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SMALL VISCOSITY SHARP ESTIMATES FOR THE GLOBAL
ATTRACTOR OF THE 2-D DAMPED-DRIVEN NAVIER–STOKES

EQUATIONS ∗

A.A. ILYIN † , A.MIRANVILLE ‡ , AND E.S.TITI §

Abstract. We consider in this article the damped and driven two-dimensional Navier–Stokes
equations at the limit of small viscosity coefficient ν→0+. In particular, we obtain upper bounds
of the order ν−1 on the fractal and Hausdorff dimensions of the global attractor for the system on
the torus T 2, on the sphere S2 and in a bounded domain. Furthermore, in the case of the torus, we
establish a lower bound of the order ν−1. This sharp estimate is remarkably smaller than the well
established sharp bound for the dimension of the global attractor of the Navier–Stokes equations
on the torus T 2, which is of the order ν−4/3. This means that the damping/friction term plays a
significant role in reducing the number of degrees of freedom in this two-dimensional model. This,
we believe, is done by dissipating the energy at the large spatial scales which is transferred to these
scales via the inverse cascade mechanism. Finally, we remark that the system of equations studied
here is related to the Stommel-Charney barotropic ocean circulation model of the gulf stream.
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1. Introduction
The two-dimensional Navier–Stokes system

∂tu+
2∑

i=1

ui∂iu=ν∆u−∇p+f,

divu=0,

u(0)=u0,

(1.1)

rightfully occupies one of the central places in the theory of global attractors for
dissipative partial differential equations [2], [11], [26], [31], [33], [35]. Here, u is the
velocity vector field, p is the pressure, ν >0 is the viscosity coefficient, and f is the
forcing term.

System (1.1), supplemented with appropriate boundary conditions (Dirichlet or
space-periodic), possesses the global attractor A in the corresponding phase space.
Concerning the Navier–Stokes system (1.1) in a bounded domain Ω with the Dirichlet
boundary conditions u|∂Ω =0, we have the following estimate for the Hausdorff and
fractal dimensions of the attractor [35]:

dimHA≤dimF A≤ c(Ω)G, G=
‖f‖
ν2λ1

,
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where λ1 is the first eigenvalue of the Stokes operator, ‖f‖=‖f‖L2(Ω), and c(Ω) is
a dimensionless constant. The best to date explicit form of this estimate was found
in [8]:

dimF A≤ 1√
2π

(λ1|Ω|)1/2 ‖f‖
λ1ν2

≤ 1
2π3/2

‖f‖|Ω|
ν2

,

where |Ω| is the area of Ω.
In the space-periodic case (x∈ [0,2πL]2), the estimate for the dimension of the

global attractor can be significantly improved [11], [12], [35]:

dimF A≤ cG2/3(ln(1+G))1/3. (1.2)

Moreover, it was shown in [28] that the following lower bound holds for the Kol-
mogorov forcing:

dimF A≥ c′G2/3,

which shows that estimate (1.2) is sharp up to a logarithmic correction. Estimate (1.2)
also holds for the Navier–Stokes system on a two-dimensional compact manifold (for
example, S2) and in a bounded domain with the so-called free boundary condi-
tions [22]. We also note that, so far, no lower bounds are known for system (1.1)
with Dirichlet boundary conditions.

In this work, we shall deal with the following system:

∂tu+
2∑

i=1

ui∂iu+kl×u=−µu+ν∆u−∇p+f,

divu=0,

u(0)=u0,

(1.3)

where, preserving the previous notation, we have the additional drag/friction term
−µu on the right-hand side and the Coriolis acceleration on the left-hand side. Here,
k is the vertical unit vector and l= l0 +βx2 is the Coriolis parameter in the β-plane
approximation. System (1.3), with µ>0 and ν≥0, has important applications in
geophysical hydrodynamics (see, for example, [13], [30].) The drag/friction term
−µu, where µ is the Rayleigh friction coefficient (or the Ekman pumping/dissipation
constant), models the bottom friction in two-dimensional oceanic models (when the
system is considered in a bounded domain; in that case, the system is called the vis-
cous Charney–Stommel barotropic ocean circulation model of the gulf stream) or the
Rayleigh friction in the planetary boundary layer (for two-dimensional atmospheric
models on the sphere or with space-periodic boundary conditions). Existence and
uniqueness results for the stationary problem and also results on the stability of sta-
tionary solutions for (1.3) with ν =0 can be found in [3], [32], [36]. Weak global
attractors for this system, with ν =0, were constructed in [21], [18] and [19] (see
also [5]). An investigation of the bifurcation diagram and other related dynamical
properties of the system (1.3) are reported in [6] (see also references therein).

Whether the weak global attractor of the system (1.3), when ν =0, is finite or
infinite dimensional is an open question. In this work, however, we shall deal with the
case when µ>0 is arbitrary but fixed and ν >0 is small, ν→0+. One can think of this
system as the Navier–Stokes perturbation (or viscous perturbation) of the damped-
driven two-dimensional Euler equations with rotation. Unfortunately, this work does
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not give us any clue about the more challenging case when ν =0 and µ>0. This is
because attractors are usually not robust under small perturbations in parameters.
It is worth mention that similar to the two-dimensional Navier–Stokes equations one
can show the existence of finite number of degrees of freedom (determining modes,
nodes, etc..) for the system (1.3) when ν >0 (see, for example, [4], [9], [14], [15],
[16], [24], [25], [31] and references therein). Here again it is not known whether the
system (1.3), with ν =0, has finite number of degrees of freedom (determining modes,
nodes, etc...).

In section 1, we establish explicit upper bounds on the fractal dimension of the
global attractor for the space-periodic system (1.3) and also explicit lower bounds
when f is the Kolmogorov forcing. We observe that both the upper and lower bounds
are of order ν−1 as ν→0+, see (2.43). We recall that, for the classical Navier–Stokes
equations, we have an upper bound of the order ν−2 for Dirichlet boundary conditions
and of order ν−4/3(ln(1/ν))1/3 for space-periodic boundary conditions. Thus, for any
µ>0, and even in the space-periodic case, we have a much smaller estimate for the
global attractor, which is of the order ν−1 as ν→0+. Moreover, this estimate is sharp.
This observation has significant physical implications concerning two-dimensional tur-
bulence. The damping/drag/friction plays an important role in reducing the number
of degrees of freedom in this two-dimensional model. This, we believe, is done by dis-
sipating the energy at the large spatial scales that is transferred to these large scales
via the inverse cascade mechanism, a characteristic of two-dimensional turbulence.
This interesting physical observation will be the subject of future work.

In section 2, we obtain explicit upper bounds on the fractal dimension of the global
attractor for system (1.3) on the rotating sphere and for the system in a bounded
domain with free boundary conditions.

Finally, in the Appendix in section 3, we recall the Lieb–Thirring inequalities for
space-periodic vector functions.

2. Two-sided estimates for the space-periodic model
We consider in this section system (1.3) with space-periodic boundary conditions.

We assume in what follows that the Rayleigh friction coefficient µ>0 is arbitrary but
fixed, while the viscosity coefficient ν >0 is small so that

µ

νL2
≥1. (2.1)

However, condition (2.1) is used only for obtaining the lower bounds. The upper
estimates derived in this section are valid for any combination of the parameters.
Finally, the spatial variable x belongs to the two-dimensional torus T 2 =[0,2πL]2.

