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VLASOV-FOKKER-PLANCK MODELS FOR MULTILANE TRAFFIC
FLOW*

REINHARD ILLNERT, AXEL KLAR?¥, AND THORSTEN MATERNE ¢

Abstract. Systems of equations of Vlasov-Fokker-Planck type are suggested for multilane traffic
flow. The equations include nonlocal and time-delayed braking and acceleration terms with rates
depending on the densities and relative speeds. The braking terms include lane-change probabilities.
It is shown that simple natural assumptions on the structure of these probabilities lead to multivalued
fundamental diagrams, consistent with traffic observations. Lane-changing behavior is the crucial
ingredient in such bifurcations.
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1. Introduction

The objective of this article is the design and analysis of a system of Vlasov-
Fokker-Planck equations for multilane traffic flow on a highway. Our work is partly
motivated by measurements and hypotheses put forward by B. Kerner [12, 9, 10, 11].
In particular, the present model may represent the various phases and phase transi-
tions observed by Kerner, i.e., free flow, synchronized flow/synchronized equilibria,
and congested flow/moving jams. We demonstrate that realistic assumptions on lane
change probabilities lead to bifurcations in fundamental diagrams which are consistent
with traffic observations [11].

The explanation of multivalued fundamental diagrams is one of the challenges
which a good mathematical model should meet. Ideally, the model should also allow
efficient calculations on the propagation of traffic features like jams caused by lane
endings, instabilities in moderate density traffic caused by lane changes, and so on.

Three types of mathematical models for traffic dynamics have found extensive
attention over the last few decades. The first type are systems of ordinary differential-
delay equations in which the position and speed of each individual car are dependent
variables. Such models link naturally with what are known as macroscopic models;
macroscopic models of the simplest kind consist of one nonlinear PDE of conservation
type, linking traffic density and traffic flux by a constitutive relation (the fundamental
diagram). This relation is obtained by assuming equilibrated traffic flow. Models of
this type, called first order macroscopic models, are in use for practical traffic analysis
and predictions on multilane freeways [3].

In second order macroscopic models there is a separate equation for the macro-
scopic speed (or flux, respectively), and one then has a system of two first order partial
differential equations, where the flux equation is usually augmented with a relaxation
term. Well-known models of this type are due to Payne-Whitham [20] and Aw-Rascle
[2]. The main motivation for the introduction of the Aw-Rascle model was in fact a
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weakness of the Payne-Whitham model, namely the unrealistic prediction of negative
fluxes made by this model in certain scenarios. We refer to [2] for details.

Microscopic and macroscopic models can be formulated for one-lane roads, for
each lane of a multilane highway (with appropriate coupling terms to address lane
changes), or for the cumulative traffic on a highway under the assumption that traffic
is so homogenized that all lanes show the same traffic pattern. This latter assumption
is usually made in the formulation and analysis of these models.

The third type of mathematical models used in traffic dynamics are kinetic mod-
els, where a kinetic car density f(t,z,v) depending on time, space, and speed is
introduced. Such models require a statistical interpretation, and it is our belief that
they are unnecessary for the modeling of traffic on single-lane roads, where there can
be no passing (even the necessity for second-order macroscopic models seems then
questionable). However, we believe that kinetic models can contribute valuable in-
sight for multilane traffic, and the purpose of this paper is to add evidence to this
claim.

The first kinetic model for traffic low was suggested by Prigogine and Herman
[21]. As observed by Nelson and Sopasakis [18], this model does lead to multivalued
fundamental diagrams, albeit the computed diagrams do not look realistic. Other
kinetic models for traffic flow were suggested, for example, by Paveri-Fontana ([19]
and [5]). More recently, Klar and Wegener [14, 15, 17, 1, 4] have introduced Enskog-
type kinetic equations for multilane-traffic flow, and a number of kinetic and analytical
studies [6, 7] on the existence and nature of equilibria and on moment closures and
macroscopic equations [4, 1] have since been done. Remarkably, the Aw-Rascle model
arises in this process from a suitable closure process for the momentum equations [4].

