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Abstract. We prove two theorems which concern difficulties in the formulation of the
quantum theory of a linear scalar field on a spacetime, (M, ga^), with a compactly
generated Cauchy horizon. These theorems demonstrate the breakdown of the theory
at certain base points of the Cauchy horizon, which are defined as 'past terminal
accumulation points' of the horizon generators. Thus, the theorems may be interpreted
as giving support to Hawking's 'Chronology Protection Conjecture', according to which
the laws of physics prevent one from manufacturing a 'time machine'. Specifically, we
prove:
Theorem 1. There is no extension to (M, g^) of the usual field algebra on the initial
globally hyperbolic region which satisfies the condition of F-locality at any base point.
In other words, any extension of the field algebra must, in any globally hyperbolic
neighbourhood of any base pointt differ from the algebra one would define on that
neighbourhood according to the rules for globally hyperbolic spacetimes.
Theorem 2. The two-point distribution for any Hadamard state defined on the initial
globally hyperbolic region must (when extended to a distributional bisolution of the
covariant Klein-Gordon equation on the full spacetime) be singular at every base
point x in the sense that the difference between this two point distribution and a local
Hadamard distribution cannot be given by a bounded function in any neighbourhood
(in M xM) of(x, x).

In consequence of Theorem 2, quantities such as the renormalized expectation value
of <j>2 or of the stress-energy tensor are necessarily ill-defined or singular at any base
point.

The proof of these theorems relies on the 'Propagation of Singularities' theorems of
Duistermaat and Hormander.
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1. Introduction

In recent years, there has been considerable interest in the question whether it is possible,
in principle, to manufacture a 'time machine' - i.e., whether, by performing operations
in a bounded region of an initially 'ordinary' spacetime, it is possible to bring about a
'future' in which there will be closed timelike curves. Heuristic arguments by Morris,
Thorne and Yurtsever [40] suggested in 1988 that this might be possible with a suitable
configuration of relatively moving wormholes, and alternative ideas also have been
suggested by others (see e.g., [17]). For reviews and further references, see e.g., [49,52].

A precise, general class of classical spacetimes, (M, gab), in which a time machine is
'manufactured' in a nonsingular manner within a bounded region of space is comprised
by those with a compactly generated Cauchy horizon [23]. By this is meant, first, that
(M, gab) is time orientable and possesses a closed achronal edgeless set S (often referred
to as a partial Cauchy surface) such that D+(S) ^ /+(5) , where D+(S) denotes the future
domain of dependence of 5, and I+(S) denotes the chronological future of 5. (Often we
shall refer to the full domain of dependence, D(S), of 5 as the initial globally hyperbolic
region.) However, it is additionally required that there exists a compact set K such that
all the past-directed null generators of the future Cauchy horizon, H+(S), eventually
enter and remain within K. It is not difficult to see that any spacetime obtained by
starting with a globally hyperbolic spacetime and then smoothly deforming the metric
in a compact region so that the spacetime admits closed timelike curves must possess a
compactly generated Cauchy horizon. Conversely, as we shall discuss further in Sect. 2,
any spacetime with a compactly generated Cauchy horizon necessarily violates strong
causality, and, thus, is at least 'on the verge' of creating a time machine. Thus, we will,
in the following discussion, identify the notions of 'manufacturing a time machine' and
'producing a spacetime with a compactly generated Cauchy horizon'.

It follows from the Topological Censorship Theorem' [16] that in order to produce
a spacetime with a compactly generated Cauchy horizon by means of a traversable
wormhole it is necessary to violate the weak energy condition. More generally, the
weak energy condition must be violated in any spacetime with a compactly generated
Cauchy horizon with noncompact partial Cauchy surface 5 [23]. Physically realistic
classical matter fields satisfy the weak energy condition, but this condition can be
violated in quantum field theory. Thus, 'quantum matter' undoubtedly would be needed
to produce a spacetime with a compactly generated Cauchy horizon.

The above considerations provide motivation for the study of quantum field theory
on spacetimes with a compactly generated Cauchy horizon. In attempting to carry out
such a study however, one immediately encounters the problem that, even for linear
field theories, we only have a clear and undisputed set of rules for quantum field theory
in curved spacetime in the case that the spacetime is globally hyperbolic. In this case,
there is a well-established construction of a field algebra based on standard theorems
on the well-posedness of the corresponding classical Cauchy problem. Friedman and
Morris [14] have recently established that there exists a well defined classical dynamics
on a simple model spacetime with closed timelike curves, and they have conjectured
that classical dynamics will be suitably well posed on a wide class of spacetimes
with compactly generated Cauchy horizons. Thus for spacetimes in this class one might
expect it to be possible to mimic the standard construction and obtain a sensible quantum
field theory.

It should be noted that even if no difficulties were to arise in the formulation of
quantum field theory on spacetimes with compactly generated Cauchy horizons, there
still would likely be very serious obstacles to manufacturing time machines, since



QFT on Spacetimes with a Compactly Generated Cauchy Horizon 535

it is far from clear that any solutions to the semiclassical field equations can exist
which correspond to time machine production. In particular, not only the (pointwise)
weak energy condition but the averaged null energy condition must be violated with
any time machine produced with 'traversable wormholes' [16]. Under some additional
assumptions, violation of the averaged null energy condition also must occur in any
spacetime with a compactly generated Cauchy horizon in which the partial Cauchy
surface S is noncompact [23]. Although the averaged null energy condition can be
violated in quantum field theory in curved spacetime, there is recent evidence to suggest
that it may come 'close enough9 to holding to provide a serious impediment to the
construction of a time machine [13,12].

However, in the present paper, we shall not concern ourselves with issues such as
whether sufficiently strong violations of energy conditions can occur to even create the
conditions needed to produce a spacetime with a compactly generated Cauchy horizon.
Rather we will focus on the more basic issue of whether a sensible, nonsingular quantum
field theory of a linear field can be defined at all on such spacetimes. There is, of course,
no difficulty in defining quantum field theory in the initial globally hyperbolic region
D(S)y but there is evidence suggesting that quantum effects occurring as one approaches
the Cauchy horizon must become unboundedly large, resulting in singular behaviour of
the theory. Analyses by Kim and Thome [33] and others [23, 52] have indicated that
for all/many physically relevant states the renormalized expectation value of the stress-
energy tensor, (Ta&), of a linear quantum field, defined on the initial globally hyperbolic
region D(S), must blow up as one approaches a compactly generated Cauchy horizon.1

However, these arguments are heuristic in nature, and examples recently have been given
by Krasnikov [37] and Sushkov [46,47] of states for certain linear quantum field models
on the initial globally hyperbolic region of (two and four dimensional) Misner space
(see e.g., [24] or [23]) for which (Tab) remains finite as one approaches the Cauchy
horizon. This raises the issue of whether a quantum field necessarily becomes singular
at all on a compactly generated Cauchy horizon, and, if so, in what sense it must be
"singular9.

The purpose of this paper is to give a mathematically precise answer to this question.
As we shall describe further in Sect. 2, every compactly generated Cauchy horizon,
H+(S), contains a nonempty set, B of 'base points' having the property that every
generator of H+(S) approaches arbitrarily close to B in the past, and strong causality
is violated at every x € B. We shall prove the following two theorems concerning
quantum field theory on spacetimes with compactly generated Cauchy horizons. (Full
statements are given in Sect. 5. See also Sect. 6 for further discussion.):

Theorem 3. There is no extension to (M, gab) of the usual field algebra on the initial
globally hyperbolic region D(S) which satisfies the condition of F-locality [30]. (The
F-locality condition necessarily breaks down at any x E B.)

Theorem 4, The two-point distributionfor any Hadamard state of the covariant Klein-
Gordon field defined on the initial globally hyperbolic region of a spacetime with a
compactly generated Cauchy horizon must (when extended to a distributional bisolution
on the full spacetime) be singular at every x G Bin the sense that the difference between
this two point distribution and a local Hadamard distribution cannot be given by a
bounded function in any neighbourhood (in M x M) of(x, x\

1 A first result in this direction was obtained as early as 1982 by Hiscock and Konkowski [25] who
constructed a natural quantum state for a linear scalar field on the initial globally hyperbolic portion of four
dimensional Misner space and showed that its stress energy tensor diverges as one approaches the Cauchy
horizon.
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Theorem 1 shows that on a spacetime with a compactly generated Cauchy horizon
the quantum field theory must be locally different from the corresponding theory on a
globally hyperbolic spacetime. Theorem 2 establishes that even if (Tai,) remains finite
as one approaches the Cauchy horizon as in the examples of Krasnikov and Sushkov
[37, 46, 47]2 it nevertheless must always (i.e., for any Hadamard state on the initial
globally hyperbolic region) be the case that (Ta&) is ill defined or singular at all points
of B, since the limit which defines {Tat>) via the point-splitting prescription cannot exist,
and in fact must diverge in some directions.