Using the standard notation (see, for instance, [11], [35]), we denote by P the
orthogonal projection in (L2(T 2))2∩{u :

∫
T 2 udx=0} onto the Hilbert space H which

is the closure in (L2(T 2))2 of the set of smooth solenoidal periodic vector functions
with mean value zero. Applying P to the first equation in (1.3), we obtain

∂tu+B(u,u)+Ku+νAu=−µu+f, u(0)=u0, (2.2)

where A=−P∆ is the Stokes operator, B(u,v)=P
(∑2

i=1ui∂iv
)

is the nonlinear term,
Ku=P (kl×u), and f ∈H.

It is standard to prove (see, for instance, [2], [11], [26], [35]) that, for every initial
value u0∈H, equation (2.2) has a unique solution u(t)∈H generating thereby the
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semigroup St :H→H, Stu0 =u(t). The semigroup St has a global attractor AbH.
Furthermore, if f ∈H, then A is bounded in the Sobolev space H2. We assume in
what follows that f ∈H1, so that ‖rotf‖ is finite.

We first obtain some a priori estimates for the solutions u(t). We shall use the
following important identity (see, for instance, [11], [35]):

(
B(u,u),Au

)
=0, u∈H2∩H. (2.3)

For the sake of completeness, we give an invariant proof of (2.3) (in the sense that it
also works for the sphere and a bounded domain with free boundary conditions) [22].
Since

∑2
i=1ui∂iu=∇u2/2−u×rotu and, in the periodic case, Au=rot(rotu), we

introduce the stream function ψ, so that u={−∂2ψ,∂1ψ}, and obtain

(B(u,u),Au)=(rotu×u,rot(rotu))=(rot(rotu×u),rotu)=(J(ψ,∆ψ),∆ψ)=0,

where the Jacobian operator J is defined below in (2.16). In addition to the trivial
identity (Ku,u)=0, we also have (taking into account that l= l0 +βx2)

(Ku,Au)=(P (kl×u),rot(rotu))=(rot(kl×u),rotu)=β(∂1ψ,∆ψ)=0.

Multiplying (2.2) by Au, using the above identity and (2.3) and integrating by parts,
we obtain

∂t‖rotu‖2 +2ν‖Au‖2 +2µ‖rotu‖2
=2(f,Au)=2(rotf,rotu)≤µ‖rotu‖2 +µ−1‖rotf‖2.

Dropping the second term in the left-hand side, we have

∂t‖rotu‖2 +µ‖rotu‖2≤µ−1‖rotf‖2

and, by Gronwall’s inequality, we find that

‖rotu(t)‖2≤‖rotu(0)‖2e−µt +µ−2‖rotf‖2(1−e−µt),

so that we have, on the attractor (u0∈A),

‖rotu(t)‖≤ ‖rotf‖
µ

. (2.4)

2.1. Upper bounds on the dimension of the global attractor. We
now estimate the dimension of the global attractor A. To take advantage of the fact
that estimate (2.4) is independent of ν, we estimate the dimension of A in the phase
space H.

For a solution u(t) lying on the attractor (u0∈A), we consider the linearized
equation

∂tU =−νAU−KU−µU−B(U,u(t))−B(u(t),U)=:L(t,u0)U, U(0)= ξ, (2.5)

and estimate the m-trace of the operator L. Let Ui(t) be the solution of (2.5) with
Ui(0)= ξi, i=1,.. .,m. We denote by Qm(t) the orthogonal projection in H onto
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Span{U1(t),.. .,Um(t)}. Since Ui(t)∈H1 for t>0, we denote by vi =vi(t)∈H∩H1,
i=1,... ,m, an orthonormal (in H) basis of Span{U1(t),... ,Um(t)}. Integrating by
parts, using the identities (B(u(t),vj),vj)=0 and (Kvj ,vj)=0, the orthonormality of
the vjs and the inequality (see [8] or Lemma 3.2 below)

2∑

i,k=1

vk(x)∂kui(x)vi(x)≤2−1/2|v(x)|2|∇u(x)|, (2.6)

we have

Tr[L(t,u0)◦Qm(t)]=
m∑

j=1

(L(t,u0)vj ,vj)=

−ν
m∑

j=1

‖rotvj‖2−µm+
∫

T 2

m∑

j=1

2∑

i,k=1

vk
j (x)∂kui(x)vi

j(x)dx≤

−ν
m∑

j=1

‖rotvj‖2−µm+2−1/2

∫

T 2
ρ(x)|∇u(x)|dx≤

−ν
m∑

j=1

‖rotvj‖2−µm+2−1/2‖ρ‖‖rotu(t)‖,

where

ρ(x)=
m∑

j=1

|vj(x)|2, (∇u(x))2 =
2∑

i,k=1

(∂kui(x))2, ‖∇u‖=‖rotu‖.

Next, we note that

m∑

j=1

‖∇vj‖2 =
m∑

j=1

‖rotvj‖2≥λ1 + ···+λm,

where L−2 =λ1≤λ2≤ ... are the eigenvalues of the Stokes operator A which, in the
space-periodic case, coincide with the eigenvalues of the scalar Laplacian −∆ in the
space L2(T 2)∩{ϕ :

∫
T 2 ϕ(x)dx=0}. We use the fact that, in two space dimensions,

λj≥ c1λ1j and, hence,

m∑

j=1

λj≥λ1cT2−specm
2, (2.7)

where we can take (see Proposition 1 in section 3)

c1 =
1
4

, cT2−spec =
1
8

. (2.8)

We also recall the two-dimensional Lieb–Thirring inequality:

‖ρ‖2 =
∫

T 2

( m∑

j=1

|vj(x)|2
)2

dx≤ cT2−LT

m∑

j=1

‖rotvj‖2, (2.9)
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where we can take the following explicit upper estimate for cT2−LT (see Theorem 4.3):

cT2−LT≤
6
π

. (2.10)

The main tool in the estimates of the attractor’s dimension are the numbers q(m)
(the sums of the first global Lyapunov exponents) and the trace formula, see [10],
[11], [35]. By the trace formula and (2.7), (2.9), (2.4), we have

q(m)≤ limsup
t→∞

sup
u0∈A

sup
ξi∈H

i=1,...,m

1
t

∫ t

0

Tr[L(τ,u0)◦Qm(τ)]dτ ≤

−ν
m∑

j=1

‖rotvj‖2−µm+2−1/2


cT2−LT

m∑

j=1

‖rotvj‖2



1/2

‖rotf‖
µ

≤

− ν

2

m∑

j=1

‖rotvj‖2−µm+
cT2−LT

4ν

‖rotf‖2
µ2

≤

≤g(m) :=−ν

2
λ1cT2−specm

2−µm+
cT2−LT

4ν

‖rotf‖2
µ2

.

Let d∗ be the unique positive root of the quadratic equation g(d)=0. Then both the
Hausdorff (see [35]) and the fractal (see [7], [8]) dimensions satisfy the estimate

dimHA≤dimF A≤d∗.

