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FAST COMMUNICATION

BURGERS’ EQUATION WITH VANISHING HYPER-VISCOSITY*

EITAN TADMORf

Abstract. We prove that bounded solutions of the vanishing hyper-viscosity equation, us +
f(uw)e + (=1)%€82%u = 0 converge to the entropy solution of the corresponding convex conservation
law ut + f(u)e = 0, f”” > 0. The hyper-viscosity case, s > 1, lacks the monotonicity which underlines
the Krushkov BV theory in the viscous case s = 1. Instead we show how to adapt the Tartar-Murat
compensated compactness theory together with a weaker entropy dissipation bound to conclude the
convergence of the vanishing hyper-viscosity.
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1. Convergence with vanishing hyper-viscosity
Consider the convex conservation law

ou 0

5t/ =0, f">0, (11)

subject to initial conditions, u(z,0) = ug. We are concerned with the convergence of
its hyper-viscosity regularization of order s > 1

ou® 0 9%

o+ e (@) = (1) e

uf(z,t). (1.2)

The viscous case corresponding to s = 1 is well understood within the classical
Krushkov theory, which is built on the monotonicity of the associated solution opera-
tor, e.g., [Daf00, §VI]. The prototype is Burgers’ equation governed by the quadratic
flux f(u) = u?/2. The hyper-viscosity case for s > 1, however, lacks monotonicity
and the Krushkov BV theory seems out of reach. Instead we show how to adapt the
Tartar-Murat compensated compactness theory, [Tar75, Mur78] in the present non-
monotone framework. A similar approach originated with [Sch82] for the vanishing
diffusion-dispersion problem where the RHS of (1.2) is replaced by eu, + d-us,,. In
the particular borderline case, 6. ~ €2, limit solutions may in fact violate Krushkov
entropy condition, [KL02]. Otherwise, entropy solution limits are recovered by com-
pensated arguments as long as diffusion dominates, J. < &2, [Sch82, KL02]. We
should point out that in the present context, hyper-viscosity with s > 1 yields a
weaker entropy dissipation bound than in the viscosity dominated case s = 1, con-
sult (1.6) below. We show that this hyper-viscosity entropy dissipation estimate will
suffice.

To begin with, we rescale the hyper-viscosity amplitude ¢ = ey = N~(25=1),
Denote uy = u®N, then (1.2) reads

*Received: May 6, 2004; accepted (in revised version): May 10, 2004. Communicated by Shi Jin.

TDepartment of Mathematics, Center for Scientific Computation and Mathematical Modeling
(CSCAMM), Institute for Physical Science & Technology (IPST), University of Maryland, College
Park, MD 20742, USA (tadmor@cscamm.umd.edu). Research was supported in part by ONR Grant
No. N00014-91-J-1076 and by NSF grant #DMS01-07917.

317



318 E. TADMOR

dux 0 (=1 g
ot T au ! N ) = e g

un(z,t) =: Z(un). (1.3)

The rescaling in (1.3) is made such that un has a smallest scale of order 1/N, in
the sense of satisfying, consult Lemma 1.2 below,

08un (2, )| L2 (0,1, L5 (2)) < Const. NP - |lun (2, )| L2([0,7),L5 (2)); p<Ss.

loc loc

This estimate is motivated by the fact that uy is closely related to its N-term Fourier
projection, uy ~ Pyupy. Indeed, the approach taken here follows closely our discus-
sion on the spectral hyper-viscosity method introduced in [Tad93], consult (2.1) below,
which directly governs the approximate N-projection uy ~ Pyu. As in [Tad93], we
restrict attention to the periodic case.

We begin with the behavior of the quadratic entropy of the hyper-viscosity solu-
tion, U(uy) = 2u%. Multiplication of (1.3) by uy implies

12 5 2 UN , B (_1)s+1 825 B
skt [ e = e gy = T2y, (1)

The expression on the right (1.4) represents the quadratic entropy dissipation + pro-
duction of the hyper-viscosity solution. Successive “differentiation by parts” enables
us to rewrite this expression as

1 0 [O0Puyn 0lun 1 O%un 2
— s+p+1
II(UN) = N2s—1 Z (_1) P % |: oxP  Oxd :| - N2s—1 ( oxs )
p+qg=2s—1
q>s
= IIl(uN)—I—IIQ(uN), (15)

and spatial integration leads to the following (compare [Tad93, Lemma 4.1]).