In spite of these gratifying links, the modeling of traffic dynamics with Enskog
equations as done in references [14, 15] raises several fundamental questions. The
formulation of such models involves assumptions which are common and accepted
in particle dynamics, but call for discussion when the particles are cars. First, is
it realistic to assume “vehicular chaos,” even with corrective factors? Second, is it
acceptable. to assume that the velocity adjustment of drivers is instantaneous, and
that the new velocity is chosen from a set which is not necessarily well correlated with
the speed of the leading car? In [7] it was demonstrated that equilibrium solutions
arising from these models vary with the driver behavior, and so results derived from
such models are sensitive with respect to assumptions on braking speed and braking
behavior.

The assumption of instantaneous velocity adjustment is acceptable for rarefied
gas dynamics, where particle encounters occur on truly microscopic time scales, much
shorter than the time span between encounters. In traffic flow, driver interactions
happen on time scales comparable to those for phase transitions. Hence the details of
the interaction, i.e., reaction times, braking/acceleration behavior etc. must be part
of the modeling process.

This finally brings us to the content of this paper.

In Section 2 we present a model which incorporates driver behavior into kinetic
equations of Vlasov-Fokker-Planck type. For simplicity we only consider two lanes;
the equations incorporate braking and acceleration terms with appropriate nonlocal-
ities and time delays; for braking scenarios, there are lane-change probabilities which
depend on relative speed (more sophisticated dependencies are likely and could be
incorporated into the model, but we refrain from doing so for the sake of simplicity).
There are diffusion terms which are such that for a wide range of the parameters the
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model permits trivial equilibria (synchronized flow); this is significant because such
equilibria exist from a fundamental point of view, and they are also observed in reality
for certain density regimes (see [12, 9, 10, 11]).

In Section 3 we analyse the steady homogeneous model and derive fundamental
diagrams. For certain density regimes, these diagrams are multivalued.

Our model is a new type of macroscopic model inasmuch as the behavior of each
driver is guided by his/her observation of macroscopic quantities. These quantities are
observed with time delays (reaction time) and spatial nonlocalities depending on the
driver’s speed. These are realistic features which have been incorporated into other
kinetic models [13, 14, 15, 16], but their implementation into macroscopic models is
problematic because of the lack of an explicit speed variable. It is certainly possible
to dicuss momentum equations and possible closure relations of our Vlasov-Fokker-
Planck model, but we found that one has to distinguish many cases (braking vs.
acceleration scenarios), and simplifications arise only under strong and not realistic
assumptions (equal thresholds for braking and acceleration; low traffic temperature).
Of course, under the ultimate assumption that traffic is steady and independent of
the location, we arrive at the homogeneous scenario which allows the computation
of the fundamental diagrams done in Section 3. In other situations, it appears that
the Vlasov-Fokker-Planck model itself is better suited for numerical and analytical
purposes than for momentum equations or closures of these equations.

2. The Equations

2.1. The Basic Model. = We consider traffic flow on a highway with two lanes.
We label the lanes as i = 1,2, where 1 is the label of the right lane and 2 the label
of the left lane. The lanes will be treated as completely equivalent (this is, of course,
not quite realistic, but the model is easily generalized). By f;(¢,z,v) we denote the
number density of cars in line ¢ which at time ¢ are at location z and move with speed
v. Here, z € R denotes the location on the highway; we assume that v € [0, Umaz],
where U, is the speed limit. In the remainder of this paper we normalize %, = 1.

We assume further that all drivers have the same constant reaction time 7 > 0
and observe braking and acceleration thresholds Hg and H4 given by Hg = z +Tgv
and H4 = ¢ + Tyv. Here, v is the driver’s speed and Tg and T4 are reaction times
(in general different from 7). This means that a driver at x moving with speed v will
brake in reaction to a traffic condition observed at xz + Tgv, and if no condition for
braking applies, he/she will accelerate (if possible) in reaction to a traffic condition
observed at x + T 4v. Observations suggest that T4 > T’g; a driver will accelerate only
if his distance to the leading car exceeds T4v and brake only if this distance becomes
smaller than Tgv.

The total densities are p;(t,x) = fol fi(t,z,v) dv, and we set

filt,z,v) = pi(t, z)F;(t, z,v).