Dropping the second term in the right-hand side of the above inequality for q(m), we
find

q(m)≤g1(m) :=−ν

2
λ1cT2−specm

2 +
cT2−LT

4ν

‖rotf‖2
µ2

.

Hence,

dimHA≤dimF A≤d∗<d1
∗=

(
cT2−LT

2cT2−spec

)1/2 ‖rotf‖
νµλ

1/2
1

, (2.11)

where g1(d1
∗)=0. Dropping the first term, we find

q(m)≤g2(m) :=−µm+
cT2−LT

4ν

‖rotf‖2
µ2

.

Accordingly,

dimHA≤dimF A≤d∗<d2
∗=

cT2−LT

4
‖rotf‖2

νµ3
, (2.12)

where g2(d2
∗)=0.
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Taking into account (2.8), (2.10) and the fact that λ1 =L−2, we obtain the
following theorem.

Theorem 2.1. Equation (1.3) has a global attractor A whose Hausdorff and fractal
dimensions satisfy the following upper bound:

dimHA≤dimF A≤min

(
2
(

6
π

)1/2 ‖rotf‖L
νµ

,
3
2π

‖rotf‖2
νµ3

)
. (2.13)

2.2. Lower bounds on the dimension of the global attractor. We
now deduce a sharp lower bound on the dimension of the global attractor, our main
assumption being that condition (2.1) is satisfied. In other words, we study the
behavior of the dimension when µ>0 is arbitrary and fixed and ν→0+.

We first go over to a scalar vorticity equation. Using the condition divu=0, we
introduce the stream function ψ, so that u=k×∇ψ =−rotψ ={−∂2ψ,∂1ψ}. The
choice of ψ is fixed by the condition

∫
T 2 ψdx=0. We substitute this into the first

equation in (1.3) and apply the rot operator. We then obtain a scalar equation:

∂t∆ψ−ν∆2ψ+µ∆ψ+J(ψ,∆ψ+ l)=F =rotf. (2.14)

We derive our lower bounds without the Coriolis force and set l=0. Next, setting
ϕ=∆ψ, we obtain

∂tϕ−ν∆ϕ+µϕ+J(∆−1ϕ,ϕ)=F, (2.15)

where

J(a,b)=n×∇a ·∇b=∂1a∂2b−∂2a∂1b. (2.16)

Since a global attractor is a maximal strictly invariant compact set, it follows
that it contains the unstable manifold of every stationary point ϕ̄, Mu(ϕ̄)⊂A, that
is, the invariant manifold along which the solutions of (2.15) tend exponentially to
the stationary point ϕ̄ as t→−∞. Since ν >0, the local invariant manifold near
the stationary point ū can be constructed in the framework of the general theory of
invariant manifolds for parabolic equations [2], [17].

In our analysis, we shall use the well-known family of Kolmogorov flows [2], [23],
[28], [29], [37] (see also [38]).

We set L=1. (This involves no loss of generality and simplifies the notation of
the Fourier series below.) As in [23], for a (large) parameter s, to be determined later,
we consider the following family of right-hand sides f :

f =fs =

{
f1 = 1√

2π
ν2λs2 sinsx2,

f2 =0,
(2.17)

where λ=λ(s) is a parameter to be chosen later. Then
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rotfs =Fs =− 1√
2π

ν2λs3 cossx2, (2.18)

so that

‖rotfs‖=ν2λs3. (2.19)

We now consider the stationary equation (2.15) with right-hand side (2.18):

−ν∆ϕ+µϕ+J(∆−1ϕ,ϕ)=− 1√
2π

ν2λs3 cossx2 (2.20)

and look for a solution of this equation of the form

ϕ=ϕs =− 1√
2π

νλsK cossx2, K =K(s,µ,ν). (2.21)

Since ϕs only depends on x2, it follows that J(∆−1ϕs,ϕs)≡0 and it is straightforward
to see that, for

K(s,µ,ν)=
s2

s2 +µ/ν
, (2.22)

the function ϕs defined by (2.21) is a solution of equation (2.20).
We consider the eigenvalue problem for the equation linearized around the sta-

tionary solution ϕs:

Lϕs
ϕ=J(∆−1ϕs,ϕ)+J(∆−1ϕ,ϕs)−ν∆ϕ+µϕ=−σϕ. (2.23)

The dimension of the unstable eigenspace with Reσ >0 will bound from below the
dimension of the global attractor A.

Substituting the Fourier representation of ϕ,

ϕ=
1√
2π

∑

k∈Z2
+

(ak coskx+bk sinkx),

Z2
+ ={k∈Z2

0, k1≥0, k2≥0}∪{k∈Z2
0, k1≥1, k2≤0}, Z2

0 =Z2 \{0},

into (2.23) and using the equality J(a,b)=−J(b,a), we obtain

λKs√
2π

∑

k∈Z2
+

(
1
s2
− 1

k2

)
J(cossx2,ak coskx+bk sinkx)+

+
∑

k∈Z2
+

(k2 + σ̂+µ/ν)(ak coskx+bk sinkx)=0,
(2.24)

where σ̂ =σ/ν.
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We further see that

J(cossx2,cos(k1x1 +k2x2))=−k1ssinsx2 sin(k1x1 +k2x2)=
k1s

2
(
cos(k1x1 +(k2 +s)x2)−cos(k1x1 +(k2−s)x2)

)
,

J(cossx2,sin(k1x1 +k2x2))=k1ssinsx2 cos(k1x1 +k2x2)=
k1s

2
(
sin(k1x1 +(k2 +s)x2)−sin(k1x1 +(k2−s)x2)

)
,

and, as in [23], [28], we obtain the following recurrence relation for the coefficients ak

(the equation for bk is exactly the same):

−
(

k2
1 +(k2 +s)2−s2

k2
1 +(k2 +s)2

)
ak1 k2+s +

(
k2
1 +(k2−s)2−s2

k2
1 +(k2−s)2

)
ak1 k2−s+

+
2
√

2π

λKk1
(k2

1 +k2
2 + σ̂+µ/ν)ak1 k2 =0.

(2.25)

We set here

ak1 k2

(
k2−s2

k2

)
=: ck1 k2

and

k1 = t, k2 =sn+r, and ctsn+r =en,

t=1,2,.. . , r∈Z, rmin <r <rmax,

where the numbers rmin, rmax satisfy rmax−rmin <s and will be specified below, and
obtain, for each t and r, the following recurrence relation:

dnen +en−1−en+1 =0, n=0,±1,±2,... , (2.26)

where

dn =
2
√

2π(t2 +(sn+r)2)(t2 +(sn+r)2 + σ̃)
(t2 +(sn+r)2−s2)Λt

, σ̃ = σ̂+µ/ν =σ/ν +µ/ν, (2.27)

and where we have set

Λ=λK =λ(s)K(s,µ,ν)=λ(s) · s2

s2 +µ/ν
. (2.28)

We note that, for µ=0, it follows from (2.28) that Λ=λ and the recurrence
relation (2.26), (2.27) agrees exactly with the recurrence relation from [28].

We look for non-trivial decaying solutions {en} of (2.26), (2.27). Each non-trivial
decaying solution with
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Reσ̃ >
µ

ν
(2.29)

produces an unstable eigenfunction ϕ of the eigenvalue problem (2.23) with eigenvalue
σ satisfying

Reσ >0.

