation (2.6) as an evolution equation on a rigged space V- C H C V'. Since this
equation is given with respect to periodic boundary conditions in horizontal directions
and homogeneous Neumann conditions in the vertical direction, the space Hilbert H
is defined to be

(2.6)

15(0) = {u € L»(0), /OudO —0).

The usual inner product on H is denoted by (-, -). Let H*, k € N be the usual Sobolev
space consisting of functions with square integrable derivative up to k-th order. If

k is not an integer, these spaces are the (generalized) Sobolev spaces. We define
V:= H' N H with

U|OO = U’|OQ.,(,.,.7 U’|O.,0,. = U|O.,21r,- :

Note that for functions in H', the trace on the boundary is well defined. This set
V will be equipped with the usual H! inner product denoted by (-,-)yv. Let A be a
linear bounded operator

AV sV

which is the usual operator stemming from the positive bilinear form a(u, v) defined by
—A with periodic boundary conditions in ,y directions and homogeneous Neumann
boundary condition in z direction. Note that —A is symmetric with respect to these
boundary conditions. We have that

(Au, u) = [Jull},.

(-,-) denotes the dual pairing between V = D(Az) and V'. The operator A is an
isomorphism from V to V'. Since V is compactly embedded in H, we can define
G(f) = A1 f, which is a continuous operator from H to D(A) or more generally from
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D(A%) C H* to D(A*t!), s € R. For the definition of the spaces D(A®) and their
norms || - [[pcasy see Temam [31], Section II.2. In particular, for f € H the function
G(f) is periodic in z,y directions and satisfies homogeneous Neumann condition in z
direction. We will stress that the norm of H?*, s > 0 restricted to D(A)* is equivalent

to || - [[pas)-
On H, the operator A has the spectrum 0 < Ay < X < ---. The associated
eigenfunctions e, es,--- form a complete orthonormal base in H.

The embedding constant between V and H is given by A; in the Poincaré in-
equality:

Mllullr < llully-

We now investigate the properties of the operator J, which defines the nonlinearity
of (2.6).
LemMMA 3.1. Suppose that mi, ms, m3 are three nonnegative numbers less than %
with

N W

3
> _mi>
i=1

Then there exists a constant ¢ > 0 such that foru € H™*! v € H™*! gnd w € H™3

(I (u,v), w)| < ellull g l[oll e ||w][mrms -

Proof. The Holder inequality implies

111
—+—+—<1

(T, v), )] < [[Vulleg Vol i, =+ =+ o

The embedding property H™ C L,(O) where % =4i-—Zforg>1,m>0,m#3

gives the conclusion. For the idea of the proof see Temam [30], Section 2.3.

REMARK 3.2. Suppose two of the m;’s in the last lemma, say mso, ms, have the value
zero. Then if m; is chosen bigger than %, the conclusion of the last lemma remains
true. This follows if we apply at first the Sobolev lemma and then the Cauchy-
Schwarz inequality. From Lemma 3.1 we can derive some a priori estimates for the
nonlinearity of (2.6).

COROLLARY 3.3. Suppose that u € D(A%), a > %, and v, w € V. Then for some c
[(J(u, ), w)| < ellull peas[[ollvllwllv,

and hence for u € H, v, w €V
[(J(G(u),v), w)| < cllullallv]lvllwl]yv.

Suppose now that u € D(A%), a > %. Then

(I (u,v), w)| < ellullpasy llvllvlfwlle for veV,weH
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1
and hence for u € D(A%), a >
[(J(G(w),v),w)| < cllullpias [lvllvlwlla  for veV,weH.
REMARK 3.4. Since O is a cubic domain, the eigenfunctions of —A are defined by
c(k)exp(ik - (z,y,z)) where k is in an appropriate integer grid of R*. Indeed, the
cos-part of the Neumann ansatz in z direction can be expressed by such terms. Hence

we can generalize the conclusion of Lemma 3.1 to the case when m; € R, and the
following conditions are satisfied:

m;+m; >0 for i#j

instead of m; > 0. For the proof, we refer to Fursikov [13], Chapter 3, Section 4,
Lemma 4.4.