Our theorems show that very serious difficulties arise when attempting to define
the quantum field theory of a linear field on a spacetime with a compactly generated
Cauchy horizon. In particular, our results may be interpreted as indicating that in order
to manufacture a time machine, it would be necessary at the very least to enter a regime
where quantum effects of gravity itself will be dominant. Thus, our results may be
viewed as supportive of Hawking's 'Chronology Protection Conjecture' [23], although
we shall refrain from speculating as to whether the difficulties we find might somehow
be evaded in a complete theory where gravity itself is quantized.

The proofs of the above two theorems will be based upon the 'Propagation of
Singularities' theorems of Duistermaat and Hormander [9, 28]. In particular, these
theorems will allow us to conclude that the two-point distribution of a Hadamard state
is not locally in L2(M x M) in a neighbourhood of any (x, y) E M x M such that
x and y can be joined by a null geodesic. This fact directly gives rise to the singular
behaviour of Theorem 2 at B. It should be noted that similar singular behaviour will
occur in essentially all (but - see Sect. 6 - not quite all) situations where one has
a closed or 'almost closed' or self-intersecting null geodesic, so the results obtained
here for spacetimes with compactly generated Cauchy horizons can be generalized to
additional wide classes of causality violating spacetimes. (See Sect. 6.)

We shall begin in Sect. 2 by establishing two geometrical propositions on spacetimes
with compactly generated Cauchy horizons. In Sect. 3, after a brief review of the essential
background on distributions and microlocal analysis required for their statement, we
review the Propagation of Singularities theorems of Duistermaat and Hormander for
linear partial differential operators. In Sect. 4 we shall briefly review some relevant
aspects of linear quantum field theory in globally hyperbolic spacetimes and discuss
how one can approach the question of what it might mean to quantize a (linear) quantum
field on a non-globally hyjterbolic spacetime. In particular, the notion of F-locality,
introduced in [30], will be briefly reviewed there. In Sect. 5 we shall state and prove
our theorems on the singular behaviour of quantum fields. In a final discussion section
(Sect. 6) we shall discuss further the significance and interpretation of our theorems and
mention some directions in which they may be generalized.

We remark that while we explicitly treat only the covariant Klein-Gordon equation,
we expect appropriate analogues of Theorems 1 and 2 to hold for arbitrary linear
quantum field theories. Moreover, it seems possible that the singular behaviour we find
for linear quantum fields on the Cauchy horizon may be related to pathologies found in
the calculation of the S-matrix for nonlinear fields [15].

2 Sushkov's examples involve a mild generalization of the quantum field model discussed here to the case
of complex automorphic fields [46, 47]. While our theorems strictly don't apply as stated to automorphic
fields, we remark that we expect everything we do to generalize to this case. (See also the final sentence of
Sect. 2.) Moreover, Cramer and Kay [7] have recently shown directly that the conclusions of Theorem 2 are
valid for the state discussed by Sushkov in [47]. Note that, as we discuss further in Sect. 6 below, reference
[7] also points out a similar situation for the states discussed by Boulware [3] for Gott space and Tanaka and
Hiscock [48] for Grant space.
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2. Some Properties of Compactly Generated Cauchy Horizons

In this section, we shall establish some geometrical properties of spacetimes possessing
compactly generated Cauchy horizons. We begin by recalling several basic definitions
and theorems, all of which can be found, e.g., in [24, 55].

Let (M, gab) be a time orientable spacetime, and let 5 be a closed, achronal subset
of M. We define the future domain of dependence of S (denoted, D+(S)) to consist
of all x E M having the property that every past inextendible causal curve through x
intersects S. The past domain of dependence is defined similarly. It then follows that
int D+(S) = I~[D+(S)] fl 7+(5), where / " denotes the chronological past. Thus, if
x E D+(S) but x £ 5, then every past directed timelike curve from x immediately
enters int £>+(5) and remains in int D+(S) until it intersects 5.

The future Cauchy horizon of S (denoted H+(S)) is defined by H+(S) = D+(S) -
J" [D+(S)l where D+(S) denotes the closure of D+(S). It follows immediately that
H+(S) is achronal and closed. A standard theorem [24, 55] establishes that every x E
H+(5) lies on a null geodesic contained within H+(S) which either is past inextendible
or has an endpoint on the edge of 5. Thus, if 5 is edgeless (in which case 5 is referred
to as a partial Cauchy surface or slice), then H+(S) is generated by null geodesies
which may have future endpoints (i.e., they may 'exit' H+(S) going into the future)
but cannot have past endpoints. Note that this implies that H+(S) n D+(S) = 0. Since
similar results hold for H~(S), it follows that for any partial Cauchy surface 5, the full
domain of dependence, D(S) = D+(S) U D~(S), is open.

Now, let S be a partial Cauchy surface. We say that the future Cauchy horizon,
H+(S\ of S is compactly generated [23] if there exists a compact subset, K9 of M,
such that for each past directed null geodesic generator, A, of H+(S) there exists a
parameter value so (in the domain of definition of A) such that \(s) E K for all s > so-
In other words, when followed into the past, all null generators of H+(S) enter and
remain forever in K.

We now introduce some new terminology. Let A : I -> M be any continuous curve
defined on an open interval, / c R , which may be infinite or semi-infinite. We say that
x E M is a terminal accumulation point of A if for every open neighbourhood O of
x and every to € I there exists t E / with t > to such that \(t) E O. (By contrast, x
would be called an endpoint of A if for every open neighbourhood O of x there exists
to £ I such that \(t) E O for alH > *o- Thus, an endpoint is automatically a terminal
accumulation point, but not vice-versa.) Equivalently, x is a terminal accumulation point
of A if there exists a monotone increasing sequence {U} E / without limit in / such
that \(U) converges to x. When A is a causal curve, we shall call x a past terminal
accumulation point if it is a terminal accumulation point when A is parametrized so as
to make it past-directed. Note that if x is a past terminal accumulation point of a causal
curve A but x is not a past endpoint of A, then strong causality must be violated at x.

Let H+(S) be a compactly generated future Cauchy horizon. We define the base set,
5, of H+(S) by

B = {x E H+(S) | there exists a null generator, A, of H+(S) such that x

is a past terminal accumulation point of A} . (1)

Since the null generators of H+(S) cannot have past endpoints, it follows that strong
causality must be violated at each x E B. The following proposition (part of which cor-
responds closely to the second theorem stated in Sect. V of [23]) justifies the terminology
'base set':
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Proposition 1. The base set, B, of any compactly generated Cauchy horizon, H+(S),
always is a nonempty subset of K. In addition, all the generators of H+(S) asymp-
totically approach B in the sense that for each past-directed generator, A, of H+(S)
and each open neighbourhood OofB, there exists a to G I (where I is the interval
of definition of \) such that X(t) G O for all t > to. Finally, B is comprised by null
geodesic generators, 7, ofH+(S) which are contained entirely within B and are both
past and future inextendible.

Proof Let A be a past directed null generator of H+(S) and let {U} be any monotone
increasing sequence without limit on / . Then A(t») G K for infinitely many i. It follows
immediately that {\(U)} must have an accumulation point, x, which must lie on H+(S)
since H+(S) is closed. It follows that x G B, and hence B is nonempty. The proof
that B C K is entirely straightforward. If one could find a generator A and an open
neighbourhood O of B such that for all t0 G / , we can find a t > t0 such that \(t) £ 0 ,
then, using compactness of K, we would be able to find a past terminal accumulation
point of A lying outside of O and, hence, outside of By which would contradict the
definition of B.

To prove the last statement in the proposition, it is useful to introduce (using the
paracompactness of M) a smooth Riemannian metric, ea&, on M. We shall parametrize
all curves in M by arc length, s, with respect to this Riemannian metric.

Let x G B. We wish to show that there exists a null geodesic, 7, through x which
is both past and future inextendible and is contained in B. Since x G B, there exists
a null generator, A, of H+(S) such that # is a past terminal accumulation point of A.
We parametrize A so that its arc length parameter, s, increases in the past direction.
Since A is past inextendible and K is compact, s must extend to infinite values (even
though the geodesic affine parameter of A in the Lorentz metric gab might only extend
to finite values). Thus, there exists a sequence {«,} diverging to infinity such that A(s»)
converges to x. Let (fc,)a denote the tangent to A at s, in the arc length parametrization,
so that (k{)a has unit norm with respect to eab- Since the subset of the tangent bundle of
M comprised by points in K together with tangent vectors with unit norm with respect
to tab is compact, it follows that - passing to a subsequence, if necessary - there must
exist a tangent vector ka at x such that {(A(s,), (Ar,)a)} converges to (x, ka). Since each
(ki)a is null in the Lorentz metric gab, it follows by continuity that ka also must be null
with respect to gab-

Let 7 be the maximally extended (in M, in both future and past directions) null
geodesic determined by (x, ka). We parametrize 7 by arc length with respect to ea&,
with increasing s corresponding to going into the past and with s = 0 at x. Let y G 7
and let s denote the arc length parameter of y. Since the sequence {«,} diverges to
infinity, it follows that for sufficiently large i, (s + s,-) will be in the interval of definition
of A. Since {(A(st), (Ar,)a)} converges to (#, Ara), it follows by continuity of both the
exponential map (with respect to gab) and the arc length parametrization (with respect
to eab) that {\(s + s,)} converges to y. Thus, y G #, as we desired to show. D

In some simple examples (see, e.g., [52]), B consists of a single closed null geodesic,
referred to as a 'fountain'. However, it appears that, generically, B may contain null
geodesies which are not closed [6].

