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MODELING 2D AND 3D HORIZONTAL WELLS USING CVFA*

ZHANGXIN CHEN, GUANREN HUAN, AND BAOYAN LIt

Abstract. In this paper we present an application of the recently developed control volume
function approximation (CVFA) method to the modeling and simulation of 2D and 3D horizontal
wells in petroleum reservoirs. The base grid for this method is based on a Voronoi grid. One of
the features of the CVFA is that the flux at the interfaces of control volumes can be accurately
computed via function approximations. Also, it reduces grid orientation effects and applies to any
shape of elements. It is particularly suitable for hybrid grid reservoir simulations. Through exten-
sive numerical experiments and comparisons with the finite difference method for benchmark flow
problems, we show that this method can efficiently and accurately handle complex horizontal wells
in any direction.
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1. Introduction

Recent interest in the modeling and numerical simulation of horizontal wells in
petroleum reservoirs has rapidly increased because of improved drilling technology
[14]. The use of horizontal wells not only leads to the increased efficiency and economy
of oil recovery operations, also it decreases the coning behavior with an increase in well
length and enlarges oil-sweeping volumes. For gas reservoirs with low permeability, it
decreases turbulence effects at gas wells and increases production rates.

The finite difference (FD) method has been widely used in the numerical simu-
lation of fluid flow in petroleum reservoirs [1, 16]. However, due to the structure of
rectangular grids it uses, this method can model horizontal wells only in coordinate
directions. Also, this method causes numerical dispersion and grid orientation prob-
lems and possesses difficulties in the treatment of complicated geometry and boundary
conditions. On the other hand, one has tried to utilize the intrinsic grid flexibility
of the finite element method [5], but this method does not conserve mass locally [2].
Recently, the control volume finite element (CVFE) method has been developed to
enforce such a conservation property [9], but it often produces inaccurate fluid veloc-
ities and cannot easily generate the streamlines of fluid flow in reservoir simulations.
The reason is that the usual CVFE method uses linear elements to present pressure,
and it leads to a piecewise constant velocity. Although the flux across the interior
boundaries of control volumes is forced to be continuous in an ad hoc manner in [18],
the approach involved is not physical.

This paper presents an application of the recently developed control volume func-
tion approximation (CVFA) method [12, 13] to the modeling and numerical simulation
of 2D and 3D horizontal wells in petroleum reservoirs. This CVFA method is more
accurate in the approximation of both pressure and velocity in the simulation of mul-
tiphase flow in reservoirs, locally conserves mass, has less grid orientation effects, and
applies to any shape of elements. It is particularly suitable for hybrid grid reservoir
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simulations. In this paper we employ it to model and simulate 2D and 3D horizontal
wells in any direction. Extensive numerical experiments, together with comparisons
with the FD method for benchmark two-phase flow problems, show that the CFVA
is accurate and reliable in modeling and simulating these wells.

This paper is organized as follows. In the next section we introduce the grids
on which the CVFA method is based. Then, in the third section we briefly review
the CVFA and its recent applications. In the fourth section, we describe a two-phase
flow model, present the application of the CVFA to the modeling of 2D horizontal
wells, and compare it with the FD method. In the fifth section we extend it to the
application of 3D horizontal wells. Concluding remarks are given in the last section.

Fic. 1. A triangle into smaller triangles. Fic. 2. A control volume.

2. Grids

In this section we introduce the grids on which the CVFA method is based, i.e.,
the Voronoi grids. These grids, also called PEBI (perpendicular bisection) grids,
were introduced by Heinrich in 1987 [11] in two dimensions. These grids are locally
orthogonal; i.e., the block boundaries are normal to lines joining the nodes on the two
sides of each boundary. This allows a reasonably accurate approximation of interblock
transmissibility for heterogeneous but isotropic permeability distribution. There are
extensions of the Voronoi grids where anisotropic permeability tensors can be handled
and the grid block boundaries are not locally orthogonal [10, 15, 18]. In this paper,
as an example, we construct the Voronoi grids from triangles [18].