LEMMA 1.1. [Entropy dissipation estimate]. The hyper-viscosity solution uy satisfies
the following apriori estimate

1 S
lun (T2 + WH@”W%?@,[O,T}) < Jlun(,0)[1 720y < K§- (1.6)

Here and below Ky stands for an N-independent L?-bound depending solely on the
initial energy, Ko > |lun(-,0)|| 2.
Next, we decompose uy into low and high modes, uy = ul, + ul},

un(z,t) = Z an(k,t)e™™ + Z an(k,t)e*® = uli(z,t) + ull(z,t).  (1.7)
|k|<N |k|>N

Observe that the entropy dissipation bound for v in (1.6),

NS (RN k) < K3,
[k|<N

is considerably weaker in the hyper-viscosity case, s > 1, than in the standard vis-
cosity regularization with s = 1. In the latter case, (1.6) amounts to the H!-bound
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|0sun | L2 0,7) < KoV/N. Nevertheless, interpolation of (1.6) in the general hyper-
viscosity case, s > 1, still enables us to control the L?-growth of d,uy,

1 1-1 _ 1
||8:CUN||L2(1,[0,T]) < Const.H({);UNHE%L[O’T])||uN||L2(SZ’[0’T]) < C’O’I’le‘,T]\f1 3s
(1.8)

To proceed we prepare three estimates. We begin with the higher modes in u{vl .

Here we utilize the entropy dissipation estimate (1.6), to find that for p < s

2 T )
‘ L2([0,T],L>(x)) = /t:O( Z |k|p'|U(k,t)|) dt <

|k|>N

T
1
254 2 2772
S(/tzo Z |k[=* - |a(k, t)] dt). Z WSKON P, p<s. (19)

|k|>N |k|>N

ol (o, 1)|

In particular ||U{VI||L2([O’T],LOO(Q:) < K, and we conclude 1/N is the smallest scale in
the hyper-viscosity solution uy is in the sense that

LEMMA 1.2. There exists a constant such that Vp < s the following holds

To verify (1.10) we first note that the lower modes grouped in u4; form an N-degree
trigonometric polynomial for which Bernstein’s inequality applies, [|02uk (z, t)|| oo ()<
Const.NP - |lul (2, t)|| Lo () This together with (1.9) yield

8£UN($,t)‘

<C t.Np-[K Koo, Koo(T)i= t .
L2([O,T],L°°(x))_ ons O+ OO} Oo( ) ||'U:N(.T/' )||L2([O,T],L ( ))
(1.10)

9 T T
— I 2 II 2
] Y (MR Ry AR C T
T
< Const.N? / ke (2, 8) 2 oyt + KEN?
t=0

T T
< QConst'NQ”[/t_O ||UN(xat)||%°°(a:)dt+/t_O IIUJIvI(w,t)II%wu)dt] + KGN

< Const.N? [Kgo(T) + Kg] m (1.11)

Next, we treat the higher derivatives, ddun with s < ¢ < 2s. The hyper-viscosity
equation (1.3) relates the highest 2s-derivative to the first-order ones,

05 unl) < N2 [Jounl| + foclOsunl ], oo i= sup If'(un)l (112

Spatial integration of (1.3) against dyuy yields

1 d

—Waﬂaiiwﬂim),

10vun |72y + (Brun, f/(un)Oeun) L2(a) =
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and by temporal integration we can bound the time derivative, |[Oiun||r2(z,0,77) in
terms of the spatial one ||0,un || £2(x,0,77);

1 S
10sunl72 (0, 0,79) ||3tUN||L2(x o1t foo||3 UN 2o o1 5raemt 105 un (5 0) 122
Inserting this into (1.12) we find, in view of (1.8),
S S5— 1 S
025un|| 12 [0,77) < Const. N**~" [QfooHaxUNHm(z,[o,T]) + W”axuf\/('ao)”i?} <

< ConstN*~! {fooNl_QLs +C3| < Consto N2 2. (1.13)

Here and below C'onsts, denote different constants depending on |[uy|| Lo (2, (0,77
and Cj is a bound on initial smoothness,

N—(5—45)