Our final result on B, which will be needed in Sect. 5, is the following.

Proposition 2. Let H+(S) be a compactly generated Cauchy horizon, and let B be its
base set Let x G B, and let U be any globally hyperbolic open neighbourhood ofx.
Then there exist points y,z El( H intD+(S) such that y and z are connected by a null



QFT on Spacetimes with a Compactly Generated Cauchy Horizon 539

geodesic in the spacetime (M, gab\ but cannot be connected by a causal curve lying
within U.

Proof. As in the proof of the previous proposition, we introduce a smooth Riemannian
metric, ea6, on M and parametrize curves in M by arc length, s, with respect to eab with
increasing s corresponding to going into the past. Let A and {s,} be as in the proof of
the previous theorem. There cannot exist an so such that A(s) G U for all s > so, since
otherwise strong causality would be violated at x in the spacetime (U,gab), thereby
contradicting the global hyperbolicity of (W, #<,&). Thus, there exist integers i, j with
Si < Sj such that A(st), X(SJ) G U but for some s with s, < s < SJ we have \(s) £ U.
By passing to a smaller interval around s if necessary, we may assume without loss of
generality that A is one-to-one in [«,-, SJ] (so that, in particular, A(s,) ^ A(SJ)). It then
follows from the achronality of H+(S) that any past-directed causal curve in (M, gab)
which starts at A(s,) and ends at \(SJ) must coincide with (or contain) this segment of
A. (If not, then there would exist two distinct, past-directed, null geodesies connecting
X(si) with X(SJ)9 and it would be possible to obtain a timelike curve joining A(s,) to
\(SJ + 1).) Consequently, A(s,) cannot be joined to \(SJ) by any past-directed causal
curve contained within U.

Since in any globally hyperbolic spacetime, the causal past of any point is closed,
it follows that there exist open neighbourhoods, Oi C U and Oj C W, of A(s,) and

. of A(sj), respectively, such that no point of 0 , can be joined to a point of Oj by a
past-directed causal curve lying within U. Without loss of generality, we may assume
that Oi and Oj are contained in /+(5) (since otherwise we could take their intersection
with J+(S)).

Our aim, now, is to deform A suitably to get a null geodesic in (M, gab) which joins
a point y eOif) int D+(S) to a point z G Oj O int D+(S). To do so, we choose along
A (in a neighbourhood of A(s,)), a past-directed null vector field, la, and a spacelike
vector field wa satisfying gablakb = - 1 , gabwakb = gabwalb = 0, and gabwawb = 1,
where ka denotes the tangent to A (in the arc length parametrization with respect to
eab)- Let e > 0 and consider the null geodesic a starting at point A(s,- + e) with null
tangent ka + \^la + ewa. By continuity, for sufficiently small €, y = a(e) will lie in
Oi and z = a(sj - «,-) will lie in Oj. Since y and 2 can be connected to A(st) by a
past-directed broken null geodesic, they each lie in J~ [H+(5)]. Since they also each lie
in /+(5), it follows that y, z £ intD^S). As shown above, y cannot be connected to z
by a past-directed causal curve lying within U. However, since y G int D+(5), it follows
that there cannot exist any future-directed causal curve, cr, in M, connecting y to z9

since, otherwise we would obtain a closed causal curve through y by adjoining <r to (the
time reverse of) a. Thus, we have y, z G W O int D+(S) such that i/ and z are connected
by the null geodesic a in the spacetime (M, #a&), but they cannot be connected by any
causal curve lying within U. •

To end this section, we remark, following [7], that Propositions 1 and 2 (and hence also
the theorems of Sect. 5) will also clearly apply to any spacetime (such as four dimensional
Misner space) which, while having a Cauchy horizon which is not compactly generated,
arises as the product with a fiat 4 — d dimensional Euclidean space of some spacetime
with compactly generated Cauchy horizon of lower dimension d.
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3. Microlocal Analysis and Propagation of Singularities

In this section, we shall review results of Hormander and Duistermaat and Hormander
[9, 27, 28] concerning the propagation of singularities in distributional solutions to
partial differential equations. These results do not appear to be widely known or used in
the physics literature, and we shall attempt to make diem somewhat more accessible by
stating them in the simpler case of differential operators rather than in the more general
setting of pseudodifferential operators.

We begin by recalling that on an arbitrary smooth (paracompact) n-dimension-
al manifold, M, elements of the vector space, X>(M), of smooth (C°°) (and in this
paper, we shall assume real-valued) functions of compact support are referred to as test
functions. A topology is defined on V(M) as follows.

First, we introduce a Riemannian metric, ea&, and a derivative operator, V a , on M.
Next, we fix a compact set, K, and focus attention on the subspace, T>K(M\ ofV(M)
consisting of test functions with support in K. On this subspace, we define the family
of seminorms, {|| • | | * } , by

a i . . .V a f c / | , (2)

where by the 'absolute value' of the tensor appearing on the right side of this equation
we mean its norm as computed using the Riemannian metric eab • We define the topology
of VK (M) to be the weakest topology which make all of these seminorms as well as the
operations of addition and multiplication by scalars continuous. It may be verified that
this topology is independent of the choices of ea& and V a . This gives each £># (M) the
structure of being a locally convex space. Finally, we express M as a countable union
of compact sets, Ki which form an increasing family (Ki C -Ki+i) - thereby expressing
V(M) as a countable union of the VK^M) - and take the topology of X>(M) to be
given by the strict inductive limit [44] of the locally convex spaces VK^M). It may
be verified that the topology thereby obtained on V(M) is independent of the choice of
compact sets if,-.

A distribution, u, on M, is simply a linear map from V(M) into the real numbers,
R, which is continuous in the topology on V(M) defined in the previous paragraph.
The vector space of distributions on M is denoted V'(M). Denote by L^iM) the
collection of measurable functions on M whose restriction to any compact set, K, is
integrable with respect to a smooth volume element TJ introduced on M. (The definition
of L^M) clearly is independent of the choice of 17.) If F e L^M), then the linear
map u : V(M) -» M given by

u(f)= [ Ffr, (3)

defines a distribution on M. We remark that in the presence of a preferred volume
element, such as provided by the natural volume element

tl = \detg\l/2dxlA...Adxn (4)

associated with the metric gab in the case where M is a spacetime manifold, we may
identify the function F with the distribution u. A distribution u 6 Vf(M) will be said to
be smooth if there exists a C°° function, F, on M such that Eq. (3) holds. A distribution,
u, will be said to be smooth at x £ M if there exists a test function, g, with g(x) ^ 0
such that gu is smooth, where the distribution gu is defined by
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gu(f) = u(gf) . (5)

The set of points y G M at which u fails to be smooth is referred to as the singular
support of u in M.

A key idea in the analysis of the propagation of singularities is to refine the notion
of the singular support of u in M to a notion of the wave front set of u, which can be
thought of as describing the singular support of u in the cotangent bundle, T*(M), of
M. This notion can be defined most conveniently in terms of the Fourier transform of
distributions. To begin, let u be a distribution on Mn which is of compact support, i.e.,
there exists a compact set K such that u(f) = 0 whenever the support of / does not
intersect K. We define the Fourier transform, u of u to be the distribution given by

(6)

where g is any test function such that g = 1 on K. (The obvious extension of u to act on
complex test functions is understood here; u is a complex-valued distribution, but its real
and imaginary parts define real-valued distributions.) It follows that u is always smooth
(indeed, analytic), and the smooth function corresponding to u via Eq. (3) (which we also
shall denote by u) satisfies the property that it and all of its derivatives are polynomially
bounded at infinity (see Theorem IX.5 of [45]). Furthermore, it follows from the fact
that the Fourier transform maps Schwartz space onto itself that the distribution u itself
will be smooth if and only if for every positive integer m there exists a constant Cm

such that

Now let u G V(M) be a distribution on an n-dimensional manifold, M. Let x G M
and let O be an open neighbourhood of x which can be covered by a single coordinate
patch, i.e., there exists a diffeomorphism ^ : O - > U c Mn. Let g be a test function
with support contained within O such that g(x) ^ 0. The distribution gu may then be
viewed as a distribution on Mn which is of compact support. Hence, for the given choice
of coordinates, the Fourier transform, gu, of gu is well defined as a distribution on Rn

and satisfies the properties of the previous paragraph. We may use the local coordinates
at x to identify the cotangent space at x with Mn by associating with each cotangent
vector pa the point in Mn given by the components of pa in these coordinates. In this
manner, we may view gu as a distribution on the cotangent space at x.