LEMMA 3.5. There exists a constant ¢ such that for anyn € D(AY), 0 <y < 1/4 and
u € H', we have

1 3
(T (G (w), ), w)| < ellullg [[nll e llullf-

Proof. For u € D(A?%) we have
L1
|G (W)ll241/2 < ellully < lullg[Jull?

which follows by an interpolation inequality, see Temam [31]. By Lemma 3.1 and

Remark 3.4 with mq = %, me = —1 4+ 27, mz = 1, we finally obtain

(J(G(w),n), w)| < ellG @)1 y2llnlli- -2yl

Also on account of Lemma 3.1 we obtain the following algebraic properties of J.

LEMMA 3.6. If u, v, w € V then we have
<J(’U,,’U),’LU> = —(J(u,w),v).
Hence we have (J(u,v),v) = 0.

Proof. We choose u from a set of sufficiently smooth functions which is dense in
D(A). Integration by parts yields

2m 2m
/ / ugvywdrdydz —/ / uyvpwdrdydz
o Jo... o Jo...
2m 2m
= —/ / Ugyvwdrdydz +/ / Uy vwdrdydz
o Jo... o Jo...
2w 2w
—/ / uwiyd:ndydz—l-/ / Uyvwedzrdydz
o Jo... o Jo...

2m 2T 9 2m 2T 9
y=2m T=2T
+ umvw| dxdz — U vw| dydz.
o Jo y=0 o Jo U Ie=0
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Note that the two boundary terms are zero. Indeed, since u(z,0, 2) = u(z, 27, 2), we
know that u,(z,0,2) = u,(z, 27, ), and since v, w are 2r—periodic with respect to x.
By the smoothness assumption we can suppose that the derivatives on the boundary
are well defined. Thus the first boundary term is zero. Similarly, the second boundary
term is also zero. By the continuity of J (see Corollary 3.3) we can extend the relation
to V x V x V. The second claim is due to antisymmetric property of the first claim
of this corollary.

The following lemma will be used to obtain the continuity of the solution operator
of (2.6).

LEMMA 3.7. There exists a constant ¢ > 0 such that for ui, us € V

[(J(G(u1),u1) — J(G(uz),u2),ur —u2)| < cllur — ual|v|lur — ual|m[fur ]y

Proof. By Lemma 3.6 the left-hand side in the above expression is equal to

I(J(G(u1),u1),uz) + (J(G(u2),uz), u1)l
| up),ur), uz — ur) — (J(G(u2),u1), us — u1)|
|

u1) — G(u2),u1),u1 — u2)|.

Thus Corollary 3.3 gives the conclusion.

In order to write equation (2.6) as an evolution equation on the rigged space
V. ¢ H C V' introduced at the beginning of this section, we need to check the
properties of coefficients in equation (2.6). Due to Corollary 3.3, we have a bilinear
continuous operator

B(-,):V xV —» H, B(u,v):=J(G(u),v).
In addition, we have a time-dependent linear continuous operator C(¢t,-) : V — V'
C(t,u) := J(G(u),n(t) + J(G(n(t)), u)

where the Ornstein-Uhlenbeck process n(t) defined in (2.4) is in C'([0, 00); D(A")), 0 <
¥ < 1/4 and is periodic in z,y directions. Note that G(n(t)) € D(A'™7). The
existence and properties of n(t) will be proved in the next section.

LEMMA 3.8. Suppose that n(-) € C([0,00); D(AY)), 0 < v < 1/4. Then we have for
t>0:

NC @ )leev,vy < elln(®)llpary-

Indeed, because G(n) € D(A'*7) for any ¢ > 0 we obtain the conclusion by Corol-
lary 3.3 and Remark 3.4.

We now investigate the last linear operator appearing in (2.6) which is defined by

D()=BG(-).:V = H*,  D(-):D(A") - H*?.