105un (-, 0)|| 12 < Co < o0, (1.14)

measuring a minimal amount of H?® smoothness of the initial data which prevents the
formation of an initial layer. In particular, (1.14) allows growing initial oscillations
as long as [|05un(+,0)] 2 ~ N=35). We summarize by stating

LEMMA 1.3. There exists a positive constant § = §(s) ~ 1/s such that Vg, s < q < 2s
the following holds

\ 8un (z, 1) ‘

To verify (1.15) we interpolate (1.13) and (1.6) to conclude (with 6 := £ —1)

< Consts - Nq*‘s, s < q<2s. (1.15)
L2(z,[0,T7)

0% (@, t) | oo,y < Constl|o2un (2, )| j0.17) X 103 (@, DIz 027y <

< Constoo N7 200 5 N6=2)0-0) < Copst  NT272:) 84051 =

—_ q75q —— g i _ l _ i

= Consto o N %, 0g = 8(25 2) +1 55"
and (1.15) follows with §(s) = d25_1 = (25—1)/2s? ~ 1/s (and in fact (1.15) is verified
for ¢ = 2s with the slightly smaller §(s) =1/2s). W

(1.16)

Finally, lemma 1.2 and its L? version in (1.15) yield,

OxP Oz4

LY([0,7],L7, . (=)

< NOFunllrz2(o, 17,25 @)) * [103un L2 (2.1)
< Const - NP [KOO(T) + KO] x ConstogN170

< Constoo NPTI0 p<s<q<2s. (1.17)
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Equipped with the small scale upperbounds in (1.10), (1.15) and (1.17) we now
turn to the main result, stating

THEOREM 1.4. [Convergence]. Consider the hyper-viscosity solution (1.2) subject to
L?-bounded initial data, ||u®(-,0)|z2 < Ko so that (1.14) holds and assume u®(-,t) re-
mains uniformly bounded, ||u®(-,t)|| Lo (z,0,77) < 00. Then u® converges to the unique
entropy solution of the convex conservation law (1.1).

Remark. (on L*-stability.) The L*-stability with 2nd order viscosity, s = 1, can
be deduced by LP-iterations, monotonicity or entropy decay arguments. The issue of
an L bound for vanishing hyper-viscosity of order s > 1 remains an open question.

Proof. We seek H~!-stability in the sense that both the local error on the right
hand-side of (1.3), Z(un), and the quadratic entropy dissipation + production on
the right of (1.4), ZZ(un), belong to a compact subset of lecl(x, t). By compensated
compactness arguments, this will suffice to deduce the L} -strong, p < co convergence
of uy to a weak solution of the convex law (1.1).

Consider the first expression, Z(uy) on the right of (1.3). The inequality (1.6) with
q = 25 — 1 implies that Z(uy) tends to zero in H,_!(z,t), for

loc

_1)\s+1
) — 0.
(1.18)
We now turn to the entropy dissipation term ZZ (uy) in (1.5): its first half tends to
zero in H;_!(x,t), for by (1.17) we have Vp + ¢ = 25 — 1,

loc

HI(UN) = 25 ‘ <Const.

1 1<0
15) ] < —
N2 NV e o,y )™ v el e < 7y

1 0 [O0Puyn 0%un
17 ‘ < ‘_ g uN IuUN ‘
H 1(un) LA([0,T],H; (z)) — N2s—1 Z ox [ oxP Oxd } LA([0,T],H; (=) —
oc p+q:28—1 oc
q=>s
1 pra—s o s
S ConStoo'W Z N S m — O,CS ~ 8(119)
p+qg=2s—1
q=>s
h half of 77 i L (0w in L 1
The second half of ZZ in (1.5), vt g ) 08 bounded in L;,(x,t), consult
Lemma 1.1 and hence by Murat’s Lemma [Mur78|, belongs to a compact subset of
Hl;cl(xat)
IZs(un) — <0. (1.20)
HM(x,t)

We conclude that the entropy dissipation of the hyper-viscosity solution — for
both linear and quadratic entropies, belongs to a compact subset of H, z;cl (z,t). The
div-curl lemma, [Tar75, Mur78], implies that the hyper-viscosity solution uy converges
strongly (in LT ., Vp < 00) to a weak solution of (1.1). Moreover, since the quadratic
entropy dissipation term tends to a negative measure, it follows, [Pan94], that this
limit is in fact the unique entropy solution of (1.1). Consult in particular the recent

discussion in [LOWO04] which requires no uniform bound. MW
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2. Related models