Now let pa be a nonzero cotangent vector at x. We say that u is smooth at (x, pa) G
T*(M) if there exists a test function, g with support contained within O satisfying
g(x) y 0 and there exists an open neighbourhood, Q, of pa in the cotangent space at x
such that for each positive integer ra, there exists a constant Cm such that for all pa G Q
and all A > 0 we have,

|^(A/>a)|<Cm(l + | A | r m . (8)

It can be shown that this notion of smoothness of u at (#, pa) is independent of the
choice of local coordinates at x, and, thus, is a well defined property of u (see part (f) of
Theorem IX.44 of [45]). Let S C T* (M) denote the set of points in T* (M) at which u
is smooth. It follows directly from its definition that S is open and is 'conic' in the sense
that if pa G 5, then Xpa G S for all A > 0. The wave front set of w, denoted WF(ti), is
defined to be the complement of S in T*(M) \ 0, where '0' denotes the 'zero section'
of T*(M)

WF(i/) = [ T * ( M ) \ 0 ] \ S . (9)

In other words, (x, pa) G T*(M) lies in WF(«) if and only if pa ^ 0 and u fails to be
smooth at (x, pa). It can be shown (see, e.g., Theorem IX.44 of [45]) that x G M is in
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the singular support of u if and only if there exists a cotangent vector pa at x such that
(*,/>«)€ WF(ti).

It is essential that we view WF(u) to be a subset of the cotangent bundle (rather than,
e.g., the tangent bundle) in order that it be independent of the choice of coordinates
used to define Fourier transforms. Some further insight into the meaning of the above
definitions and the reason why it is the cotangent bundle which is relevant for the
definition can be obtained from the following considerations. Let (x,pa) G T*(M)
with pa y 0. Then pa determines (by orthogonality) a hyperplane in the tangent space
at x. In a sufficiently small open neighbourhood of x, we can introduce coordinates
(tf, x1,..., xn~l) so that the hypersurface of constant t passing through x is tangent to
this hyperplane. These coordinates can be used to factorize an open sub-neighbourhood
of x as the product manifold 1 x l n " l Hence, any distribution, u, defined on this
sub-neighbourhood can be viewed as a bi-distribution on R x R71""1. In particular, for
any test function, / , on Rn~ *, w(-, / ) defines a distribution on R. Then, it is not difficult
to verify that if a real-valued distribution u is smooth at (x,pa) G T*(Af) \ 0, then
there exists a g G V(M) with g(x) ^ 0 such that for any test function / , on ffi""1, the
distributiongu(-, f) on R is smooth.

The notion of smoothness or the lack of smoothness of a distribution, u, at (x, pa) e
T*(M) \ 0 can be further refined as follows. First, for any real number s, a distribution
u will be said to lie in the local Sobolev space Hf^x) associated with a point x G M
if there exists a test function, g, with g(x) -=f> 0 and the support of g contained within a
single coordinate patch, such that gu (viewed as a distribution of compact support on
Rn) satisfies

: o o . (10)

It is easy to see that the space so-defined is independent of the choice of function g
and of the choice of coordinate patch containing its support. When s is a non-negative
integer, this condition is equivalent to requiring that gu and all of its (weak) derivatives
up to order s are given by square integrable functions. (It is easy to see that this result
holds independently of the choice of derivative operator and independently of the choice
of (smooth) volume element.) Note that u lies in H^x) for all s if and only if u is
smooth at x. Following [27], we say that a distribution u lies in the local Sobolev space
H^ix,pa) associated with (x,pa) G T*(M) \ 0 if we can express « a s « = « i + « 2 ,
where u\ lies in H^x) and (a?, pa) £ WF(«2). It can be shown (see Theorem 18.1.31
of [27]) that we have u G H^ix) if and only if u G Hf^ix, pa) for all nonvanishing
cotangent vectors pa at x. Furthermore, we have u G #£><;(#, Pa) for all s if and only if
it is smooth at (x, pa).

Next, we introduce some key definitions for linear partial differential operators. Let
A be an arbitrary linear partial differential operator of order m on M, so that A can be
expressed as

where Va is an arbitrary derivative operator on M and each <xfy"ai is a smooth tensor
field. We define the principal symbol, H, of A to be the map H : T* (M) -> R given by

H{x,pa) = a^)'
a-(x)Pai...Pam . (12)

It is easily checked that H is independent of the choice of derivative operator V o .
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Now, T* (M) has the natural structure of a symplectic manifold, so it can be viewed as
the 'phase space' of a classical dynamical system. By choosing H to be the Hamiltonian
of this system, we thereby associate a classical mechanics problem to each linear partial
differential operator, A, on M. In particular, associated with A, we obtain a vector field
ha on T*(M) whose integral curves correspond to solutions of Hamilton's equations of
motion on T* (M) with Hamiltonian H. We define the characteristic set of A, denoted
char(A), to be the subset of T*(M) \ 0 (where, again, 0 denotes the zero-section of
T*(M)) satisfying H(x,pa) = 0. (In other words, the characteristic set of A consists
of the states in phase space with zero energy but nonvanishing momentum.) We refer
to the integral curves of ha in T*(M) \ 0 starting from points in the characteristic set
as the bicharacteristics of A, (Often, these curves are called '^characteristic strips',
and the projection of a bicharacteristic to M is called a 'bicharacteristic curve'.) By
"conservation of energy', all bicharacteristics are contained in the characteristic set.

We now are in a position to state the Propagation of Singularities Theorem which
will be used to prove our main results. First recall that, in the presence of a preferred
volume element TJ, if A is a linear partial differential operator, the adjoint of A, denoted
A^9 is defined to be the linear partial differential operator determined by the condition
that

j ^ (13)
for all test functions / , g. A distribution u will be said to satisfy the equation Au = 0 if
for every test function / , we have

u(A t / ) = 0 . (14)

We have the following theorem, which is obtained by restricting Theorems 26.1.1 and
26.1.4 of [28] (from the case of pseudodifferential operators) to the simpler case of
linear partial differential operators (and vanishing source term).

Propagation of Singularities Theorem. Let M be an n-dimensional manifold,
with preferred volume element 17. Let A be a linear partial differential operator of order
m on M and suppose u G V'(M) satisfies the equation Au = 0. Then, we have (i)
WF(«) C char(A) and (ii) For any (x, pa) 6 char(A), we have u E #foc(x> Pa) if and
only if u £ Hf^ix*\pf

a) for all (xf,pf
a) lying on the same bicharacteristic as (x,pa).

Thus, in particular, if(x,pa) € WF(n), then the entire bicharacteristic through (x,pa)
lies in WF(u).

(Part (i) of the above theorem together with the final sentence incorporate the content
of Theorem 26.1.1 of [28], while Part (ii) corresponds to Theorem 26.1.4.)

In the present paper, the partial differential operator in which we are particularly
interested is the covariant Klein-Gordon operator

A = •<, - m2 (15)

on a given curved spacetime (M, gab)- Here, D^ denotes the Laplace Beltrami operator
for the metric g. We remark that if we take (as we shall from now on) our preferred
volume element TJ to be the natural spacetime volume element (4) associated with the
metric, this operator satisfies A^ = A. Clearly, its principal symbol is

H(x,p) = gab(x)paPb (16)

which is well known to be a Hamiltonian for geodesies. The characteristic set thus
consists of the points in T*(M) whose covector is null and nonvanishing, and the
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^characteristics are curves t»-» (x(t), pa(t)) in the cotangent bundle for which t >-+ x(t)
is an affinely parametrized null geodesic, and, at each value of the parameter t, pa(t)
is the cotangent vector obtained by using the metric to 'lower an index' on the tangent
vector to the geodesic. (Below, we shall say that the cotangent vector pa(t) is 'tangent'
to the geodesic.) In other words, in this case, the bicharacteristics are the lifts to the
cotangent bundle of affinely parametrized null geodesies.