LEMMA 3.9. Foru € V we have

(D(u),u) =
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Proof. Denoting G(u) € D(A) by & we have

B H(D(u),u) =(&,Af) = %( /O (€2)odrdydz — (&) drdydz

-/ " / T / 2”(5§>zdxdydz)

via the integration by parts. The second term under the integral generates the bound-

ary term
1 2T 2m y—2m
5/0 /0 §m£y|y:0 dxdz.

Indeed, for sufficiently smooth £ from a dense set in V' we have £(x,0, 2) = &(z, 27, 2),
and thus £,(z,0,z) = &(z,2m,2). It follows from the periodicity in y we have
&y(2,0,2) = & (z, 2w, z) such that this boundary term is zero.

For the last term the following boundary term appears

1 2m 2w
- F
s ree

which is zero by the homogeneous Neumann boundary conditions.

Integration with respect to z and using the periodicity as in the proof of Lemma
3.6, we get the conclusion.

We can now formulate the evolution equation (2.6) on VC H C V'

z=2m

dxdy

z=0

us + vAu + B(u,u) + C(t,u) + D(u) = f(t), u(0)=ug € H (3.1)

for f(t) € V', f(t) = =J(G(n(t)),n(t))—LG(n(t)), which is contained in C([0, co); V).
This regularity conclusion follows straightforwardly from Remark 3.4 for 0 < v < 1/4
sufficiently large.

Apart from the linear operators C(t) and D, equation (3.1) has the form of
equations of 2D Navier-Stokes type; see Temam [29], Chapter 3, for which we have
existence and uniqueness, via the Galerkin approximation. Here 2D means that the
conclusion of Lemma 3.7 is fulfilled which is responsible for a uniqueness theorem. By
the regularity properties of the operators B, C'(t) and D, the same method for the 2D
Navier-Stokes equations ensures existence and uniqueness for (3.1). Thus we get the
following main result in this section about the well-posedness for 3D quasigeostrophic
flows under random wind forcing on ocean surface.

THEOREM 3.10. (Well-posedness) Suppose that the stochastic process n(t) defined in
(2.4) is in C([0,00); D(AY)). Then for any initial condition x € H, the 8D quasi-
geostrophic flow model (3.1) or (2.6) has a unique (weak) solution u(t) € L2 10.(0,00; V)
NC(0, 00); H).

In the next section, we will show that the Ornstein-Uhlenbeck stochastic process
7(t) defined in (2.4) indeed has the required regularity.

We will study the random dynamics of 3D quasigeostrophic flow model in the
next section. We thus need the some solution properties formulated in the following
lemmas.
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LEMMA 3.11. Let u(t) be the solution of (3.1) for ug € H. Then the mapping
H>up—u(t)e H
is continuous for any t > 0.

Proof. Let u1(t), ua(t) be two solutions for initial conditions ug1, upz € H. On
account of Lemma 3.7, 3.9, 3.5, 3.8 and the Young inequality we have

d

EHUl — ws||F+2v[Juy — usl|3
<2[(B(u1) = B(uz), ur = u2)| + 2({C(#)(u1 = uz),ur —uz)| (3 9)
<vllur — usllf + clluallFllur — usl3

+elln(®)panllur = usllfr + vlluy — w3

for an appropriate constant ¢ > 0. Now the Gronwall Lemma gives the conclusion.

LEMMA 3.12. For any t € (0,1] there exists a function c(t,-,-) bounded on bounded
sets such that

lu()I? < e(t, Juollzr, sup [In(H)llpear))-
tef0,1]

Proof. We show that t[[u(t)]|2 is bounded for bounded uo € H. We have

d 2y 9 d .
7 @) = [lu@lly + 26 u, Au).