Lemma 2.2. Given an integer s>0, let a pair of integers (t,r) satisfying the condi-
tions

t2 +r2 <s2/3, t2 +(−s+r)2 >s2, t2 +(s+r)2 >s2, t≥ δs,

rmin <r <rmax, rmin =−s

6
, rmax =

s

6
, 0<δ <1/

√
3,

(2.30)

be fixed. For every Λ>0, there exists a unique real eigenvalue σ̃ = σ̃(Λ) for which the
recurrence relation (2.26),(2.27) has a non-trivial decaying solution. Furthermore,
σ̃(Λ) increases monotonically as Λ→∞ and satisfies the inequality

c1(t,r,s)Λ≤ σ̃(Λ)≤ c2(t,r,s)Λ. (2.31)

The unique Λµ/ν =Λµ/ν(s) solving the equation

σ̃(Λµ/ν)=µ/ν

satisfies the inequality

2πδs< Λµ/ν(s)<4π

√
5
6

δ−2 ·
(
(s2/3+µ/ν)(5s2/3+µ/ν)

)1/2

s
. (2.32)

Proof. The proof of this lemma is basically a repetition of the proof of Theorem
2.2 in [23], with λ replaced by Λ and σ̂ by σ̃ (and γ =0).

We see from [23] that the following inequalities hold for any (t,r) satisfying (2.30):

s2 <t2 +(−s+r)2 <(5/3)s2,

s2 <t2 +(s+r)2 <(5/3)s2.
(2.33)

Exactly as in [23], we prove estimate (2.31), which shows that, for (t,r) satisfy-
ing (2.30), there exists a unique σ̃ which increases monotonically with Λ and, hence,
σ̃ =µ/ν for some Λ=Λµ/ν : σ̃(Λµ/ν)=µ/ν. To estimate Λµ/ν , we have, by mono-
tonicity, Λµ/ν >Λ0. Hence, we can use the lower bound for Λ0 from [23], which gives
the first inequality in (2.31).

In order to derive an upper bound for Λµ/ν(s), we consider the case r≥0, the
case r<0 being completely similar. If r≥0, we set σ̃ =µ/ν in expression (54) in [23]
and use inequality (57) in [23]. We obtain

Λµ/ν <

4π(t2 +r2 +µ/ν)1/2(t2 +(s+r)2 +µ/ν)1/2

t

(
t2 +r2

s2− t2−r2

)1/2(
t2 +(s+r)2

t2 +(s+r)2−s2

)1/2

.

(2.34)
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By (2.33), we see that t2 +(s+r)2 < (5/3)s2. Next, since r≥0, we have t2 +(s+r)2−
s2≥ δ2s2. Finally, since t2 +r2 <s2/3, we have (t2 +r2)/(s2− t2−r2)<1/2. Combin-
ing all these inequalities and the inequality t≥ δs, we obtain from (2.34) the second
inequality in (2.32).

We denote by A(δ) the region in the (t,r)-plane satisfying (2.30). Denoting by
d(s) the number of points of the integer lattice inside the region A(δ), we obviously
have

d(s) :=#{(t,r)∈D(s)=Z2∩A(δ)}wa(δ) ·s2 as s→∞, (2.35)

where a(δ) ·s2 = |A(δ)| is the area of the region A(δ). Next, taking into account that
the analysis of the recurrence relation for the coefficients bk1 k2 is exactly the same,
we see by Lemma 2.2 that, for each pair (t,r)∈D(s) (equivalently, for each (t,r)
satisfying (2.30)) and parameter Λ (see (2.28)) chosen as follows:

Λ=Λµ/ν =4π

√
5
6

δ−2 ·
(
(s2/3+µ/ν)(5s2/3+µ/ν)

)1/2

s
, (2.36)

there exists a unique real positive eigenvalue σ̃ >µ/ν of multiplicity two. Hence, there
exists a positive eigenvalue σ >0 of the original eigenvalue problem (2.23) of multi-
plicity two. Therefore, the dimension of the unstable manifold near the stationary
solution ϕs is at least 2d(s) and we obtain as a result

dimA≥2d(s)w2a(δ) ·s2. (2.37)

The parameter s was arbitrary so far. We now set

s2 =
µ

ν
=

µL

ν
.

(To be completely rigorous, we have to make sure that µ/ν is a complete square, but,
anyway, we already have the “w” sign in (2.37).) Therefore,

dimA&2a(δ)
µ

ν
. (2.38)

We now recall the definition of Λ (2.28):

Λ=λ(s) · s2

s2 +µ/ν
.

Setting s2 =µ/ν here and in (2.36), we obtain the equation for λ, which gives

λ(s)=λ((µ/ν)1/2)=
32π

3

√
5
3

δ−2
(µ

ν

)1/2

. (2.39)

We compute the numbers

G1 =
‖rotf‖L

νµ
and G2 =

‖rotf‖2
νµ3

,

for f =fs and s=(µ/ν)1/2. In view of (2.19) and (2.39), we have
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‖rotfs‖=ν2λ(s)s3 =
32π

3

√
5
3

δ−2µ2. (2.40)

Hence, we find that

G1 =
32π

3

√
5
3

δ−2 µ

ν
and G2 =

5120π2

27
δ−4 µ

ν
. (2.41)

Note that, for the Kolmogorov forcing (2.17) and s=(µ/ν)1/2, the numbers G1 and
G2 are of the same order with respect to s. Expressing estimate (2.38) in terms of the
numbers G1 and G2 (2.41) and optimizing with respect to δ∈ (0,1/

√
3), we obtain

dimF A& 3
16π

√
3
5

max
0<δ<1/

√
3
(a(δ)δ2)G1 =3.2... ·10−4G1,

dimF A& 27
2560π2

max
0<δ<1/

√
3
(a(δ)δ4)G2 =1.5... ·10−6G2,

(2.42)

where max0<δ<1/
√

3(a(δ)δ2)=6.93 ·10−3, max0<δ<1/
√

3(a(δ)δ4)=1.4 ·10−3 and a(δ)
is defined in (2.35).

Combining these results and Theorem 2.1, we have proved the following theorem.

Theorem 2.3. The dimension of the global attractor A for equation (1.3) with the
Kolmogorov forcing (2.17) satisfies the following sharp two-sided estimates:

3.2 ·10−4 ‖rotf‖L
νµ

.dimF A≤2.8
‖rotf‖L

νµ
,

1.5 ·10−6 ‖rotf‖2
νµ3

.dimF A≤0.48
‖rotf‖2

νµ3
.

(2.43)

Remark 1. Inequalities (2.43) are not contradictory in the sense that the lower bound
in one inequality exceeds the upper bound in the other. In fact, the two lower bounds
in (2.43) are the same and are merely estimate (2.38) written in two different ways.

Remark 2. Our lower bounds can be reformulated as follows. Let µ>0 be arbitrary
but fixed. Then, for any ν >0 (such that µ/(νL2)>1), there exists a (Kolmogorov)
right-hand side f with norm ‖rotf‖ independent of ν and depending only on µ such
that the following estimate holds:

dimF A≥C1
‖rotf‖L

νµ
=

const(µ)
ν

.