In the proof of the theorems of the present paper we shall be concerned with
certain distributional bisolutions to the covariant Klein-Gordon equation which, as we
shall discuss further in the next section, occur in quantum field theory on a curved
spacetime (M, gabX The above Propagation of Singularities Theorem will be used to
obtain information on the global nature of the singularities in these two-point functions
given information about the singularities when the two points on which they depend are
close together. Roughly speaking, we shall be able to conclude from the above theorem
that, if such a distributional bisolution is singular for sufficiently nearby pairs of points
on a given null geodesic, then it will necessarily remain singular for all pairs of points on
that null geodesic. Moreover the theorem assures us that the 'strength' of the singularity
(as measured by the indices of the local Sobolev spaces in which the distribution fails
to lie) cannot diminish.

One may define a distributional bisolution to be a bidistribution on M which is a
distributional solution to the covariant Klein-Gordon equation in each variable. Here, by
a bidistribution G on M we mean a (real or complex valued) functional on V(M) x V(M)
which is separately linear and continuous in each variable and to say that G is a solution
to the Klein-Gordon equation in each variable means that G((Dg - m2)/, h) = 0 and
G(/, (Og - m2)h) = 0 for all / , h G £>(M). A bidistribution G on M is then necessarily
jointly continuous and arises from a distribution G on the product manifold M x M i n
the sense that G(f, g) = G(f ® g), where, if / and g are each test functions in V(M),
f ® g denotes the test function in V(M x M) with values / ® g(x, y) = f(x)g(y).
(For the proof of these assertions, see e.g., the proof of the Schwartz Kernel Theorem
in Sect. 5.2 in [26].) To say that G is a distributional bisolution on M may thus be
expressed by saying that G is a distributional solution to each of the pair of partial
differential equations A\G = 0, A2G = 0 on M x M, where (in an obvious notation)
A1 and Aj are the partial differential operators

Ax = (Pg - m2) ® / , A2 = / ® (Pg - m 2 ) . (17)

It is this latter way of regarding distributional bisolutions which permits direct appli-
cation of the Propagation of Singularity Theorem. (From now on, we shall adopt an
informal point of view in which we do not distinguish between G and G.) Thus, a point
(#,pa', y, Qb) in the cotangent bundle T*(M x M) \ 0 of M x M will belong to the
characteristic set of both A\ and A2 if and only if both pa and qt> are null (and at least
one of them is non-zero). Thus we conclude by Part (i) of the above theorem that the
wave front set of a distributional bisolution G must consist of a subset of such 'doubly
null' points. Moreover, if the wave front set of a given distributional bisolution G in-
cludes such a doubly null point (x, pa; y, qb) then, applying e.g., the last sentence of the
Propagation of Singularities Theorem to the operator A\ we conclude that it must also
include all points (x;, pa\ y, g&) for which (#', p'a) lies on the same lifted null geodesic
as (ar, pa). Similarly, applying the theorem to A2, we conclude that it must also include
all points (x, pa; \f, qf

b) for which (t/, qf
b) lies on the same lifted null geodesic as (y, <ft).

Next, we discuss some particular distributional bisolutions to the covariant Klein-
Gordon equation which will play an important role both in our discussion of quantum
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field theory below, and in our theorems. Firstly, given any globally hyperbolic spacetime
(M, g^), then the advanced and retarded fundamental solutions A^(x, y), AR(X, y)
of the inhomogeneous Klein-Gordon equation exist as 2-point distributions and are
uniquely defined with respect to their support properties [38, 39, 5]. Their difference
A = A A — AR is then a preferred distributional bisolution to the (homogeneous)
covariant Klein-Gordon equation. It is clearly antisymmetric, i.e., A( / , g) = - A (g, f)
and, as we discuss in the next section, plays the role of the 'commutator function'
in the quantum theory. One may show that its wave front set consists of all elements
(#, Pa; y, <lb) of T* (M x M) \ 0 for which x and y lie on a single null geodesic, for which
pa and qt are tangent to that geodesic, and for which pa, when parallel transported along
that null geodesic from x to y equals - g a . (One way to obtain this result is to notice
that the advanced and retarded fundamental solutions are special cases of advanced and
retarded 'distinguished parametrices' in the sense of [9] from which the wave front set
may be read off. See also [41,43].)

Secondly, for any curved spacetime (M, gabX we shall be interested in a class of
symmetric (i.e., G(/, g) = G(g, / ) ) distributional bisolutions G to the covariant Klein-
Gordon equation which are what we shall call locally weakly Hadamard. (These will
arise in the quantum field theory - see Sect. 4 - as (twice) the symmetrized two-point
functions of 'Hadamard states'.) This notion - which is either weaker or equivalent
to the various versions of the Hadamard condition which occur in the literature on
quantum field theory in curved spacetime - is defined as follows: First, we require that
G be locally smooth for non-null related pairs of points in the sense that every point x
in the spacetime has a convex normal neighbourhood (see e.g., [24, 55]) Nx such that
the singular support of G in Nx x Nx consists only of pairs of null related points. In
consequence of this (cf. the discussion around Eq. (3) above) on the complement, Cx,
in Nx x Nx of this singular support (so Cx consists of all pairs of non-null separated
points in Nx x Nx) there will be a smooth two-point function, which we shall denote
by the symbol GS9 with the property that, for all test functions F supported in Cx,

G(F) = / G9(y, z)F{y, z)V(y)rt(z) , (18)
Jcx

where we recall that rj denotes the natural volume element (4) associated with the metric.
It is easy to see that, on Cx, Gs must be a smooth bisolution to the covariant Klein
Gordon equation. If G is locally smooth for non-null related pairs of points, then we say
that G is locally weakly Hadamard if for each point x in M, on the corresponding Cx, the
Gs as defined above takes the 'Hadamard form' [19,8,53,54,32]. This latter condition
is traditionally expressed by demanding that there exists some smooth function w on
Nx x Nx such that the following equation holds on Cx (in 4 dimensions, with similar
expressions for other dimensions)

i I A\ \
(19)

where cr denotes the square of the geodesic distance between x and y (which is well
defined in Cx since Nx is a convex normal neighbourhood), A ? is the van Vleck-Morette
determinant [8] and v is given by a power series in a with partial sums

(20)
m=0
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where each vm is uniquely determined by the Hadamard recursion relations [19,8]. This
statement cannot be interpreted literally because the power series defining v does not
in general converge. We overcome this problem and make the notion of locally weakly
Hadamard precise by replacing the above statement of Hadamard form by the demand
that, for each x G M and each integer n, there exists a Cn function tu(n) on Nx x Nx

such that, on Cx

G,(x, y) = ̂  (^r + v™ ln(|<r|) + w™ j . (21)

The above notion of locally weakly Hadamard corresponds to the notion of
'Hadamard form' implicit in many references (e.g., [53, 54, 1]). However, we re-
mark that the notion (sometimes referred to as globally Hadamard) of 'Hadamard' as
defined (for the case of globally hyperbolic spacetimes) in [32] (when suitably inter-
preted as a condition on a general symmetric distributional bisolution on a globally
hyperbolic spacetime) is a stronger notion inasmuch as (a) it specifies, for each x9 the
local behaviour of the distribution G on test functions supported in Nx x Nx whose
support is not confined to Cx, by what amounts essentially to a 'principle part' prescrip-
tion, (b) it explicitly rules out the possible occurrence of so-called 'non-local spacelike
singularities'. (See [32] for details.)3

Clearly, since (on any convex normal neighbourhood) <r(x, y) is smooth and vanishes
if and only if x and y are null related, the singular support of any locally weakly
Hadamard distributional bisolution G, when restricted to Nx x Nx for any of the
neighbourhoods Nx will consist precisely of all pairs of null related points. Hence the
wave front set of such a G, when restricted to T*(NX x Nx)\0 will include, for each
such null pair, at least one point (y, pa; z, g&), where at least one of pa and qb is non-zero
and where both pa and <j& are null covectors which are tangent to the null geodesic
connecting y and z.4 (If they were not tangent, one could get a contradiction with the
smoothness of G at non-null related pairs of points by applying the Propagation of
Singularities Theorem.)5

In fact, one can show more than this: Namely, given any (symmetric) locally weakly
Hadamard distributional bisolution G, for each point x in M and each pair of null related
points (y, z) G Nx x Nx with y=f z there exist null covectors pa at y and qb at z which
are each tangent to the null geodesic connecting y and z and which are not both zero (see
Footnote 4) such that G fails to belong to L^iy, pa;z, qt) (i.e., to H^iy, pa\z, #,)). To

3 Actually, it was conjectured by Kay [29,20] and proved by Radzikowski by microlocal analysis methods
[41,42] that if the symmetrized two point function of a quantum state on the field algebra (see Sect 4) for the
covariant Klein-Gordon equation on a globally hyperbolic spacetime satisfies the global Hadamard conditon
of Kay and Wald locally (i.e., on each element of an open cover) then it is globally Hadamard. Thus, in
the presence of the positivity conditions required for a (symmetric) distributional bisolution (on a globally
hyperbolic spacetime) to be the symmetrized two-point function of a quantum state, the strengthening of the
Hadamard notion indicated in point (b) here is automatic given that indicated in point (a).