2.1. Spectral hyper-viscosity (SV) method. We consider the spectral
viscosity method (SV)
k
+ 0u[Py flun) = N Y (' |) £k (2.1)
|k|<N

8’LLN

ot

where o(§) is a symmetric low pass filter satisfying

o2 (16 - %)

The SV method was introduced in [Tad89] for s = 1 and the convergence of its
hyper-viscosity version in [Tad93] is the forerunner of the present approach; consult
[MOT93, Ma98, GMTO01] for non-periodic extensions. The (hyper-)SV method allows
for an increasing order of parabolicity as long as CsN~% — 0 holds in (1.19), i.e
(recall §(s) ~ 1/s), we require s° << N. In particular, for s ~ (log N)*, u < 1 for
example, one is led to a low pass filter, o(¢) = (£2° — 1/N), which allows for an
increasing portion of the spectrum to stay viscous free, i.e., spectral viscosity is in-
troduced only at modes with wavenumbers |k| > Const.N (log N)~#/2 while retaining
high-order of accuracy at first half of the viscous-free spectrum

Ouy + 0 [Py f(un)] = —N Z ( ) (t)e™*®  my ~ Const.N(log N)~H/2.

ot Ox
mn<|k|<N

Unlike the regular viscosity case, the solution operator associated with (1.2) with
s > 1 is not monotone — here there are “spurious” oscillations, on top of the Gibbs’
oscillations due to the Fourier projection in (2.1). The convergence statement of
the hyper-SV method (2.1) in [Tad93] and its analogous statement in theorem 1.4
show that oscillations of either type do not cause instability. Moreover, these oscilla-
tions contain, in some weak sense, highly accurate information on the exact entropy
solution; this could be revealed by post-processing the spectral (hyper)-viscosity ap-
proximation, e.g. [GT85, MOT93, TT02].

2.2. Convergence with vanishing Kuramoto-Sivashinsky viscosity.
We are concerned with the convergence of its vanishing viscosity regularization which
is modeled after the 4th-order Kuramoto-Sivashinsky (KS) dissipation

8UE 8 I 82 € 3 84 €
E + %f(u (J?vt)) - _5@’“ (J?,t) —€ @u (l‘,t). (2'2)

Denote uy = u®V, corresponding to KS viscosity amplitude of order e = 1/N
(for its existence, uniqueness, and dynamical properties consult for example [NST85,
Tad86]), then (2.2) reads

aUN 0 1 82uN 1 (94uN
27N 7 )= ——— - N
ot 8xf(uN(x’ ) N 9xz2 N3 Ozt
The rescaling made in (2.3) is such that un has a smallest scale of order 1/N, in

the sense that

= T(uy). (2.3)

HE) UN({E t)”L?( [0,T],L5S, (x)) < Const.N? - ||UN({E t)”L?( [0,T],LsS, ()5 p< 2. (24)
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As before, (2.4) is deduced by separating small and large scale of order ~ N and using
the following quadratic entropy dissipation estimate

10 1 8%u 1 0*u
10 +_/ £1'(§)d€ = —~u Wg_ﬁu]"# = TZ(uy).  (2.5)

The expression on the right (2.5) represents the quadratic entropy dissipation + pro-
duction of the KS-viscosity solution. Successive “differentiation by parts” enables us
to rewrite this expression as

1 83’LLN 8’U,N 8211,]\[ 1 8’LLN
Toun) = ’”[ N3( 013 Oz ax2)_N“N &v}

R - 5]
=TI (un) +II2(un),

and spatial integration leads to the following

LEMMA 2.1. [Entropy dissipation estimate]. The KS-viscosity solution un satisfies
the following apriori estimate

Juy

dun H (2.6)

< un (O ey + 5[

lun ()72 + N3H o2 H ' (z.t)

zt)

Using this entropy dissipation estimate, one can argue the convergence of the van-
ishing KS viscosity along the lines of the hyper-viscosity case. The question whether
the vanishing KS limit is an entropy solution of (1.1) remains open.

Acknowledgement. I thank Denis Serre for pointing out the reference [Pan94].

Added to the proofs. An independent derivation of the vansishing KS limit can be
found in the recent work of Giacomelli and Otto [GO04, Proposition 2.1].
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