Remark 3. Taking l=0 allows to simplify significantly the derivation of the lower
bounds. As seen above, the Coriolis term makes no difference in our estimates of the
dimension of the global attractor since it is anti-symmetric. It will, however, make a
difference in the dynamical structure of the attractor and bifurcations.

Remark 4. Similar results have been established in [18], [19]. The estimates reported
in this work are much sharper.
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3. Equations on the sphere and in a bounded domain
We now consider the Navier–Stokes perturbation of the damped Euler equations

on the sphere and in a bounded domain.

3.1. Equations on the sphere. Let S2 =S2
R be the sphere of radius R

with spherical coordinates λ, 0≤λ≤2π (the longitude), and φ, −π/2≤φ≤π/2 (the
geographical latitude). Suppose that the sphere rotates around the axis through the
poles φ=±π/2 with constant angular velocity ω. Then the Navier-Stokes system with
damping reads

∂tu+∇uu+nl×u=ν∆u−µu−∇p+f,

divu=0, u(0)=u0.
(3.1)

Here, u is the tangent velocity vector, p is the pressure, n is the outward unit normal
vector, nl×u is the Coriolis acceleration (l=2ω sinφ is the Coriolis parameter), ∇uu
is the covariant derivative of u along u with respect to the metric of the sphere for
which we have the following global representation:

∇uu=∇u2

2
−u×rotu.

The operators div and ∇= grad have the conventional meaning: for a scalar ψ and
a vector u=uλeλ +uφeφ with physical components (that is, |u|2 =(uλ)2 +(uφ)2), we
have

∇ψ =
1

Rcosφ
∂λψ ·eλ +

1
R

∂φψ ·eφ, divu=
1

Rcosφ
(∂λuλ +∂φ(cosφuφ)).

Next, the operator rot acts on tangent vectors u and scalars ψ (which are identified
with normal vectors) as follows [22]:

rotu=−n ·div(n×u), rotψ =−n×∇ψ.

Finally, ∆u is the vector Laplacian of u (the Laplace–de Rham operator)

∆u=∇divu−rot(rotu)=∇divu−n×∇div(n×u).

As in the space-periodic case, we denote by P the orthogonal projection in
L2(TS2) onto H which is the closed subspace of solenoidal vector fields. Applying P
to (3.1), we obtain

∂tu+B(u,u)+νAu+P (nl×u)=−µu+f, u(0)=u0, (3.2)

where

B(u,u)=P (∇uu)=−P (u×rotu), B(u,v)=P (∇uv),

(B(u,v),w)= b(u,v,w)=
∫

S2
∇uv(s) ·w(s)dS and Au=rot(rotu).

Furthermore, we have orthogonality relations and formulas for the integration by
parts [22] that are totally similar to the space-periodic case:

b(u,v,v)=0, b(v,v,u)=−b(v,u,v), b(u,u,Au)=0, (nl×u,Au)=0, (3.3)



416 VANISHING VISCOSITY LIMIT OF DAMPED-DRIVEN NSE

and

(Au,v)=(rotu,rotv). (3.4)

Now, the existence of the semigroup St :H→H and the global attractor AbH is
established as in the space-periodic case [22].

Taking the scalar product of (3.2) with Au and integrating by parts using (3.3)
and (3.4), we obtain, as above, that the following inequality holds on the attractor A:

‖rotu(t)‖≤ ‖rotf‖
µ

.

Theorem 3.1. The fractal dimension of A satisfies the following upper bound:

dimF A≤min

(
2
‖rotf‖
νµλ

1/2
1

,
1
2
‖rotf‖2

νµ3

)
=min

(√
2
‖rotf‖R

νµ
,

1
2
‖rotf‖2

νµ3

)
. (3.5)

Proof. The proof is similar to the space-periodic case and will be only outlined.
We consider the linearized equation

∂tU =−νAU−µU−B(U,u(t))−B(u(t),U)−P (nl×U)=:L(t,u0)U,

and estimate the m-trace of the operator L. As in section 1, we use (3.3), (3.4) to
find that

Tr[L(t,u0)◦Qm(t)]=
m∑

j=1

(L(t,u0)vj ,vj)=

−ν
m∑

j=1

‖rotvj‖2−µm+
m∑

j=1

b(vj ,u(t),vj)≤

−ν
m∑

j=1

‖rotvj‖2−µm+2−1/2‖ρ‖‖rotu(t)‖,

where ρ(x)=
∑m

j=1 |vj(x)|2 and where, instead of (2.6), we have used estimate (3.9)
in Lemma 3.2 below. The spectrum of the Laplacian on the sphere is well-known.
Hence,

m∑

j=1

‖rotvj‖2≥
m∑

j=1

λj≥λ1cS2−specm
2,

where (see [23])

cS2−spec =
1
4
. (3.6)

Concerning the Lieb–Thirring inequality on the sphere, we have

‖ρ‖2 =
∫

S2

( m∑

j=1

|vj(s)|2
)2

dS≤ cS2−LT

m∑

j=1

‖rotvj‖2, (3.7)
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where we can take the following explicit upper estimate for cS2−LT (see [20]):

cS2−LT≤2. (3.8)

We can now complete the proof of the theorem as in section 1 and obtain (3.5); the
equality in (3.5) following from the fact that λ1 =2R−2.

Lemma 3.2. If divu=0 and {vj}m
j=1, u∈H1, then

m∑

j=1

b(vj ,u,vj)=
m∑

j=1

∫

S2
(∇vj

u(s) ·vj(s))dS≤2−1/2‖ρ‖‖rotu‖. (3.9)

Proof. Let a point s∈S2 be arbitrary but fixed. We first show that the following
pointwise inequality holds at s:

∇vu(s) ·v(s)≤2−1/2|v(s)|2|∇u(s)|, (3.10)

where

(∇u(s))2 =
2∑

i,j=1

(∇iu
j(s))2

and

∇kui =
∂ui

∂xk
+Γi

jkuj , (∇vu)i =vk∇kui, ∇vu ·v =vk∇kuivjgij =vk∇kuivi.

Here, xk denote the local coordinates near s, gij is the metric, and Γi
jk are the

corresponding Christoffel symbols. The vector field u has contravariant components
ui, i=1,2. As usual, the summation convention is assumed. We now choose the local
coordinates xk so that, at s, gij = δij . It suffices to use spherical coordinates chosen
so that the equator (φ=0) passes through s. Then, at s, we have vi =gijv

j =vi and,
hence, |v|2 =(v1)2 +(v2)2.

Next, we define, at s (in the linear algebraic sense), the vector a and the matrix
B:

ai =vi =vi, B =
(∇1u

1 ∇1u
2

∇2u
1 ∇2u

2

)
.

Then, at s, we have (see [8], Lemma 4.1)

∇vu ·u=Ba ·a=
1
2
(B+B∗)a ·a≤|λ||a|2, (3.11)

where λ is the largest (in absolute value) eigenvalue of the symmetric matrix 1
2 (B+

B∗). Since divu=∇iui =0, it follows that the trace of 1
2 (B+B∗) vanishes and the

eigenvalues are λ>0 and −λ, where, using the characteristic polynomial, we have

λ2 =(∇1u
1)2 +

1
4
(∇1u

2 +∇2u
1)2≤ 1

2

( 2∑

i,j=1

(∇iu(s)j)2
)

=
1
2
|∇u(s)|2.