F; is the probability density in v of cars at x in lane i. The macroscopic flux in
lane i is given by j;(t,z) = [vfi(t,z,v) dv, and the average speed in lane i is u; =
ji/pi.- There are other important moments with physical meaning, e.g., the “traffic
temperature” e;(t,z) = [(v — u;)?fi(t,z,v) dv. For synchronized equilibria, defined
by fi(t,z,v) = pi(t,x)dy, (v) we see immediately that e; = 0.

In the sequel we abbreviate f = (fi1, f2).
The equation for the ¢th lane, written in conservation form, is

O fi +v0u fi + 0y (Bfilfi — DIfildufi) = pulfelfs — pilfil fi- (2.1)
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Here, k = 3 — i denotes the other lane and BJ[f;] is the braking or acceleration term,
corresponding to the system of characteristic equations

i=v, ©=B[fi] (2.2)

The f;s solving (2.1) can be interpreted as “statistical solutions” of (2.2) in the sense
defined in [8]. Note that mass is omitted in the second equation; i.e., heavier cars
are simply assumed to have correspondingly stronger brakes (and more power) such
that their deceleration or acceleration depends in exactly the same way on BJ[f;] as
that of lighter cars. p;[f] is the lane-changing (or passing) rate. This rate depends on
traffic states in the current and adjacent lanes; we discuss these dependencies in the
sequel. The lane- changing probabilities P and the lane-changing rates p are related
by p = P - j, where j is the flux. The essence of the model lies in our assumptions
regarding the dependencies of B|[f;], pi[fi], etc. on the traffic state.

2.2. The Braking/Acceleration Terms. We suggest that the braking/acce-
leration force B[f;] depends on the relative speed of the driver under consideration
with respect to the average speed as observed by this driver a reaction time earlier
and the appropriate threshold distance ahead. We emphasize that other modeling
assumptions can be incorporated at this point, for example, that the driver will pay
attention to the slowest driver ahead. Keeping in mind the statistical interpretation
of the model, we suggest that the braking force should be given in terms of average
quantities as computed from the traffic densities.

To simplify our formulas, we define

P = pia+Tovt—7),  uP = wile+Tav,t—7) 03
pit = pi(x + Tav,t — 1), ui = wi(zr + Tav,t —T) -
and diffusion coefficients
D[f](p,u,v) = o(p,u)|v—ul". (2.4)

Here, f stands for a traffic density, and p,u are the macroscopic density and speed
associated with f. The dependencies of ¢ on p and u are addressed in Section 3. To
define the braking and acceleration behavior of drivers in response to traffic situations,
we now suggest the following braking/acceleration forces as functions of the traffic
conditions:

®

—cp(v—u?)q(pl ulv) v >w

i

B[fi](t,z,v) = < ca(ut —v)*(pmaz — p2) v < uPfandv < u (2.5)

(3

0 else

and with D[f](p,u,v) as defined above,

D[fl](szauzBav) v > U’iB

D[fz](ta r, U) = D[fl](p?, A v) else (26)

70

where cp and c4 are dimensionless constants, v > 0, and ppe. is the maximum
density. g¢;(...) is the product of the spatial density p and braking probability, to
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be introduced momentarily. Note that the explicit form of the conditions on the
right-hand sides is, for example,

v > ui(z +Trv,t — 7).

This means that an implicit equation for v must be solved before we know which case
occurs.

We offer an interpretation of the various decisions: The first case is a braking
scenario because a driver will consider braking (or a lane change) if the traffic ahead
(at z+Tpv) is slower than he was at time ¢t — 7. We set the braking force proportional
to p - (v — uP)? because the factor cp will then be dimensionless.

If this braking scenario does not apply, the acceleration scenario may apply: If
the leading car is at = + T4v and moves at a speed greater than v, then the driver
will accelerate. No lane changes are considered in this situation. We set the accel-
eration force proportional to (uf* — v)?(pmaz — pi') because this will again make c,
dimensionless, and will annihilate all acceleration at maximal density. In general we
have Ty > Tp (for numerical values see [13]) and it is therefore possible that neither
scenario occurs. In this case, the driver won’t brake or accelerate, and only the diffu-
sion term (due to the driver’s inability to observe speeds with accuracy) remains. In
our computations, we also choose c4 < cp as braking interactions are stronger than
acceleration interactions. Furthermore, o << ¢4, as diffusion occurs on smaller scales
than braking or acceleration. o must have the dimension of [pu3~?] for unit reasons.
We choose not to make o dimensionless, as this gives us the freedom to discuss vary-
ing v. However, we will choose specific dependencies of o on p and u (consistent with
elementary traffic facts) in our derivation of fundamental diagrams in Section 3.