The base grid of a reservoir consists of triangles. Then each triangle is divided
into six smaller triangles by connecting its center with the midpoints on its three edges
(see F1a. 1), and a control volume consists of all smaller triangles sharing the same
vertex of a large triangle (see F1a. 2), which is the center of this control volume. (We
remark that while it is in 2D, we still call it a “volume” as usual [10, 15, 18].) Now, a
Voronoi grid is composed of all control volumes. A control volume near the boundary
of the reservoir consists of fewer triangles. Control volumes should have equal sides
to reduce grid orientation effects. The Voronoi grid constructed in this way has many
advantages. First, it can effectively reduce grid orientation effects. Second, it can
easily be adapted for local grid refinement. Third, it allows for an easy and accurate
treatment of faults, corner points, and cracks.

In this paper, as three-dimensional grids, stacks of the two-dimensional Voronoi
grids are used to model vertical variation in reservoir properties, and thus the grids
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Fic. 3. A 3D control volume.

in the vertical direction are of cylindrical type (see F1G. 3). This approach simplifies
the computation of fluid flow between different vertical layers.

3. The CVFA Method

In this section we very briefly review the CVFA method. For more information
about this method, the reader may refer to [12, 13].

We consider a typical flow equation in 2D for the unknown &:

0
E(gﬁ@) =V - (KV®) +¢q, (3.1)
where ¢ and K are given functions and ¢ is a sum of source/sink terms. The fluid
velocity can be defined as u = —KV®, so equation (3.1) is rewritten as
0
a((ﬁ@) =-V-u+gq. (3.2)

For a given control volume V in plane with surface A, after an application of the
divergence theorem the integral form of (3.2) is

/V%(q@) dV:_/Au-ndA+/quV, (3.3)

where n is the outer unit normal to A. On V, an interpolant ® is used to approximate
b

M
ol (x,t) =) ®i(t)p;(x), x€V, (3.4)

j=1

where M is the number of the interpolation functions associated with V. We have
used different approximation functions as the interpolation functions such as spline,
weighted distance, and “bilinear” functions [12, 13]. As an example, we briefly sketch
a bilinear approach to see the difference between the CVFA and CVFE.

Let points 0,1,...,5 be vertices of triangles (see F1G. 4). They are centers of
control volumes. In the CVFE [8, 9, 18], the velocity u at the interface ac is calculated
via a linear polynomial interpolation which involves the values of ® at points 0, 1,
and 2. In fact, the calculation of u at all interfaces ac, be, and de involves only points
0, 1, and 2. In contrast, in the CVFA the calculation of u at ac involves the values
of ® at points 0, 1, 2, and 3. Similarly, the calculation of u at bc and dc involves
0, 1, 2, and 4, and 0, 1, 2, and 5, respectively. Since the CVFA uses a higher order
interpolation, the calculation of u is more accurate than that in the CVFE.
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Fic. 4. Interpolation points. Fic. 5. The bilinear interpolation.

We define the interpolation basis functions in the present case. Let points 0, 1, 2
and 3 be the centers of four control volumes (see F1G. 5). To interpolate the value of
® at point 8 on a control-volume interface, we employ expression (3.4), i.e.,

bg = oo + Prip1 + Par + P3ips. (3.5)

Let 4, 5, 6, and 7 be the projection points of 8 on the four edges according to the
distance rule

Bao _ Bo _ Rss  Bs» _ Rro _ B

Ro» Rs1i Ry’ Ris  Rso  Red’

where I;; indicates the distance between points 7 and j. The “bilinear” interpolation
takes the form

R
By = @5+ (Br — B5) 5,
75
R
B5 = By + (3, — q>2)R—52, (3.6)
12
R
®; = By + (B3 — <1>0)R—7°.
30
Substituting the second and third equations into the first equation in (3.6), we see
that
@0:(1—@>% %Z@(l_%)
Rso ) Rys’ Ris Rz )’
oy = (1_@> (1_%> g = Fro Bss
R12 R75 ’ RSO R75 .