Since, in (3.11), |a(s)|2 = |v(s)|2, this proves (3.10) for an arbitrary point s∈S2.
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There remains to integrate (3.10):
m∑

j=1

b(vj ,u,vj)=
∫

S2

m∑

j=1

∇vj u(s) ·vj(s)dS≤2−1/2

∫

S2

m∑

j=1

|vj(s)|2|∇u(s)|dS =

2−1/2

∫

S2
ρ(s)|∇u(s)|dS≤2−1/2‖ρ‖‖∇u‖≤2−1/2‖ρ‖‖rotu‖,

where we have used the inequality

‖∇u‖≤‖rotu‖. (3.12)

To prove (3.12), we use the following identity (a variant of the Weitzenböck formula,
see [22], Remark 4.3):

∆u=∇divu−rot(rotu)=∇2u−u, (3.13)

where (∇2u)i =gkl∇k∇lu
i. Taking the scalar product with −u and integrating by

parts, using the formulas

(rot(rotu),u)=‖rotu‖2, −(∇2u,u)=‖∇u‖2,
we obtain the identity ‖∇u‖2 +‖u‖2 =‖rotu‖2. Hence,

‖∇u‖<‖rotu‖, u 6=0,

which proves (3.12) and the lemma. We finally observe that the orthonormality of
the vjs does not play a role in this lemma.

Setting m=1, we obtain the following explicit estimate for the form b.

Corollary 3.3. The following estimate holds for u,v∈H1∩H:

|b(v,v,u)|= |b(v,u,v)|≤ c‖v‖‖rotv‖‖rotu‖, (3.14)

where c≤1.
Proof. We set m=1 and v1 =v = ṽ/‖ṽ‖ in the Lieb–Thirring inequality (3.7). We

obtain (omitting the tilde sign) the Ladyzhenskaya–Gagliardo–Nirenberg inequality
for solenoidal vector fields on the sphere:

‖v‖4L4
≤ cS2−LGN‖v‖2‖rotv‖2,

where cS2−LGN≤ cS2−LT≤2. Setting m=1 in (3.9), we find

|b(v,u,v)|≤2−1/2‖v‖2L4
‖rotu‖≤

(cS2−LGN

2

)1/2

‖v‖‖rotv‖‖rotu‖,

which proves the lemma.

3.2. Equations in a bounded domain. Let Ω⊂R2 be a bounded domain
with a boundary of class C2. Let n be the outward unit normal vector. We further
assume, for simplicity, that Ω is simply connected. We consider our Navier–Stokes
system with damping supplemented with the so-called free boundary conditions:

∂tu+
2∑

i=1

ui∂iu=−µu+ν∆u−∇p+f,

divu=0,

u ·n|∂Ω =0, rotu|∂Ω =0.

(3.15)
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We introduce the phase space H:

H ={u∈L2(Ω)2; divu=0, u ·n|∂Ω =0}.

Since Ω is simply connected, we also have (see [34], Appendix 1)

H ={u=rotψ, ψ∈H1
0 (Ω)}. (3.16)

In other words, a vector field from H has a unique single valued stream function ψ
vanishing at the boundary of Ω.

Let P be the orthogonal projection, P :L2(Ω)2→H. Applying P to (3.15), we
write (3.15) as an evolution equation of the form (2.2):

∂tu+B(u,u)+νAu=−µu+f, u(0)=u0, (3.17)

where B(u,v)=P
(∑2

i=1ui∂iv
)

and A=−P∆ is the Stokes operator with domain

D(A)={u∈H2(Ω)2; divu=0, u ·n|∂Ω =0, rotu|∂Ω =0}.

As above, the following orthogonality relation is essential:

(B(u,u),Au)=0, u∈D(A).

Next, as in the case of a torus and a sphere, the spectrum {λk}∞k=1 of the Stokes
operator coincides with the spectrum of the scalar Dirichlet problem −∆ψk =λkψk,
ψk|∂Ω =0. Hence,

m∑

j=1

λj≥λ1cΩ−specm
2.

As above, the Lieb–Thirring inequality is essential.

Lemma 3.4. Suppose that the family {vj}m
j=1∈H1(Ω)2∩H is orthonormal:

∫
Ω

vi(x) ·
vj(x)dx= δij.

Then the following inequality holds
∫

Ω

ρ(x)2dx≤ cΩ−LT

m∑

j=1

‖rotvj‖2, (3.18)

where ρ(x)=
∑m

j=1vj(x)2 and cΩ−LT is a dimensionless constant depending on the
shape of Ω only: cλΩ−LT = cΩ−LT, λ>0.

Proof. We infer from the generalized Lieb–Thirring inequality (see Theorem 4.1 in
the Appendix in [35]) that there exists dimensionless constants k1 and k2 depending
on the shape of Ω only such that

∫

Ω

ρ(x)2dx≤k1

m∑

j=1

‖∇vj‖2 +
k2

|Ω|
∫

Ω

ρ(x)dx. (3.19)

Since Ω is simply connected, we have the Poincaré inequality

‖v‖2≤λ−1
1 ‖rotv‖2, (3.20)
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and, hence, the second term in the right-hand side of (3.19) is bounded by the right-
hand side of (3.18). To complete the proof, it suffices to prove the inequality

‖∇v‖2≤k3‖rotv‖2.

Introducing the stream function ψ∈H2∩H1
0 , v ={−∂2ψ,∂1ψ}, we see that this in-

equality is equivalent to the inequality

2∑

i,j=1

‖∂2
ijψ‖2≤k3‖∆ψ‖2,

which is well-known in the elliptic theory.
Having done this preliminary work, we can proceed as in section 1 and obtain

the following result.

Theorem 3.5. Equation (3.15) has a global attractor A whose fractal dimension
satisfies the following upper bound:

dimF A≤min

(
c′
‖rotf‖
νµλ

1/2
1

, c′′
‖rotf‖2

νµ3

)
, where c′=

(
cΩ−LT

2cΩ−spec

)1/2

, c′′=
cΩ−LT

4
.

(3.21)

Appendix A. Lieb–Thirring inequalities for space-periodic solenoidal
vector functions.

Inequality (2.9) follows from the generalized Lieb–Thirring inequality in [35]. The
aim of this section is to prove the explicit estimate of the constant (2.10).

We first consider the scalar case. We basically follow the strategy of the proof
of the general result in [35], paying special attention to explicit expressions of the
constants involved. We assume that L=1 so that T 2 =[0,2π]2. This involves no loss
of generality since the constants in the Lieb–Thirring inequalities are scale invariant
and depend only on the aspect ratio of the torus. Let Π be the orthogonal projection
in L2(T 2) onto the space of functions with mean value zero:

Πh=h− 1
4π2

∫

T 2
h(x)dx.

We set

H =ΠL2(T 2), H1 =H1(T 2)∩H.