Finally, we define

q(p,u,v) = p (1 - Pi(u,v))

where the lane-change probabilities P;(...) are

s
v—Uu
Pi(u,v) = (“mw—“) v

0 v <u

with § > 0. Note that lane-changes will only be considered in braking scenarios (we
simply set them equal to 0 in the other cases), and we assume that the lane-change
probabilities are proportional to a suitable power of the normalized relative speed.
The powers v and ¢ will be specified below.

We emphasize that this dependence of the lane-change probabilities is just a first
guess; in reality, lane-change probabilities will not only depend on relative velocities
on the lane under consideration, but also on the relative velocity with respect to the
adjacent lane as well as on the densities on both lanes. Such further dependencies can
be easily incorporated into the model, but they make any analytical treatment of the
model harder. We will demonstrate in Section 3 that the present simple dependence of
P; suffices to explain multivalued fundamental diagrams; it has been speculated that
the observed multivalued diagrams in real traffic mesurements [11] are a consequence
of lane-changing behavior, and our analysis in Section 3 supports this possibility.
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3. Steady and Spatially Homogeneous Equations

In the case where the traffic flow is identical on both lanes, steady and independent
of x, the complicated system (2.1) collapses to one much simpler equation (this is
because t— and x— derivatives vanish, the lane-changing terms on the right cancel,
and the equations for both lanes are the same). We are left with

9y (B[filfi — D[fi]ouf;) = 0  ie, Blfilfi — D[fi]oufi = C € R

We want f(v) = 6,(v) to be a solution of the homogeneous equation (these are the
synchronized equilibria which any realistic model should admit). If v > 1, it then
follows that C' = 0. Furthermore, the third case stated in (2.5) cannot occur. We
obtain the system

CB(U - u)2q(p,u,v)f + U(U - ’U‘)’Y avf =0 v>u
calu— 0)2(pmam —p)f —ou—v)"0f =0 v < u.

We will consider this system for general v € (0,2), although d,(v) is a solution in
the sense of distributions only if v > 1. We are not particularly concerned that these
synchronous equilibria are not included for smaller ~; after all, the factors in the
diffusion and lane-changing terms are only guesses; the true functions which should
occur there are probably more complicated and depend on additional variables. It
is easy to adjust the dependence of o such that the synchronous equilibria will exist
for all cases, but we would lose the relative simplicity of the present model. Our
subsequent numerical studies suggest that a diffusion factor o worth studying would
grow like (v —u)Y with v > 1 for small v —u, and saturate at some level for moderate
to large v — u. However, the saturation level would be yet another parameter.

Real data on the kind of uncertainty embodied in the diffusion function o would
require extensive psychological studies.

In addition to the synchronized equilibria solutions, which exist for v > 1, there
is a continuous differentiable solution to the system if v € (0,2). This solution is

[
ctpv) exp (50— 0" |(2525) st - 5| ) 0>

c(p,u) exp (—a%)

flv) =

v<u

with the constants

o = CA(,omax_p) and ﬂ: %

o o
and a factor ¢(p, u) determined from the normalization [ f(v)dv = p. Explicit knowl-
edge of ¢(p,u) is not necessary for the subsequent calculations.

While p € [0, pmaz] is a real parameter, u and p are coupled by the fundamental
diagram. This diagram is obtained from the first two momentum equations

Umaz Umaz

pu = /uf(v)dv = /Uf(’l})d’l}
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which gives us the following relationship between p and wu:

0= [t (a2 o
J

Umaz

_ /(v—u)exp<ﬂ(v—u)37 l(u;}a;ﬁu>63—i+6_3i7]> dv.

u

Evaluating both integrals seperately, we have to find the roots of

Umaz

R(u) = /J(u,s)ds

with

J(u,s) = u?(tmas — ) €Xp (— a ( v >3ﬂ (tmaz _8)3—w>

3 - ’Y Umaz

— (trmas — 1)s €XP (5 [M} 3.