Note that these functions are defined in terms of distances and look like bilinear
functions in form. That is why we have quoted “bilinear.”

For a 3D problem, the grid to be used consists of elements as in Fia. 3, and
accordingly the numerical procedure is based on the CVFA in the horizontal direction
and a block-centered finite difference in the vertical direction. As noted, this approach
simplifies the computation of fluid flow between different vertical layers.

The CVFA method has been applied to the following areas:
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Fia. 6. An example on rectangular grids. Fia. 7. An example on Voronoi grids.

3.1. Grid Orientation Effects. A major problem that has plagued the
simulation of fluid flow in reservoirs is the grid-orientation effect [1, 7]. It is well
understood that the FD method is sensitive to grid directions. A numerical example
using the five-point FD method for a waterflooding problem (see the next section) is
shown in F1G. 6, where the water saturation is shown. In this problem an injection
well sits at the center of the domain, and four production wells are located at the
four corners. From this figure we clearly see the grid orientation effect; water flows
faster along the horizontal and vertical directions than along the diagonal directions.
For the same problem, a numerical example using the CVFA over a Voronoi grid is
displayed in F1a. 7. ;From this figure we see that the orientation effect is gone.

Fia. 8. A local refinement. Fia. 9. A typical fault.

3.2. Local Grid Refinement. The use of triangles in the base grid to
generate a Voronoi grid makes it easy to do local grid refinement. As noted, a triangle
can be divided into smaller triangles by connecting its center with the midpoints on
its three edges, and new (smaller) control volumes can be generated from the smaller
triangles. A numerical example based on a local refinement is illustrated in Fi1a. 8
for a water flooding problem with 35 wells.

3.3. The Treatment of Faults. The transmissibility between two points
across
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Fia. 10. A CP technique.

a fault in a control volume is set to be zero. This approach is easy to implement and
is practical. A numerical experiment is shown in F1aG. 9.

3.4. A Corner Point Technique. A corner point (CP) technique has been
used in the FD method to adjust the location of vertical wells [6]. When the location
of these wells is not at the centers of rectangles in the FD, there would be a significant
error if the CP technique was not used. The CP technique in the FD is to adjust
the four vertices of a rectangle. For the Voronoi grid under consideration, we exploit
a similar technique to adjust the centers of control volumes. A numerical example
using the CP technique is shown in FiG. 10.

4. Horizontal Wells and 2D Numerical Tests

In the previous section we have reviewed the recent applications of the CVFA.
The purpose of this paper is to introduce its application to the treatment of horizontal
wells in any direction (i.e., slanted wells).

4.1. Two-Phase Flow. For the flow of two immiscible fluids in a reservoir
Q2 C R? (d < 3), the mass balance equation for each of the fluid phases is
O(pas
¢% +V: (patla) = pada, «=w,o, (4.1)

where a = w denotes the wetting phase (e.g., water), a = o indicates the nonwetting
phase (e.g., oil), ¢ is the porosity of the medium, and p,, s, ua, and ¢, are, respec-
tively, the density, saturation, volumetric velocity, and external volumetric flow rate
of the a-phase. The volumetric velocity u, is given by the Darcy law

Kra
Ha

u, = — KV(pa — pagZ), a=w,o, (4.2)
where K is the absolute permeability of the porous medium, p,, ftq, and K,, are the
pressure, viscosity, and relative permeability of the a-phase, respectively, g denotes
the gravitational constant, Z is the depth, and the z-coordinate is in the vertical
downward direction. In addition to (4.1) and (4.2), the customary property for the
saturations is