The second expression can be rewritten as

—2tv||ul]?
D(A

%)—Qt(J(G(u), w), A"u) — 2t{J(G(u),n), AVu)

=2t(J(G(n),u), A7u) = 2t(J(G(n),n), A7u)
—2t<D(U), AFYU) - 2t<D(77), AFY’U‘);

where the third and fifth terms can be estimated by Corollary 3.3, Remark 3.4 for
sufficiently large v < 1/4

26/(J (G (), w), Au)| < ct sup |lu(@®)|lallullllull ) 1z
te[0,1] D(A™2)

v
< —tllull> iy 4t sup [Ju(®)F vl
D(A™= tefo,1

)

2(T(G (), m), ATu)| < G erraylinllzyllull ) 12y=x

v 2 4
< St g+ et

)

The other terms can be estimated similarly. Hence t|lu(t)||? is bounded by an
expression depending on [|uol|#, supsepo 17 I7()[|p(a+) and the data of the problem.
By the energy inequality (see (5.2), (5.3), below) we are able to estimate fot lu(T)||3 dr
by these expressions. However, the usual way to calculate these expressions to ensure
that A" is well defined is to consider at first the Galerkin approximations u,, and
then letting m — oo such that u,, tends to a solution u of (3.1).
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4. Random Dynamical System of 3D Quasigeostrophic Flows

In this section we study the dynamical behavior of QGE (3.1). In the following
we are going to describe the background perturbations defined on the top boundary
of O which will influence the dynamical system generated by (3.1); see the boundary
condition on the air-sea interface (2.3). We will have two different influences. The
first perturbation is white noise which models the weather or the small scale impact
of the atmospheric motion through wind forcing on the surface. The other one is a
periodic motion which serves as a model for the impact due to periodic rotation of the
earth and thus periodic exposure of the earth to the solar radiation; see [22], Chapter
6 and [17], Chapter 11.

In the first part of this section we are going to explain a dynamical model of the
boundary conditions.

We consider the elliptic differential equation

Au = 0, % =0on 0.7.70 % =gEc H% (0.7.7277) N L2(0.7.727r).

On the other two pairs of faces we have periodic boundary conditions. This equation
has a unique solution; see Egorov and Shubin [9], page 130f. The solution operator is
a linear continuous operator with the image in H2. We denote this operator by G (f)
and U := H%(O.,.,%) N I./2(O.,.,27T) denotes a usual boundary space. Suppose that
g = 0, then the above problem generates the linear operator A: V — V',

V={u€ H NH:u0,--)=u2nr,-), u(-,0,) = u(-,27,)},

introduced in the last section. In addition, —v A is the generator of a Cp-semigroup
on H. This semigroup is exponentially stable: there exists C, A\ > 0 with

ISz rr,my < Ce™" b for > 0.

Since A is symmetric and positive, Ay > 0 is the smallest eigenvalue of A. We have
H? C D(4*), 0 < p < 3/4. Indeed, for such a p no boundary conditions are fixed for
the Neumann problem; see Da Prato and Zabczyk [23], Page 401 (A59). It follows
that G maps U into D(A”) continuously.

Now we consider the random part of the boundary conditions. Let W be a
continuous temporal Wiener process with values in a Hilbert space U = H2 (0. . 57) N
LQ(O.,.,%). This Wiener process is defined for positive and negative times; see Arnold
[1], page 547. The covariance operator of W is denoted by @, which is a positive
symmetric linear operator on U with finite trace. The dynamics of W is given by
the metric dynamical system consisting of a probability space (2, F, P) and a flow 6,
(Q,F,P,0) where P is the Wiener measure with covariance ) and 6 = (0;);cr is the
flow of the Wiener shift:

W(,0w)=W(+tw)—W(tw) forteR.
The mapping € is (B(R) ® F, F)-measurable and fulfills the property
0t+7‘ = Ht o 07-, t, T € R (41)

For instance, we can choose €2 to be the set of continuous functions Co(R,U) which
are zero, at zero and for F we choose the Borel-o-algebra of Cy(R,U). Note that P is
ergodic with respect to #. Later on we have to restrict this metric dynamical system
to fix particular dynamical properties.
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We now show the existence of a solution of (2.4) satisfying particular properties.
At first we show that the following problem has a solution:
om _ om

Me = I/A’Ih, a—n 0, on 0.7.70, a—n = W(t), on 0.7.72ﬂ- (42)

under periodic boundary conditions with respect to the other faces of the cube O
and a initial condition at time ¢ = 0. This solution will serve as a process which
compensates the nonhomogeneous boundary conditions in (2.6). A similar problem
has been considered in Da Prato and Zabczyk [25], Chapter 13 or [24].