4 Of course, since G is symmetric, if the point {y,pa\z, qb) is in its wave front set, then the point
(*, <lb> ViPa) will also be in its wave front set.

5 More is known about the wave front set of the (unsymmetrized) two-point functions of quantum states
(see Sect. 4) on globally hyperbolic spacetimes which are (globally) Hadamard in the stronger sense of [32]:
Radzikowski [41,43] (see also [34, 4, 35, 36] for recent further developments in this direction) has shown
that the wave front set of any such two point function consists precisely of all elements (x, pa\ y, qb) of
X* (M x M) \ 0 for which x and y lie on a single null geodesic, for which p o is tangent to that null geodesic
and future pointing, and for which qa, when parallel transported along that null geodesic from y to x equals
-Pa-
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prove this result, it suffices to show that l /o\ and hence, easily, also G fails to belong to
L\oc(y>z) f° r ^ y P3"*' (y> *)» of distinct null-related points in Nx x NX9 since then we
have G £ £?ocO/> Va\ z, Qb) for some covectors pa at y and qt at z which are restricted
by arguments of the previous paragraph. However, the fact that G £ L^iy,z) follows
immediately from the following lemma [where we identify L with M x M, h with <r,
and X with (y, z)]:

Lemma 1. Let Lbea manifold, and let hbea smoothfunction on L which vanishes at
a point X £ L but whose gradient is nonvanishing at X. Then \/h (or, more precisely,
any distribution which agrees with l/hfor h ^ 0) fails to be locally L2 at X.

(The proof is immediate once one chooses a coordinate chart around X in which
the function h is one of the coordinate functions.)

4. The Quantum Covariant Klein-Gordon Equation on a Curved Spacetime

In our discussion of quantum field theory, we shall restrict our interest to a linear
Hermitian scalar field, satisfying the covariant Klein-Gordon equation

( •s -m 2 )<£ = 0 (22)

on a curved spacetime (M, gab)- We shall now outline a suitable mathematical descrip-
tion of this theory in terms of the algebraic approach to quantum field theory. For further
discussions of this, and closely related, approaches see e.g., [32,30,56].

In the case that (M, gab) is globally hyperbolic, we may take the field algebra to be
the *-algebra with identity / generated by polynomials in 'smeared fields' <£(/), where
/ ranges over the space C™(M) of smooth real valued functions compactly supported
on M, which satisfy the following relations (for all f\, fo e CffiM) and for all pairs
of real numbers Ai, A2):

2. HXifi + A2/2) =
3. 2

4.

where A denotes the classical 'advanced minus retarded' fundamental solution (or
'commutator function') discussed in the previous section. (Of Relations (l)-(4), it is
thus only Relation (4) which becomes problematic when we attempt to go beyond the
class of globally hyperbolic spacetimes. We shall return to this point below in our
discussion of 'F-locality'.)

To be precise, what we mean by the above statement is that we regard the set of
polynomials, over the field of complex numbers, of the abstract objects, <j>(f), with
/ € C™(M) as a free *-algebra with identity and then quotient by the *-ideal generated
by the above relations.

We have referred above to <f*(f) as a 'smeared quantum field'. While, in our mathe-
matical definition above, this is to be thought of as a single abstract object, we of course
interpret it heuristically as related to the 'field at a point' '<£(#)' by

/ (23)
M
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where rf is the natural volume element (4) defined in the previous section. Of course
we proceed in this way since the "field at a point' is not expected by itself to be a
mathematically well defined entity. This failure of the 'field at a point' to exist is of
course closely related to the singular nature of the commutator function discussed in the
previous section.

Quantum states are defined to be positive, normalized (i.e., CJ(J) = 1) linear func-
tionals on this field algebra. (Here, astateu; is said to be positive if we haveu>04* A) > 0
for all A belonging to the field algebra.) A state LO is thus specified by specifying the set
of all its 'smeared n-point functions'

"(#/i)...#/n». (24)

One expects states of interest to at least be sufficiently regular for these smeared n-point
functions to be distributions - i.e., one expects the expression above to be a continuous
functional of each of the quantities f \ , . . . , fn when the space Co°(M) is topologized
in the V topology. By the Schwartz Kernel Theorem (see the previous section) we may
equivalently regard the n point functions as distributions on M x • • • x M.

By condition (4) above, for any state w, twice the antisymmetric part of the two
point function, u>(< (̂/i)<£(/2)), is simply i A (f\, /a), which is smooth at all (y, z) which
cannot be connected by a null geodesic. Furthermore, for the reasons discussed, e.g.,
in [32, 30, 56] and briefly reviewed below, we require that (twice) the symmetrized
two-point function (i.e., w(<£(/i)<£(/2)+<t>(h)<l>(fi)) should (at least) be a locally weakly
Hadamard distributional bisolution as defined in Sect. 3. In this paper, we shall refer to
states satisfying this condition as 'Hadamard states'. Note that this notion only restricts
the two-point function and does not restrict the other n-point functions; we shall not
need to concern ourselves here with the question of what should be required of the
short distance behaviour of other n-point functions in order for a state to be physically
realistic.

The main reason for requiring that a state satisfy this Hadamard condition is that it
is necessary in order that the following 'point-splitting procedure' yield well-defined,
finite values at each point y for quantities such as the renormalized expectation value in
that state of <j>2 or of the quantum stress-energy tensor Tab

 6- We define the expectation
value of <j>2(y) at a point y by taking the neighbourhood Ny of y as in the previous
section and setting

= Km i(w(#*W(* /) + <t>{x')<j>{x)) - iJ(n)(*, *')) , (25)
{xtx')-*iyty) 2

where H(n)(ar, x1) is an appropriate locally constructed Hadamard parametrix, i.e., it is
a function - defined on the neighbourhood Cy consisting of all pairs of non-null related
pairs of points in Ny - of the form (21) with a particular, locally defined algorithm used
to obtain wM (see, e.g., [56] for further discussion). In Eq. (25), it is understood that,
before taking the limit, each of the terms in the outer parentheses is defined initially on
Cy (where they make sense as smooth functions). Because the state is assumed to satisfy
the above Hadamard condition, the full term in parentheses will then clearly extend to a
continuous (in fact, Cn) function on Ny x Ny, thus ensuring that the limit will be well
defined. There is a similar, but more complicated, formula corresponding to (25) for

involving suitable (first and second) derivatives with respect to x and x' in the

6 Note also that, on a globally hyberbolic spacetime, the quasi-free Hadamard states satify a number of
desirable properties [51] including local quasiequivalence.
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terms in parentheses and also involving the addition of a certain local correction term
[54,56]. The resulting prescription for w(Tat> (y)) then satisfies a list of desired properties
which uniquely determines it up to certain finite renormalization ambiguities [53,56].
This justifies the use of the point-splitting procedure, thus leading to the conclusion that
the (locally weakly) Hadamard condition on a state must be satisfied in order to ensure
that the expectation values of the stress-energy tensor be well-defined.7

Next we turn to consider what it might mean to quantize the covariant Klein-Gordon
equation on a spacetime (M, gab) which is not globally hyperbolic. Our approach will
be to postulate what might be regarded as "reasonable candidates for minimal necessary
conditions' for any such theory. In other words, we consider statements which begin with
the phrase 'Whatever else a quantum field theory (on a given non-globally hyperbolic
spacetime) consists of, it should at least involve . . . ' We shall consider independently
two candidate conditions of this type:

Candidate Condition 1. Whatever else a quantum field theory consists of, it should
at least involve a field algebra satisfying F-locality [30]. In other words (see [30] for
more details) it should involve a field algebra which is a star algebra consisting of
polynomials in "smeared quantum fields' <£(/) which, just as in the globally hyperbolic
case, satisfies the Relations (1), (2) and (3) listed above. Additionally, (this is the F-
locality condition of [30]) one postulates that Relation (4) (which, as we mentioned
above is the one relation for which the assumption of global hyperbolicity is needed)
should still hold in the following local sense: Every point in M should have a globally
hyperbolic neighbourhoodU such that, for all f\, fi € C^QA), Relation (4) holds with
A replaced by Au, where, by A H , we mean the advanced minus retarded fundamental
solution for the region W, regarded as a globally hyperbolic spacetime in its own right.8

In defence of such a condition, let us simply say here (see [30] for further discussion)
that it is motivated by the philosophical bias (related to the equivalence principle) that,
on an arbitrary spacetime, the 'laws in the small' for quantum field theory should
be the same as the familiar laws for globally hyperbolic spacetimes. We remark that
it is easy to see that the familiar laws for globally hyperbolic spacetimes, as given
above, are themselves F-local. It is also known that there do exist some non-globally
hyperbolic spacetimes which admit field algebras satisfying F-locality. (In the language
of [30], there exist some non-globally hyperbolic F-quantum compatible spacetimes.)
In particular there do exist F-quantum compatible spacetimes with closed timelike
curves, for example the spacelike cylinder - i.e., the region of Minkowski space (say
with Minkowski coordinates (£, x, y, z)) between two times - say t\ and *2 - with the
(ar, y, z) coordinates of opposite edges identified. (See [30] for the case of the massless
Klein-Gordon equation, and [10] for the massive case.)