Sw+ S0 =1, (4.3)
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and the two pressures are related by the capillary pressure function

pc(sw) = Po — Pw- (44)
Following [17], ¢, and ¢, at a well can be defined by

Krw
Qu = PIT(PBH —pw — Pw9(Zpn — Z)),

K’” (4.5)
g = PI u"’ (pBH — Po — Po9(ZBH — Z)),

0

where PI is the productivity index of this well and pgpg is the flowing bottom hole
pressure at the datum level depth Zpg. The productivity index PI is given by
2rKh
pr=""12
In-£

Te

where the quantity K is some average of K at the well, h is the depth of this well, 7.
is the equivalent radius, and r. is the radius of this well. The definition of K and 7,
is crucial, which will be discussed in the subsequent subsections.

wt =

Fig. 11. The saturation by FD. TFia. 12. The saturation by CVFA.

4.2. Vertical Wells.  Before we treat horizontal wells, we first introduce an
approach to model vertical wells. In the standard FD method, for a diagonal tensor
K = diag(K11, K11, K33) and a vertical well, K and r, are defined as [17]

K =Ky, 7 =014(DX2+Dy?)"?, (4.6)
where K11 and K33 are the permeabilities in the horizontal and vertical directions,
respectively, and DX and DY are the x and y dimensions of the grid block which
contains this vertical well.

For the CVFA method, K is defined as in (4.6), and we calculate r. by

A
Te =4/ —, (4.7
T
where A is the area of a control volume V in the horizontal direction which contains

this well. The derivation of (4.7) is based on the following observations: A is treated
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as the area of a circle with radius r. and the mean value of pressure on V is treated as
the pressure over the surface of this circle. We have done many numerical experiments
to check the correctness and accuracy of (4.7). Below we present one of them.
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Fig. 15. o=FD and ¢e=CVFA. FiG. 16. o=FD and e=CVFA.

The model problem is a five-spot pattern, waterflooding problem with four in-
jectors at the four corners of a rectangular reservoir and a producer at the center of
this reservoir. The porosity is ¢ = 0.2, K11 = 300 md, and the reservoir dimensions
are 1,000 x 1,000 x 100 ft3 (the flow is two dimensional; i.e., it is uniform in the z
direction and the gravity is ignored). The bottom hole pressures at injection and pro-
duction wells are 3,700 psi and 3,500 psi, and the water and oil viscosities are 0.4 cp
and 6.0 cp, respectively. The relative permeability data are given in Table 1, and the
capillary pressure is zero. No flow boundary conditions are used in this example.

Table 1. The relative permeability data.

s 022 {03 |04 0.5 0.6 08 (09 |1
Ky | O 0.07 | 0.15 | 0.24 0.33 0.65 | 0.83
K., |1 0.4 | 0.125 | 0.0649 | 0.0048 | O 0

| =

We compare numerical results produced by the CVFA and those by the nine-
point FD method, which exploits (4.6) to model wells. It is well known that the
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nine-point FD method is more accurate than the five-point FD method and has less
grid orientation effects.

An improved IMPES (implicit pressure-explicit saturation) method [3] is used
to solve the two-phase system in the previous subsection. This system is written in
terms of a pressure (the oil pressure) and a saturation (the water saturation). This
improved IMPES method utilizes an adaptive control strategy on the choice of a time
step for the saturation and takes a much larger time step for pressure than for the
saturation. It has been shown [3] that it is effective and efficient for the numerical
simulation of two-phase flow and it is capable of solving two-phase coning problems.

The saturation profile at 1,500 days by the FD and CVFA is presented, respec-
tively, in F1Gs. 11 and 12. Also, for a comparison, the daily oil production rate
(stb/day) versus time (days), the cumulative oil production (Mstb), the characteri-
zation curve of displacement (frac), and the water and oil production ratio (stb/stb)
by these two methods are shown in FiG. 13-16. From these figures we see that these
four curves match quite well. This shows the correctness and accuracy of (4.7). In
many numerical experiments we have carried out, if the productivity index PI is
not accurately calculated, there would be a significant amount of errors in these four
curves.