We order the eigenvalues of −∆ in H according to magnitude and multiplicity:

1=λ1≤λ2≤ ..., {λj , j =1,.. .}={k2 =k2
1 +k2

2, k =(k1,k2)∈Z2
0}, (A.1)

where Z2
0 =Z2 \{0}. The corresponding basis of orthonormal eigenfunctions wj(x),

−∆wj =λjwj , is the basis of trigonometric functions

⋃

j∈N
wj(x)=

⋃

k∈Z2
+

{
(
√

2π)−1 sinkx, (
√

2π)−1 coskx
}

,

Z2
+ ={k∈Z2

0, k1≥0, k2≥0}∪{k∈Z2
0, k1≥1, k2≤0}.

(A.2)
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Similarly to (A.1), we write

1=Λ1≤Λ2≤ ..., {Λj , j =1,...}={k2, k∈Z2
+} (A.3)

and observe that
∞⋃

j=1

{λj}=
∞⋃

l=1

{Λl,Λl}.

Hence, for j≥1, we have Λj =λ2j =λ2j−1 and, corresponding to each Λ=Λj , there
are two eigenfunctions uj(x)=(

√
2π)−1 sinkx and vj(x)=(

√
2π)−1 coskx for some

uniquely defined k =k(j). We obviously have

uj(x)2 +vj(x)2 =
1

2π2
=: c2. (A.4)

Next, we have the following lower bound for λj .

Proposition A.1. The following inequalities hold for j≥1:

λj≥ c1j, Λj≥2c1j, where c1 =
1
4
. (A.5)

Proof. We have the Weyl asymptotics for λj (which can easily be proved in this
particular case): limj→∞λj/j =1/π >1/4 and, therefore, λj >j/4 for j≥ j0. By a
direct calculation, we find that λ4 =1=4/4 and λ20 =5=20/4. Hence, we have to
verify that λj≥ j/4 for finitely many j <j0. We omit the details.

Finally, the second inequality in (A.5) follows from the fact that Λj =λ2j .
After these simple preliminaries, we consider, for a potential f ∈L2(T 2), the

quadratic form

Qf (h)=‖∇h‖2 +
∫

T 2
f(x)h2(x)dx, h∈H1, (A.6)

which is bounded from below, and the numbers

ηj(f)= max
ψ1,...,ψj−1∈H1

min
(ϕ,ψi)=0,i=1,...,j−1

ϕ∈H1, ‖ϕ‖=1,

Qf (h). (A.7)

The quadratic form (A.6) defines the Schrödinger operator

−∆h+Π(fΠh), (A.8)

and the numbers ηj are the eigenvalues of this operator.
Our aim is to estimate the negative trace of the operator (A.8)

∑

ηj≤0

|ηj |≤L1(T 2)
∫

T 2
f2
−(x)dx, (A.9)

and, more precisely, to estimate the corresponding constant L1(T 2) (since inequal-
ity (A.9) follows from a general theorem in [35]). Here,

f−(x)=

{
−f(x) for f(x)≤0,

0 for f(x)>0.
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Theorem A.2. The constant L1(T 2) satisfies the estimate

L1(T 2)≤ 3
2π

=0.478... (L1(T 2)≤0.459...). (A.10)

Proof. We denote by Nr(f) the number of eigenvalues ηj(f) such that ηj(f)≤ r:

Nr(f)=#{ηj(f), ηj(f)≤ r}

and obtain

∑

ηj≤0

|ηj |=
∫ ∞

0

N−r(f)dr.

Using the Birman–Schwinger kernel [27], [35] and the convexity inequality of Lieb and
Thirring [1], [27], we obtain

N−r(f)≤Tr(f +(1− t)r)k/2
− (Π(−∆+ tr)Π)−k(f +(1− t)r)k/2

− , r >0, k≥1, t∈ [0,1].

We first show that, for k >1,

N−r(f)≤ 1
π2

B(1,k−1)(tr)1−k

∫

T 2
(f(x)+(1− t)r)kdx, (A.11)

where B is the Beta function: B(x,y)=
∫ 1

0
tx−1(1− t)y−1dt=Γ(x)Γ(y)/Γ(x+y).

In fact, setting g =(f +(1− t)r)− and using the basis of eigenfunctions, we have

[gk/2(Π(−∆+ tr)Π)−kgk/2ϕ](x)=
∫

T 2
G(x,x′)ϕ(x′)dx′,

where

G(x,x′)=
∞∑

j=1

(λj + tr)−kg(x)k/2wj(x)g(x′)k/2wj(x′).

Hence,

Trgk/2(Π(−∆+ tr)Π)−kgk/2 =
∫

T 2
G(x,x)dx=

∫

T 2

∞∑

j=1

(λj + tr)−kg(x)kwj(x)2dx=

∫

T 2

∞∑

j=1

(Λj + tr)−kg(x)k(uj(x)2 +vj(x)2)dx= c2

∞∑

j=1

(Λj + tr)−k

∫

T 2
g(x)kdx,

which proves (A.11), since

∞∑

j=1

(Λj + tr)−k≤
∞∑

j=1

(2c1j + tr)−k≤
∫ ∞

0

ds

(2c1s+ tr)k
=

1
2c1

B(1,k−1)(tr)1−k,

and, by (A.4), (A.5), we have c2/(2c1)=1/π2.



A.A. ILYIN, A.MIRANVILLE, AND E.S. TITI 423

Next, restricting k to k∈ (1,2), we have

∑

ηj≤0

|ηj |=
∫ ∞

0

N−r(f)dr≤ 1
π2

B(1,k−1)
∫ ∞

0

∫

T 2
(tr)1−k(f(x)+(1− t)r)k

−dxdr =

1
π2

B(1,k−1)
∫

T 2

∫ ∞

0

(tr)1−k(f(x)+(1− t)r)k
−drdx.

We evaluate the inner integral by setting, for almost every x,

r =
1

1− t
f−(x)ρ.

If f ≤0 and f−=−f , then (f +(1− t)r)−=f−(ρ−1)− and
∫ ∞

0

(tr)1−k(f(x)+(1− t)r)k
−dr = t1−k(1− t)k−2f−(x)2

∫ ∞

0

ρ1−k(ρ−1)k
−dρ=

t1−k(1− t)k−2f−(x)2
∫ 1

0

ρ1−k(1−ρ)kdρ= t1−k(1− t)k−2B(2−k,1+k)f−(x)2 =

B(2−k,1+k)
(k−1)k−1(2−k)2−k

f−(x)2,

for the optimal t=k−1∈ (0,1). If f(x)>0, then (f(x)+(1− t)r)−=0, f−(x)=0 and
the above equality holds formally.

Hence, we obtain

∑

ηj≤0

|ηj |≤ 1
π2

B(1,k−1)B(2−k,1+k)
(k−1)k−1(2−k)2−k

∫

T 2
f(x)2−dx, k∈ (1,2), (A.12)

which proves (A.9) with

L1(T 2)≤ 1
π2

min
1<k<2

B(1,k−1)B(2−k,1+k)
(k−1)k−1(2−k)2−k

≤ 1
π2

B(1,1/2)B(1/2,5/2)
1/2

=
3
2π

.

The minimum is actually attained at k =1.38..., which gives L1(T 2)≤0.459... .
The inequality for the negative trace (A.9) is equivalent to the following inequal-

ities for families of orthonormal functions and vector fields.