THEOREM 4.1. Suppose the covariance operator QQ of the Brownian motion W is a
linear symmetric operator on U with finite trace. Then there exists a random variable
w—=m(,w) e C([0,1];D(A)), v € (0,1/4) defined on a {0;};cz-invariant subset in
Q such that

E sup [l (t,w)||Har) < Cltru@Q) < oo.
tef0,1]

This m1(t) is a solution of (4.2) with the random boundary condition satisfied. In
addition, we have for k € N:
ket

m(-,0w) =SE)m(,w) + A Sk+-— T)édW(w,T) on [0,1]. (4.3)

Proof. Let v € (0,1/4), p > 1/2 such that v+ u € (1/2,3/4). Then we have for
sufficiently small € > 0 and g € D(A”) for any p < 3/4 and an appropriate c:

1

1
/0 T AS (P)gl 4rydr = / ¢ || AYAS (7)g |3y dr

1
&
S/O m||g||2D(m+n)dT< 0.

We have used a standard property for Cp-semigroups; see the formula (A32) in Da
Prato and Zabczyk [23].

Let g = g; := C?Q%ei € D(A?), p < 3/4 where {e;}ien is a complete orthonormal
system in U. Then since @ is of trace class, and G is continuous we have

1
| T IASRICQH iy < .
where £ denotes the space of Hilbert-Schmidt operators. Due to the formula (13.2.14)

in Da Prato and Zabczyk [25], we know that the continuous Ornstein-Uhlenbeck
process

(tw) = A/t S(t — 7)dGW (w, 7) € D(A7)

solves (4.2) with initial condition zero.
Since S(t) is exponentially stable, we conclude that

t ~ o 0 ~
(£, w) :A/O S(t—r)dGW(w,THZS(j)AL S(=7)dGW (6_jw, )

=0



144 THE 3D QUASIGEOSTROPHIC FLUID DYNAMICS

is well defined on a set Qy of measure one in D(AY) for ¢ € [0,1] such that

E sup [[m(#)|[H(ar) < CltroQ) < oo
te[0,1]

Hence, 11 (-, w) is well defined for any w € [, 6;€Q0 which is a {6;};cz-invariant set of
full measure. The formula (4.3) follows from the definition of 7;.

REMARK 4.2.
1) We note that we can extend the definition of 1 (t) for ¢ > 0:

m(t,w) = m(t = [t],0w) € C([0,00); D(AY))

which is then well defined on a {6} ,cz-invariant set of full measure. Here [¢] is the
integer part of ¢. This process can be interpreted as a solution of (4.2) with initial
condition 71 (0, w).

2) By Arnold [1], page 165, there exists a {f;};ecz-invariant set of full measure
such that

j = sup [lm(t,0;0)Ihax
te[o,1

is subexponentially growing for j — +o00: for any € > 0 there exists a jo such that

sup ||771(t70jw)||2D(m) < el
t€[0,1]

for |j| > jo-

3) The constant C(try@) can be made arbitrarily small if try@ is sufficiently
small.

4) m1(t) is a Gaussian process. Hence we have automatically from 2) that

E sup |Im@)lar) <oo forany neN
te[o,1]

In a similar manner we can consider (4.2) with time-periodic boundary condition
representing the impact of the earth’s rotation on the fluid:
on

0 on O..p, %:upsin(%rt) on O.. 2x (4.4)

A ons
Moy = VAN, — ==
for u, € H2(O., 57) N Ly(0.. 5) and (spatial) periodic boundary conditions on the
other faces. We obtain without proof the following:

LEMMA 4.3. Suppose that up € H%(O.7.72ﬂ—) N Ly(O...57). Then there exists a contin-
uwous time-periodic solution

1
t — ma(t) € H?> C D(AP), P<y

which satisfies (4.4). In particular, 12(t) is also periodic in x and y. The proof is
based on the properties of the operator G.
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Let 02 = (02)icr be the shift operator 67 f(-) = f(t + -) for appropriate functions
f. We consider the hull of u, sin(27t) with respect to 6%

Qe = U 67 (u, sin(2-)) = U upsin(2w(t +)) = U up sin(27(t + -)).

teR teR te[0,27)

Summarizing, we have found a process n = 11 + 12 which will serve as a model
for the perturbation on the ocean surface.