Of course, as anticipated in [30], the above philosophical bias could be used to argue
for a slightly different and possibly weaker locality notion. In this connection, we remark
that, since a first version of this paper was written, evidence has emerged [11] that the

7 In fact, since one only requires the difference between the two point function and the locally constructed
Hadamard parametrix, H, to be C2 , it would clearly suffice for the well-definedness of expectation values of
the renonnalized stress-energy tensor to replace the condition of being locally weakly Hadamard (see before
(21)) by a weaker condition where one only demands that u / n ) be C2 for n > 2. We remark that it is easy to
see that our Theorem 2 would continue to hold with such a further weakening of the Hadamard condition.

8 In [30] the F-locality condition was stated slightly differently; namely that every neighbourhood of every
point in M should contain a globally hyperbolic subneighbourhood£/ such that, for all / i , / 2 € C™(U),
Relation (4) holds with A replaced by Au. However, it is clear from the F-locality in this latter sense of the
usual field algebra on a globally hyperbolic spacetime (see [30]) that this is equivalent to the condition given
here.
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examples of F-quantum compatible chronology violating spacetimes mentioned above
are unstable in the sense that there are arbitrarily small perturbations of these spacetimes
which fail to be F-quantum compatible. On the other hand, as is also pointed out in [ 11],
if one replaces the condition of F-locality by the weaker notion of F-locality modulo
C°°9, then these examples of allowed chronology violating spacetimes would become
stable and there would be many other stable examples (i.e., of chronology violating
spacetimes which admit field algebras which are F-local modulo C°°).

Candidate Condition 2. Whatever else a quantum field theory consists of, it should at
least involve a field algebra satisfying Relations (1), (2) and (3) listed above, and, in
addition, there should exist states for which (twice) the symmetrized two-point function
is a locally weakly Hadamard distributional bisolution G(f\, fi).

The motivation for requiring the existence of a field algebra satisying (l)-(3) is, of
course, the same as for Candidate Condition 1. One also can motivate the requirement
of the existence of Hadamard states by a philosophical bias similar to that motivat-
ing the F-locality condition: The theory should admit 'physically acceptable states',
and these physically acceptable states should have the same local character as in the
globally hyperbolic case. However, there is additional strong motivation for requiring
the existence of Hadamard states: Let (M, gab) and (M', g'ab) be spacetimes - one or
both of which may be non-globally-hyperbolic - for which there exist open regions
O C M and Of C Mf which are isometric. Let u; be a state on the field algebra
of (M, gab) and let a/ be a state on the field algebra of (M', g'ab). Use the isometry
between O and Of to identify these two regions. Then, it is natural to postulate that -
under this identification- for all y € O the difference between w(Tab(y)) and u'(Tab(y))
should be given by the point-splitting formula in terms of the difference between the
symmetrized two-point functions of u; and a/ whenever this formula makes sense; fur-
thermore, when this formula does not make sense, the difference between u>(Tab(y)) and
^(Tabiy)) is ill defined or singular. (This postulate may be viewed as a generalization
to non-globally-hyperbolic spacetimes of the main content of the stress-energy axioms
(1) and (2) of [56].) If so, and if in the globally hyperbolic case u>(Tab(y)) is given by
the point-splitting prescription as described above, then the locally weakly Hadamard
condition on the symmetric part of the two-point function - or slight weakenings thereof
(see Footnote 7) - must be satisfied in order to have an everywhere defined, nonsingular
w{Tab)- lfu(Tab) were singular for every state w, the theory clearly would be unaccept-
able on physical grounds, since singular 'back reaction' effects would necessarily occur
for all states, thereby invalidating the original background spacetime upon which the
quantum field theory was based.

5. Theorems

We are now ready to state and prove our main theorems, which establish that neither
of the two Candidate Conditions of the previous section can be satisfied by a Klein-
Gordon field on a spacetime, (M, gab\ with compactly generated Cauchy horizon. These
theorems are direct consequences of the Propagation of Singularities Theorem of Sect. 3
(applied to the relevant distributional bisolutions) in combination with the geometrical
property of base points expressed in Proposition 2 of Sect. 2.

9 I.e., for which the above italicized definition holds when one replaces AJJ by Au + F for some
(antisymmetric) F € C°°(U x U).
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Theorem 1. There is no extension to (M, gab) of the usual field algebra on the initial
globally hyperbolic region D(S) which satisfies F-locality at any base point (see Sect. 2)
of the Cauchy horizon.

Proof Let x £ B and let U be any globally hyperbolic neighbourhood of x. To prove
the claimed violation of F-locality, it clearly suffices to prove that the restrictions of
Af>(5) and A^ to U O D(S) cannot coincide, where A#(S) denotes the advanced minus
retarded fundamental solution for the initial globally hyperbolic region D(S)9 and A#
denotes the advanced minus retarded fundamental solution for U. However, this follows
immediately from the fact that these two quantities cannot take the same values at the
pair of points (y, z) of Proposition 2 of Sect. 2. Indeed, since (y, z) are spacelike related
in the intrinsic geometry of U, Au must clearly vanish at this pair of points. On the
other hand, it follows from the explicit description of the wave-front set of the advanced
minus retarded fundamental solution on any globally hyperbolic spacetime, as given in
Sect. 3, that AD(S) must be singular at the pair (t/, z) because they are null related in
the spacetime D(S). •

By repeating this argument with Ap(S)(Fi, Fi) replaced by the commutator
uf(<t>(Fi)<f>(F2) — <j>{F2)<t>{F\)) and using the Propagation of Singularities Theorem, the
following closely related theorem also can be readily proven:

Theorem 1'. Under the mild extra technical condition that the algebra admits at least
one state u for which the smeared two point function w(<j>(f\)<j)(f2)) is distributional
then there is no field algebra whatsoever which satisfies F locality (Le., in the language
of [30], spacetimes with compactly generated Cauchy horizons are non-F'-quantum
compatible.)

We remark that it is easy to see that Theorems 1 and 1' will continue to hold if one
replaces the notion of F-locality by the weaker notion (see Sect. 4) of F-locality modulo
C°°. (See [11] for further discussion.)

We note that, in the very special case of the massless two-dimensional Klein-Gordon
equation on two-dimensional Misner space, Theorems 1 and 1' had been obtained
previously by relying on the explicitly known propagation of the two-dimensional wave
equation. (See [30].)

The following theorem establishes that Candidate Condition 2 cannot hold:

Theorem 2. Let G be a distributional bisolution on (M, gab) which is everywhere
locally weakly Hadamard on the initial globally hyperbolic region D(S). Then G fails
to be locally weakly Hadamard at any x E B in the following severe sense: The
difference between G and any locally constructed Hadamard parametrix HM (see
Eq. (25) above) will fail to be given by a locally L2 function on N x N, where N is
any convex normal neighbourhood ofx (so that HM is well defined on N x N). Thus,
for any n, G — i7 ( n ) cannot be given by a continuous, nor even by a bounded function
on N x N, and quantities such as the renormalized expectation value of <f>2 or the
renormalized stress-energy tensor must be singular or ill defined at any base point of
the Cauchy horizon.

Proof Let U be a globally hyperbolic subset of N containing x. Let (t/, z) be as in
Proposition 2 of Sect. 2, so that y and z are spacelike-separated in (JA,gab) but are
joined by a null geodesic, a, in M. Let i/ G U lie along a sufficiently near to y to be
contained within the convex normal neighbourhood of y appearing in the locally weakly
Hadamard property of G. Then we know by the discussion at the end of Sect. 3 that
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G must fail to belong to the space L^iy, pa; 2/, p'b) for some pair pa at y and p'h at 2/
of null tangents to this null geodesic, which moreover cannot both be zero. Assuming
that pa does not vanish (otherwise, in what follows replace (y, pa) by (y7, p'a)) we may
conclude by Part (ii) of the Propagation of Singularities Theorem of Sect. 3 that G
cannot belong to the space L^iy,pa',z, qt>) for some null covector qt, at z. It follows
that G cannot belong to Lf^iy, z). On the other hand, H{n) is non-singular at the pair
(y, z), since y and z are spacelike-separated in U. We conclude that G — i7 ( n ) cannot
arise from a locally I? function on N x N. D

It is clear from the proof of Theorem 2 that the failure to be locally 1? must already
occur if one restricts attention to the part of the neighbourhood N which lies in the
initial globally hyperbolic region D(S). In fact we have:

Theorem 2' (slightly stronger than Theorem 2). Let G be a distributional bisolution
on (M, gab) which is everywhere locally weakly Hadamard on the initial globally
hyperbolic region D(S) and let N be any convex normal neighbourhood of any x E B.
Then G - H(n) fails to be given by a locally L2 function on N C\ D(S).