Umaz

l(u;w>63—i+6—3iv]>'

As we can deduce from (3.1), we have R(0) < 0 and R(umqz) > 0 for any p € (0, pmaz)-
Therefore, there will always exist at least one u* € (0, umqz) With R(u*) = 0.

3.1. First Example. For our first numerical example we choose v = 1 and
0 = 1, although §,(v) is then no longer a solution in the sense of distributions. The

o I I I I I I I I I
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r

Fic. 3.1. The function m1(r).
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function R(u) simplifies to

Umaz —

(1-exp (-202)) - / sewp (85 [ 5= 3] s

We now make a special choice for the diffusion factor; the motivation is that there
should be no diffusion in certain limit scenarios such as standing traffic, zero car
density, etc. If no reasonable dependencies of o to these ends are enforced, one gets
unrealistic fundamental diagrams at the endpoints. We choose

u
O'(p,u) = Ucpmazu?nazm1< L >m2< >

Pmaz Umaz

R(u) =

R+

with a positive constant o., a non-negative function my (r) depicted in Figure 3.1 and
ma(s) = s(1 —s).

my consists of two linked Gaussian distributions and is chosen such that diffusion
vanishes in the limit scenarios where p = 0, p = pimqz. Furthermore we define mo(s)
similarly, so that the diffusion vanishes also for u = 0, 4 = t;,4,. We repeat that
such choices are essential to obtain fundamental diagrams which are consistent with
the basic facts that there is no flux when there are no cars, and there is also no flux
in standing traffic.

The fundamental diagram with ¢4 = 5, cg = 25 and 0. = 0.25 is shown in Fig-
ure 3.2. We note that the numerical determination of the solution for large densities
becomes increasingly difficult due to the small values of the involved integrals. Fur-
thermore, in Figure 3.3 we plot some equilibrium distributions for p = 0.25. We have
normalized such that ppe: = 1 and tmee = 1.

3.2. Second Example. In this second example d,,(v) is in fact a solution.
To satisfy the condition v € (1,2) we choose v = 1.5 and § = 1. Also, we make an
adjustment for dimensional consistency and set

a(p,u) = Ucpmazufr{gzml< P >m2< - >
Pmaz Umaz

where my, ms are defined above. Again we assume ppaz = 1, Umae = 1, and, slightly
different from above, c4 = 5, cg = 20, 0. = 0.5. The calculated fundamental diagram
is shown in Figure 3.4. Again we calculate some distribution functions for p = 0.25.
These are plotted in Figure 3.5.

4. Conclusions

e In the above examples, we obtained 3-valued fundamental diagrams. We ex-
pect that by considering more complicated (but realistic) dependencies on ad-
ditional variables of the lane-changing probabilities, multivalued fundamental
diagrams with more than three values will arise.

e Similarly, by adjusting parameters the “multivalued” flow regime between the
critical densities p; and ps can be fitted to experimental data.

e The time-dependent and spatially inhomogeneous case will be investigated in
future work.
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ca=5 ch=25 c.=0.25 =1 d=1

0.4 0.5 0.6 0.7 0.8 0.9 1

ca=5 cb=25 o_=0.25 v=1 =1

Fic. 3.2. Equilibrium velocity and fluz for v =6 = 1.
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— rho=0.25, u=0.59
—— rho=0.25, u=0.12
—— rho=0.25, u=0.78

F1G. 3.3. The distribution function F(p,v) for the special choice p = 0.25 and its associated
equilibrium velocities. In this case, we achieve three different distributions.
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ca=5 cb=20 o, =0.5 =15 &=1

0.2

0.1

0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fic. 3.4. Equilibrium velocity and flux for v = 1.5 and § = 1.5.

- rho=0.25, u=0.40
rho=0.25, u=0.09
rho=0.25, u=0.88

11

F1G. 3.5. The distribution function F(p,v) for the special choice p = 0.25 and its associated
equilibrium velocities. In this case, we achieve three different distributions.
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