After these preparations, we can introduce a nonautonomous/random dynamical
system. Let 6 = (A*,60?) be a flow on a set Q@ = Q; x Qs where #' is defined by (4.1)
on ; and #? describes the periodic motion on Q5. Let T be Z or R.

DEFINITION 4.4. Let (0, F,P,0) be a metric dynamical system. A random dynamical
dynamical system ¢ on a phase space H with respect to 6 is a measurable mapping

¢: TP xQOx H—H
fulfilling the cocycle property

¢(t+T7w7') = ¢(t797'w7¢(7.7w7')) fOT t, 7€ T+7
¢)(07w7 ) =idy

for w € Q and t, 7 € TT. This definition is due to Arnold [1].

REMARK 4.5. We will denote this solution operator of (3.1) by &(¢,w,z) which
satisfies the properties of the above definition. Note that by the time-periodicity of 7
the restriction of ¢ on T+ = Z is a random dynamical system for any fixed w, € Q>.
Indeed, §;w = (8} w;,w2) which can be identified with #* and which leaves P invariant
(P is ergodic with respect to (6} )icz).

REMARK 4.6. Another opportunity to get an example for a complete random dynam-
ical system would be to equip (2> with an ergodic measure. But in contrast to the
fact that the daily or yearly rotation of the earth is well determined such a random
ansatz would express that the beginning of these periods is rather random.

We now consider the existence of an attractor for the nonautonomous dynamical
system. This attractor will attract random sets in probability. Before we give the
theorem, we make some basic remarks on random sets.

Suppose that H is a Polish space. A set function w — D(w) with closed and
nonempty images is called a closed random set over (24, F,P) if and only if there
exists a countable number of random variables

fil(Ql,f,]P)—)H, 1 €N
such that
Dw) = J&Ww).
i€N

See Castaing and Valadier [5], Chapter 3.
A random set D is called of subexponential growth if j — distm(D(f;w),{0}) is
of subexponential growth for j — 0o where

stz (A, B) = sup inf ||a — b|| 5.
distr (A, B) EEBJQBHG bllm
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See [1] for more information on subexponential growth. In the following we will
denote the set of all of these random sets D with closed and nonempty images D(w)
by D.

We now define the term random attractor.

DEFINITION 4.7. Let ¢ be a random dynamical system over the metric dynamical
system 6. A set (A(w))weq € D with compact and nonempty images A(w) is called
random attractor if

o(t,w, Aw)) = A(bww), teTt (4.5)
and for any set D(w) € D:

(P) lim  distg(é(t,w,D(w)), A(fw)) = 0. (4.6)

t—o0,teT+

In the next section we will show that the dynamical system generated by (3.1)
restricted to T = Z has such a random attractor. However, because of time-periodic
perturbation, we do not have a random dynamical system but a nonautonomous
dynamical system for T = R. Therefore we have to modify this conclusion for T = Z
a little bit, and thus we obtain the following main result in this section.

THEOREM 4.8. Let ¢(t,w,z) be the solution operator of (3.1) for the random and
time-periodic forcing n = + ne. Suppose that

Ar =8l + E sup @) > 0 (4.7)
€0,

where ¢ is a constant depending on the data. Then the 8D quasigeostrophic flow model
(3.1) restricted to Tt = Z* has a random attractor.