FiG. 17. A streamline map. Fic. 18. An example with multiple horizontal wells.

4.3. Horizontal Wells. In the standard FD method, for a diagonal tensor
K = diag (K1, K11, K33) and a horizontal well (e.g., in the z direction), K and r,
are determined by [17]

1/2
K33>1/2 <K11>1/2
0.14 — DX? 4+ — DZz?
7 R ((Kn Kss
= 1148833, Te = )
' K K33

where DZ is the z dimension of the grid block containing this horizontal well.

For the CVFA method, K is defined as in (4.8), and we compute r, in the following
approach: Let a control volume V in the horizontal direction contain part of this
horizontal well and L be the diameter of this volume in the well direction; then we
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A DZ
e = , 4.
r \/ e (4.9)

where we recall that A is the area of V and DZ is as in (4.8). The derivation of
(4.9) is based on a similar principle as for (4.7). Again, we have done many numerical
experiments to check the correctness and accuracy of (4.9). The comparison between
the FD and CVFA with horizontal wells will be presented in the next section for 3D
flow problems. In the rest of this section, we apply (4.9) to a couple of 2D numerical
tests, which cannot easily be done using the FD.

The first numerical test uses the same physical and fluid data as in the previous
subsection except that now the producer in the center of the reservoir is a horizontal
well in 45°. In this test, instead of a saturation map, a streamline map is shown in
Fi1G. 17. Tt is understood that these streamlines are very important in understanding
the essentials of oil recovery processes. In the second test there are 35 wells, and six of
them are horizontal wells in various directions. The saturation profile for this test is
shown in F1a. 18. These two tests indicate that horizontal wells in different directions
can be accurately and efficiently modeled using the CVFA method.

calculate r, by

Table 2. The bottom hole pressure ppp (psia).

Cases 1a 1b 2a 2b 3a 3b
Producer | 3,513.6 | 3,506.44 | 3,389.43 | 3,529.9 | 3,270.0 | 3,472.0
Injector 3,661.4 | 3,651.4 | 3,651.4 | 3,651.4 | 3,651.4 | 3,651.4

Table 3. The relative permeabilities and capillary pressure for a water/oil system.

Sw 022|103 |04 0.5 0.6 0.8 {09 |1
Ky | O 0.07 | 0.15 | 0.24 0.33 065|083 |1
K., |1 0.4 | 0.125 | 0.0649 | 0.0048 | O 0 0
De 6.3 | 3.6 |27 2.25 1.8 0.9 | 045 0.0

5. 3D Numerical Tests

We now perform numerical tests for a 3D problem which is concerned with the
effect of horizontal well lengths and rates on oil recovery. This problem involves
injection and production from horizontal wells in a reservoir where a coning tendency
is important. The physical data for the reservoir and fluids are taken from [14] for a
benchmark three-dimensional, three-phase black oil model. In this section we simplify
this model by reducing from three phases to two phases and from a compressible case
to an incompressible case. Recently, we have performed a comparison between the
three and two phases and between the compressible and incompressible cases [4], and
found that the effects of well lengths and rates on recovery are similar, and so is the
behavior of daily oil production rates, cumulative oil production, and water-oil ratios.
Moreover, it has been observed that the incompressible case is a very reasonable
approximation of the compressible case, and thus the incompressible case can be used
for numerical simulation tests in place of the compressible case.

The problem considered deals with oil recovery by bottom water drive in a reser-
voir. Fluids are produced from a horizontal well drilled in the top layer (Layer one).
This well passes through the grid block centers and the entire length is open to flow.
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Table 4. The physical and fluid data.