Theorem A.3. Let a family of functions ϕ1,.. .,ϕm∈H1(T 2) be orthonormal in
L2(T 2):

∫
T 2 ϕi(x)ϕj(x)dx= δij, and let

∫
T 2 ϕj(x)dx=0. Then the following inequal-

ity holds:
∫

T 2
ρ(x)2dx≤k2

m∑

j=1

‖∇ϕj‖2, k2≤ 6
π

, (A.13)

where ρ(x)=
∑m

j=1ϕj(x)2.
If a family of vector fields u1(x),... ,um(x)∈ (H1(T 2))2 forms an orthonormal

family in (L2(T 2))2,
∫

T 2 ui(x) ·uj(x)dx= δij, and
∫

T 2 uj(x)dx=0, then
∫

T 2
ρ(x)2dx≤kvec

2

m∑

j=1

(‖∇u1
j‖2 +‖∇u2

j‖2)=kvec
2

m∑

j=1

(‖rotuj‖2 +‖divuj‖2),

kvec
2 ≤ 12

π
,

(A.14)
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where ρ(x)=
∑m

j=1 |uj(x)|2. If, in addition, divuj =0 (or rotuj =0), then

∫

T 2
ρ(x)2dx≤





ksol
2

m∑

j=1

‖rotuj‖2 =ksol
2

m∑

j=1

‖∇uj‖2, divuj =0,

kpot
2

m∑

j=1

‖divuj‖2 =kpot
2

m∑

j=1

‖∇uj‖2, rotuj =0,

(A.15)

where

ksol
2 =kpot

2 ≤ kvec
2

2
≤ 6

π
.

Proof. We consider the Schrödinger operator acting on vector functions
u=(u1,u2)T :

−∆u+ΠfΠu=−
(

∆u1

∆u2

)
+

(
Π(fΠu1)
Π(fΠu2)

)
(A.16)

with spectrum −∞<r1(f)≤ r2(f)≤ ... . Since, for an eigenvalue η of the operator
(A.8) with eigenfunction ϕ, there corresponds the eigenvalue r =η of multiplicity two
with linearly independent eigenfunctions (ϕ,0)T and (0,ϕ)T , we obtain the following
estimate for the negative trace of the operator (A.16):

∑
rj<0

|rj |≤Lvec
1 (T 2)

∫

T 2
f2(x)dx, where Lvec

1 (T 2)=2L1(T 2). (A.17)

We can now use the general result in [27] (see also [8], [35]) stating that the estimates
for the negative trace (A.9), (A.17) of the operators (A.8), (A.16) are equivalent to
the inequalities for orthonormal families (A.13), (A.14), respectively, and, in addition,
in the two-dimensional case, the best constants are related by the equality

k2 =4L1(T 2) and kvec
2 =4Lvec

1 (T 2),

which proves (A.13) and (A.14).
There remains to prove (A.15). For u(x)=(u1(x),u2(x))T , we set

û(x)=(−u2(x),u1(x))T .

It is easy to see that

|u(x)|= |û(x)|, divu(x)=rotû(x), rotu(x)=−div û(x).

Furthermore, if u1,.. .,um are orthonormal in (L2(Ω))2, then û1,.. .,ûm are orthonor-
mal and vice versa. This shows that ksol

2 =kpot
2 . Let us prove the inequality

ksol
2 ≤kvec

2 /2. Suppose that the family u1,.. .,um is orthonormal in (L2(T 2))2 and
let divuj =0 for j =1,.. .,m. We set ρ(x)=

∑m
j=1 |uj(x)|2 and consider the family of

2m vector functions u1,... ,um,û1,.. .,ûm. Since rotûj =0, j =1,...m, it follows that
(ui,ûj)=0 for 1≤ i,j≤m and this family is orthonormal. Applying (A.14) to this
family of 2m functions, we obtain

4
∫

T 2
ρ(x)2dx=

∫

T 2

( m∑

j=1

(|uj(x)|2 + |ûj(x)|2)
)2

dx≤

kvec
2

m∑

j=1

(‖rotuj‖2 +‖div ûj‖2)=2kvec
2

m∑

j=1

‖rotuj‖2.
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Thus, ksol
2 ≤kvec

2 /2 and the proof is complete.

Acknowledgments. This work was initiated while A.A.I. was visiting A.M. at
the University of Poitiers, France.

This work was supported in part by the US Civilian Research and Development
Foundation, grant no. RM1-2343-MO-02 ( A.A.I. and E.S.T.), by INTAS, grant no. 00-
899 (A.A.I and A.M.) and by the Russian Foundation for Fundamental Research,
grants no. 03-01-00189 and no. 02-01-00801 (A.A.I.). The work of E.S.T. was sup-
ported in part by the National Science Foundation, grant no. DMS-0204794, the
MAOF Fellowship of the Israeli Council of Higher Education, and by the Depart-
ment of Energy under contract W-7405-ENG-36 and the ASCR Program in Applied
Mathematical Sciences.

REFERENCES

[1] Araki H., On an inequality of Lieb and Thirring, Lett. Math. Phys., 19, 167–170, 1990.
[2] Babin A.V. and Vishik M.I., Attractors of Evolution Equations, Nauka, Moscow, English transl,

1988, North-Holland, Amsterdam, 1992.
[3] Barcilon V., Constantin P., and Titi E.S., Existence of solutions to the Charney model of the

gulf stream, SIAM J. Math. Anal., 19, 1355–1364, 1988.
[4] Cao C., Rammaha M. A., and Titi E.S. The Navier–Stokes equations on the rotating 2-D

sphere: Gevrey regularity and asymptotic degrees of freedom, Z. angew. Math. Phys., 50,
341–360, 1999.

[5] Bessiah H. and Flandoli F., Weak attractor for a dissipative Euler equation, J. Dynam. Differ-
ential Equations, 12, 713–732, 2000.

[6] Chen Z. M., Ghil M., Simonnet E., and Wang S., Hopf bifurcation in quasi-geostrophic channel
flow, SIAM J. Appl. Math., 64(1), 343–368, 2004.

[7] Chepyzhov V.V. and Ilyin A.A., A note on the fractal dimension of attractors of dissipative
dynamical systems, Nonlinear Anal., 44, 811–819, 2001.

[8] Chepyzhov V.V. and Ilyin A.A., On the fractal dimension of invariant sets; applications to
Navier–Stokes equations, Discrete and Continuous Dynamical Systems, 10, 117–135, 2004.

[9] Cockburn B., Jones D. and Titi E.S., Estimating the number of asymptotic degrees of freedom
for nonlinear dissipative systems, Mathematics of Computation, 66, 1073–1087, 1997.

[10] Constantin P. and Foias C., Global Lyapunov exponents, Kaplan–Yorke formulas and the di-
mension of the attractors for the 2D Navier–Stokes equations, Comm. Pure Appl. Math.,
38, 1–27, 1985.

[11] Constantin P. and Foias C., Navier–Stokes Equations, Univ. of Chicago Press, Chicago, 1988.
[12] Constantin P., Foias C., and Temam R., On the dimension of the attractors in two–dimensional

turbulence, Physica D, 30, 284–296, 1988.
[13] Dymnikov V.P. and Filatov A.N., Mathematics of Climate Modelling, Boston, Birkhäuser,
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