If we extend A(Oy (w1, w2)) by A(t—[t], 01 (w1, w2)) == d(t—[t], Oyw, A(Op (wi,we2))
for t € [0,1]. Then (4.6) and (4.5) are also satisfied if we replace A(0:(w1,w2)) by
A(t — [t], 0 (w1, w2)) for t € RT. In this way, the 3D quasigeostrophic flow model
(3.1) restricted to TT = R has a random attractor.

The set valued process (t,w) — A(t — [t],0:(w1,w2)) can be interpreted as a ver-
sion of t — A(0¢(w1,w=)) which fits the Definition 4.7 for continuous time.

In the next section, we prove Theorem 4.8.

5. Proof of the Main Theorem
The following theorem states the existence of random attractors.

THEOREM 5.1. Suppose that 8" be a metric dynamical system and suppose that for
wi € Q, t € ZT the mappings ¢(t,wy,-) are continuous and that there exists a set
B € D having compact images which is absorbing:

$(t,0" jw1, D(8" w1)) C B(wy) (5.1)

for ZT >t > to(D,w), and any D € D. Then there exists a unique random attractor
A € D which is tempered (Tempered random sets are defined in Arnold [1]).
The proof of this theorem can be found in Flandoli and Schmalfuf} [11].
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Now let us use this result to prove our main Theorem 4.8.

Proof. We start with some energy estimates. Calculating the inner product in H
and using Lemma 3.6 and Lemma 3.9, we obtain

t t
lu®)llz + 2'// llu(r) 5 dr = lluoll7r — 26/ (G()e,u)dr
0 0

: ; (5.2)
~2 [UG . udr ~2 [ (G ).
0 0
By Lemma 3.5 and the Young inequality, we get for some ¢ > 0
14
2(J(G(u),n),u)| < §IIUII%/ + cllnllpan llullz
and for the other terms on the right hand side, we further get
v
2(J(G(n),m),u)| < §IIUII%/ +cllnllpean
v
2(G(m)a,u)| < §IIUII%/ +cllnllbian)-
Since ||ul|? > Mi||ull? for u e V
t t
[lu (@)l + v /0 lu()IFdr < lluoll; + C/O (P a1l dr
(5.3)

+prmmmmw

P is some appropriate polynomial of order four with P(0) = 0 estimating the
terms containing [|n||p(a+). Parallel to this inequality, we consider the affine equation

d
d—f + (WA = clln@®lipan)€ = PUn@lipeav), & > lluollz- (5.4)

We now fix for a while wy = @2. The solution of this equation &(t,w, ||ug||%) for
w = (w1,@9) is a bound for ||[u(t)||%:

lu(@®)lIF < &t w, lluoll%)-

We restrict the solution of (3.1) to discrete times. Let £*(w) be the following random
variable:

0 .
Z erAi—e 35Th supseqo p In(8.0;0)11 av) sup P(|In(t,0;—10)|| p(am))-
tef0,1]

i=—00
In order to see that this random variable is well defined on a {6}}cz-invariant set
of full measure, we mention the exponent in this formulae growth to —oo with linear
speed on a {031 }jez-invariant set of full measure which follows from the Birkhoff ergodic
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theorem and (4.7):

=
lim sup—— (VAL + ¢ sup [In(t,0;w)lIpam)
imtoo |8 — 1] j;l re0.1] %) lID(Av)
i1

1
> (v +8e(llupllpiary + sup [l (t,0;0)lpar))
=—1 te{071]

< lim — (5-5)
i—+oo |’L — 1| =

=—vA + 80(||up||‘{)(m) +]Et5[l[l)l>1] [ (t)||4D(m)) <0
€10,

on a {f;}jez-invariant set of full measure. On the other hand, j — sup,c(o,1) P([In(t,
6;j—1w)|[p(4~)) has a subexponential growth since Esup, ¢ 1) P(||n(f,w)||p(4+)). Hence,
the mapping j — £*(6;w) is subexponentially growing which follows from [28] Section
2 or [12].