Ttem Unit Data

Dimensions NX x NY x NZ 9%x9x6

Grid size DX ft 9 % 300

Grid size DY ft 620 400 200 100 60 100 200 400 620
Grid size DZ ft 20 20 20 20 30 50

Depth of grid centers in z ft 3600 3620 3640 3660 3685 3725
Initial water saturation in z frac 0.289 0.348 0.473 0.649 0.869 1.00
Porosity frac 0.2

Horizontal permeability md 300

Vertical permeability md 30

Water density g/cm® | 0.9814

Water viscosity cp 0.96

Water formation factor rb/stb | 1.0142

Oil density g/em® | 0.8975

Oil viscosity cp 0.954

Oil formation factor rb/stb | 1.11

Radius of wellbore inches | 2.25

Time step for calculation days 100

Ultimate time for calculation days 1,500

Length of oil horizontal well ft 900 (for cases la, 2a, 3a)
Length of oil horizontal well ft 2,100 (for cases 1b, 2b, 3b)
Length of water horizontal well | ft 2,700 (for all cases)

Layer of oil horizontal well 1

Layer of water horizontal well 6

Grids of horizontal wells in y 5 (for all cases)

Grids of oil well in z 6-8 (for cases la, 2a, 3a)

Grids of oil well in x 2-8 (for cases 1b, 2b, 3b)

Two lengths are presented: (a) £ = 900 ft and the well is stretched in grid blocks
(1,5,1), 7 = 6,7,8; (b) £ = 2,100 ft and the well is stretched in grid blocks (7, 5,1),
1 =2,3,...,8. The flow direction in this well is from left to right, and the fluids are
removed from the portion of this well in grid block (8,5,1) to the surface.

A constant pressure line source is exploited to simulate the bottom water drive.
This line source is stretched in grid blocks (i,5,6), i = 1,3,...,9. A fixed pressure
condition is also utilized at the production well, and six cases are considered as in
Table 2, where the datum level depth Zgg is 3,600 ft. Case a corresponds to £ = 900 ft
and case b to £ = 2,100 ft. Other data are described in Tables 3 and 4.

We compare the daily oil production rates, cumulative oil production, and water-
oil ratios by the CVFA with those by the FD. The CVFA treats the horizontal wells
via (4.9), while the FD treats them via (4.8). The comparison for cases 1 and 3 is
illustrated in F1G. 19-24, where o indicates the CVFA and o the FD. These figures
show that the numerical results by these two approximation methods match very well.
Again, this shows the correctness, accuracy, and reliability of (4.9).

We now use the CVFA to compare the six cases in Table 2. The daily oil pro-
duction rates between cases la, 2a, and 3a and between cases 1b, 2b, and 3b are
displayed, respectively, in F1as. 25 and 26. The corresponding comparisons for the
cumulative oil production and water-oil ratios are shown in Fias. 27-30. From these
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figures, we summarize the following observations:

e Oil production increases as the well length increases, but the production
increase is limited and is not directly proportional to the length. As an
example, from the comparison between Cases 1a and 1b, we see that the well
length of 1b is over two times longer than that of 1a, but the cumulative oil
production at 1,500 days increases only 31.5% (see F1as. 25 and 26).

e The water coning effect decreases as the well length increases. Although the
production rate in Case 1b is higher than in Case 1a, for example, the water-
oil ratio in 1b is lower than in la. This implies that the well length increase
overcomes the effect of water coning. This phenomenon can be seen from
F1as. 29 and 30, where this ratio is lower in all Cases 1b, 2b, and 3b.

6. Concluding Remarks
In this paper we have reported the recent applications of the CVFA method and

presented its application to the modeling and simulation of 2D and 3D horizontal wells
in petroleum reservoirs. We have developed formulas for the treatment of vertical
and horizontal wells in the context of this method. Through extensive numerical
experiments and comparisons with the finite difference method for benchmark flow
problems, we have showed that this method can efficiently and accurately handle these
wells. This lays a foundation for the modeling and simulation of these wells for other
models such as the black-oil and compositional models.
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