This is now a statement entirely about the behaviour of the quantum theory on the
initial globally hyperbolic region D(S) as one approaches a base point. Thus it seems
fair to conclude from this theorem that something must go seriously wrong with the
quantum field theory on the Cauchy horizon almost independently of any assumptions
(cf. e.g., 'Candidate Condition 2' in the previous section) about what would constitute
an extension of the quantum field theory beyond the initial globally hyperbolic region.

It is also worth remarking that nowhere in the proof of Theorem 2 have we made
any use of the positivity conditions (see e.g., [29, 20, 30]) required of a symmetric
distributional bisolution (on a globally hyperbolic spacetime) in order for it to arise as
(twice) the symmetrized two-point function of a quantum state on the field algebra of
Sect. 4. Also, it should be noted that Theorem 2 would continue to hold if one were to
weaken the notion of 'locally weakly Hadamard* along the lines indicated in Footnote
7.

Finally we recall (see end of Sect. 2) that the theorems of this section will also hold
for any spacetime (such as four dimensional Misner space) which arises as the product
with a Euclidean 4 — d space of a spacetime with compactly generated Cauchy horizon
of lower dimension d.

6. Discussion

In this section, we make some remarks concerning the significance of our theorems, and
also discuss a number of directions in which these theorems may be further generalized.

First, we attempt to clarify the significance of our theorems by contrasting the
situation for quantum field theory on spacetimes with compactly generated Cauchy
horizons with that on spacetimes with Killing horizons. Theorems 1 and 2 here are
concerned with a particular instance of a situation where one asks about the extension of
a quantum field theory (in our case, the covariant Klein-Gordon field) from some given
globally hyperbolic spacetime (iV, hab) to a larger spacetime (M, gab)- In the situation
addressed by Theorems 1 and 2, (M, gab) is a spacetime with compactly generated
Cauchy horizon, and (N, hat) its initial globally hyperbolic region D(S). However,
another, familiar (see e.g., [18, 50, 2, 32, 56]) instance of such a situation is the case
where (M, gab) is Minkowski spacetime and (AT, hab) the Rindler wedge. (Equally, we
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could take the case where (M, gab) is the Kruskal spacetime and (iV, hab) the exterior
Schwarzschild spacetime, etc.) It is interesting to contrast these two situations. In the
Minkowski-Rindler wedge case, of course, both spacetimes are globally hyperbolic and
it is clear that the field algebra one would construct for the Rindler wedge - regarding
it as a globally hyperbolic spacetime in its own right - is naturally identified with the
subalgebra of the Minkowski spacetime field algebra associated with the Rindler wedge
region. Thus the field algebra on Minkowski spacetime (which is, of course, F-local)
certainly constitutes an F-local extension of the field algebra for the Rindler wedge.
Thus there is no analogue of Theorem 1 in this case. Let us next turn to the question of
whether there are any Hadamard states on the Rindler wedge algebra whose symmetrized
two point distributions extend to everywhere locally weakly Hadamard (symmetric)
distributional bisolutions on the whole of Minkowski space. (We shall refer to this, from
now on, as the question whether 'Hadamard states have Hadamard extensions'). It is
certainly the case that most Hadamard states on the Rindler wedge have no Hadamard
extension to the whole of Minkowski space. For example, the Fulling vacuum (i.e.,
the ground state for the one-parameter group of wedge-preserving Lorentz boosts), as
well as the KMS states with respect to the group of wedge-preserving Lorentz boosts
at all 'temperatures' except T = l/2ir (which corresponds to the Minkowski vacuum
state) fail to have Hadamard extensions.10 In fact, it is well known that, for all these
states, the expectation value of the stress-energy tensor diverges as one approaches
the horizon. Nevertheless, there do of course exist Hadamard states on the Rindler
wedge which have Hadamard extensions to the whole of Minkowski spacetime and
for which the stress-energy tensor is bounded: namely the restrictions to the Rindler
wedge algebra of Hadamard states on Minkowski space! Prior to the results in the
present papa*, it was unclear to what extent the situation was analogous for Hadamard
extensions of Hadamard states on the initial globally hyperbolic region D(S) of a
spacetime (M, gab) with a compactly generated Cauchy horizon. The work of Kim and
Thorne [33], Hawking [23], Visser [52], and others strongly suggested that (just as in
the Rindler-Minkowski situation) most Hadamard states on D(S) have a stress-energy
tensor which diverges on the Cauchy horizon. However, there were also examples -
albeit in the context of two-dimensional models [37], or for special models involving
automorphic fields [46, 47] (see Sect. 1) - of states on D(S) for which the stress-
energy tensor vanished. Thus one might have thought that (as in the Rindler-Minkowski
situation) there could still be some/many Hadamard states on D(S) with Hadamard
extensions to (M, gab)- Theorem 2 proves that this is not the case. Furthermore, while it
does not rule out the possible existence of Hadamard states on D(S) for which the stress
energy tensor is bounded, it still implies that any such state must have a stress-energy
tensor which is singular at the base points of the Cauchy horizon. In this important
sense, the situation for spacetimes with compactly generated Cauchy horizons is thus
quite distinct from the Minkowski-Rindler situation.

Finally, we point out that theorems similar to Theorems 1 and 2 will clearly hold
in any spacetime (not necessarily with a compactly generated Cauchy horizon) which
contains an almost closed (but not closed) null geodesic or a self-intersecting (but not
closed) null geodesic (since, clearly, the same conclusions that hold for the base points
of Proposition 2 of Sect. 2 will hold for any accumulation point, respectively for any
intersection point). Thus, in particular, analogues of Theorems 1 and 2 will hold for

10 In fact, as proven in [32,31], the Minkowski vacuum state is the only globally Hadamard state (satisfying
a 'no zero mode' condition) on Minkowski space which is globally invariant under the same group of Lorentz
boosts and an analogous result holds for the analogous Kniskal-Schwarzschild situation and a wide range of
other analogous situations involving spacetimes with bifurcate Killing horizons.
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points on the 'polarized hypersurfaces' in the time-machine models discussed by Kim
and Thome [33], Gott [21], Grant [22], and others since these contain self-intersecting
null geodesies. For further discussion, see [7] where it is pointed out that, because of the
accumulation of polarized hypersurfaces at the chronology horizons of these models,
analogues of Theorem 2 - but not Theorem 2' - will hold for points on the chronology
horizons of Gott and Grant space. As remarked in [7], this result holds notwithstanding
the existence of the states exhibited by Boulware [3] (for sufficiently massive fields on
the initial globally hyperbolic region of Gott space) and Tanaka and Hiscock [48] (for
sufficiently massive fields on the initial globally hyperbolic region of Grant space) for
which the stress-energy tensor is bounded (i.e., on the initial globally hyperbolic region).
Moreover analogues of Theorems 1 and 2 are expected to hold in most spacetimes which
contain a closed null geodesic since generically, the same conclusions as hold for the
base points in Proposition 2 of Sect. 2 will hold for each point on such a geodesic.
However, we remark that there do exist very special cases of spacetimes with closed
null geodesies for which (for suitable field theories) F-local field algebras do exist and
everywhere locally Hadamard (symmetric) distributional bisolutions do exist. One such
special spacetime is the double covering of compactified Minkowski space. (We are
grateful to Roger Penrose for pointing this example out to us.) The special feature of
this spacetime which makes it possible to evade the conclusions of Proposition 2 of
Sect. 2 and hence to evade the arguments of Theorems 1 and 2 is that the entire light
cone through any point, when globally extended, refocusses back onto that point. It is not
difficult to see that, on this spacetime, the field algebra obtained by conformally mapping
the field algebra for the massless Klein-Gordon equation in Minkowski space extends
to an F-local field algebra (i.e., for the conformally coupled massless Klein-Gordon
equation). Equally, (twice) the conformally mapped symmetrized two-point function
for the massless Klein-Gordon equation on Minkowski space extends, on this spacetime
to an everywhere locally Hadamard distributional bisolution (again of the conformally
coupled massless Klein-Gordon equation). A two-dimensional example with similar
behaviour is provided by the two-dimensional massless Klein-Gordon equation on the
two-dimensional 'null strip' - i.e., the region between two parallel null lines in two-
dimensional Minkowski space with opposite edges identified (by identifying points
intersected by the same null lines).
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