A straightforward calculation shows £(1,w, £*(w)) < £*(A1w) and by iteration

§(k,w, & (w)) < € (Orw). (5.6)
Since
€k, 0_pw, 2(O_gw)) < e~ Akt iy supiepo, IN(EO-) b av) (0 w) + €% (w)

for sufficiently large k > ko(w,z) and if j — z(f;w) is subexponentially growing for
j — o0, we have by (5.5)

k 4
lim e~ YMikte 31 5UPelo,1 Iln(t79*k)”D(A‘Y)l-(07kw) =0.
k—o0

According to this property, we can conclude
distgr (¢(k, 0—_gw, D(0_jw)),0) < 26*(w)
for D € D and sufficiently large k. Similarly we have for large k
dist g7 (¢(k,w, D(w)),0) < 28" (Orw).

We can conclude that the closed ball B(w) in H with center zero and radius 2¢*(w)
is a forward and backward absorbing (see (5.1)) set and is also forward invariant (see
5.6):

(k. w, Bw)) C B(fw).

On the other hand, we note that

B(w) := ¢(1,0 1w, B(A_1w)) C B(w)

is compact, because ¢ is regularizing for ¢ > 0 which follows from Lemma 3.12. In
addition, this set is a random set since ¢(t,w,-) is continuous which follows from
Lemma 3.11 Moreover, B is absorbing in the sense of (5.1) which follows by the
definition of B(w) and the cocycle property.

Theorem 5.1 ensures the existence of a random attractor stated in the first part
of Theorem 4.8.
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We show convergence

(P)  lim = dista((t, (wi,@2), D((w1,@2))), A(t = [¢], O (w1, @2))) = 0
t—oo,teRT
for D € D and any @y € Q. Since B(w) is a forward absorbing and forward invariant
set for any D € D, it remains to check the convergence conclusion for D = B. On
account of (5.2) and (5.3), we notice that for fixed @, and u; = ¢(¢, (w1,@2),y),

1
sup v / 1607, (wr,@2), 9|2 dr < 26* (w1, 2)
y€B((w1,@2)) J0

+ /0 P([ln(m)llpasy) + elln(m) [ an & (7, (Wi, @2), € (w1, @2)))dr.

We obtain by (3.2) an estimate of |lui () — ua(t)[|7; if we know the difference of
|lu1 ([t]) — w2 ([t])||% such that

llur (t) = w2 (Ol <Y ((wr,w2)llur ([8]) = wa([ED)]- (5.7)

The random variable Y can be derived from the variation of constants formula
from (3.2)

sup et Jo Nlé(ry(w1,@2),) 15 dr+ésup,ero,1) N5 cav)
yEB((w1,02))

< exp (c<2s*<w1,w2>> + [ PUalloue)

+ 2¢|[n(T) | pan E(T, (Wi, @2), £ ((wi,@2)))dr + ét:ﬁ)pl] ||ﬂ(t)||%(Av)> =Y ((w1,2))

for appropriate constants ¢, ¢, ¢, and ¢. The mapping
(wi,n) = Y ((pw1,@2)) = V(B (w1, @2))
defines a stationary process. On account of this inequality, we can conclude that

s1{1p ]distH(qb(T +n,w, B((w1,®2))), A(T, 0, (w1, @2)))
7€(0,1

< diStH(¢(n7 (Wl, ®2)7 B((wla ®2)))7 A((erlzwlaa&)))y((erlzwla ®2)) %

Since the first factor of the right-hand side tends to zero in probability, the product
of the right-hand side also tends to zero in probability. This gives the convergence
conclusion (4.6). The proof of Theorem 4.8 is complete.

6. Summary

We have studied the 3D baroclinic quasigeostrophic flow model under random
wind forcing and time-periodic fluctuations on fluid boundary; i.e., on the air-sea
interface. The time-periodic fluctuations are due to periodic rotation of the earth
and thus periodic exposure of the earth to the solar radiation. We have established
the well-posedness of the baroclinic quasigeostrophic flow model in the state space
(Theorem 3.10), and we have demonstrated the existence of the random attractors
(Theorem 4.8), again in the state space. We have also discussed the relevance of our
results to climate modeling.
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