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Abstract: We study conditions under which an odd symmetry of the integrand leads
to localization of the corresponding integral over a (super)manifold. We also show
that in many cases these conditions guarantee exactness of the stationary phase
approximation of such integrals.

1. Introduction

Localization formulae express certain integrals over (super)manifolds as sums of
contributions of some subsets of these manifolds. Such formulae were studied in
various contexts both in mathematics and physics. Some important examples of
localization formulae are based on the theory of equivariant cohomology (see [3]
for a review of the theory and its applications). One famous particular case is the
Duistermaat-Heckman integration formula [5] which became a powerful (though not
completely rigorous) tool in Quantum Field Theory (QFT). In the context of QFT,
the Duistermaat-Heckman theorem gives sufficient conditions for exactness of semi-
classical approximation of field theoretical models (see [4, 11] and references therein
for a review of applications of Duistermaat-Heckman and some other localization
formulae to QFT).

The aim of the present paper is to derive very general localization formulae
in the framework of supergeometry. Namely, we consider an integral over a finite
dimensional (super)manifold M, where the integrand is invariant under the action of
an odd vector field Q. We formulate sufficient conditions on M and Q under which
the integral localizes onto the zero locus of the number part of Q. It is important
to stress that without the conditions below, the localization formula can be wrong.
(Physicists often used the localization formulae without rigorous justification and
without mentioning the conditions of applicability of these formulae).

One of the possible ways to apply the theorems of the present paper is based on
the use of the Batalin-Vilkovisky [1] formalism where the calculation of physical
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quantities reduces to the calculation of integrals of functions invariant with respect
to an odd vector field. However the conditions of our theorems are not always
satisfied in this situation.

In the present paper we do not consider concrete examples of the application
of our results. Let us mention only that they can be used, for instance, to calculate
integrals of OSp{n | /w)-invariant functions and obtain the statement about dimen-
sional reduction in the Parisi-Sourlas model [7] and in similar situations [8].

To conclude the introduction let us define a technically convenient notion of
compact vector field which will be used throughout the paper: we say that a vector
field A on a (super)manifold M is a compact vector field if it generates an action
of a one-parameter subgroup of some compact group G of transformations of M.
In other words we assume that there exists a homomorphism q>* of the Lie algebra
^ of the compact Lie group G into the Lie algebra Vect(A/) of vector fields on M
such that A E Im q>*.

One can say also that the vector field A on M is compact if the closure GA of the
one-parameter group generated by A in Diff(M) is compact. Here Diff (M) denotes
the group of diffeomorphisms of M equipped with the compact open topology (see
[6]). It is easy to see that GA is a commutative connected compact Lie group.
Therefore it is isomorphic to a torus. The space of compact vector fields on M will
be denoted by Jf(M).

Several definitions we use are explained in the Appendix. All manifolds, maps,
functions considered in this paper are assumed to be smooth.

2. The Duistermaat-Heckman Formula in the Language of Supergeometry

First let us recall the conventional formulation of the Duistermaat-Heckman inte-
gration formula (see [3] or [4] for a review).

Let {Wln, Q) be a compact 2w-dimensional symplectic manifold with a symplectic
form Q = QiJ(x)dxidxJ. Let X G Jf(W) be a compact Hamiltonian vector field. Let
us denote the corresponding Hamiltonian by H. The Duistermaat-Heckman theorem
states that

/ QneiH = sum of contributions of the zero locus of the vector field X . (1)
w

If in particular the zero locus R of X is a finite subset of W and all zeros of X are
non-degenerate then

J QneiH = in V eQ-fsgtt/y(/>)) ^ (2)
w feR y/detUess H(p)

where HessH(p) stands for the Hessian of H at the point p and sgnH(p) is the
signature of HessH(p).

To show the relation of the Duistermaat-Heckman theorem to supergeometry we
notice, following [11], that the left-hand side of (1) can be rewritten as an integral
over a supermanifold. Namely, it is easy to check that

/ QneiH = r" / ft d
W TlTWk^X
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where IITW denotes the total space of the tangent bundle over W with reversed
parity of the fibers. In other words if (JC\. . . ,JC2 / I) is a local coordinate system in
W, then a local coordinate system in UTW consists of even coordinates (JC1, . . . , JC2/I)

and odd coordinates (£*,..., (J2"); the coordinates (£*,..., £2w) transform as a vector
by the change of local coordinates (x1 , . . . ,*2").

A function on IITW can be identified with a differential form on W. Using
this remark we can identify the exponential S(JC,<0 = H(x) + Qjj(x)£l& with the
(inhomogeneous) differential form H + Q. Let us consider the vector field Q =
%'w +^ r | (*)4 r # ^ a n ° P e r a t o r acting on forms on M, Q coincides with the "equiv-
ariant differential" d + ix, where ix denotes the contraction with the vector field X.
It is easy to check that the function S(x, {) on IITW satisfies QS = 0. (The differ-
ential form H + Q obeys (d + ix)(H + Q) = 0 because X is a Hamiltonian vector
field with Hamiltonian H.)

We conclude from this that the Duistermaat-Heckman theorem can be reformu-
lated in the following way:

/ dVe? = sum of contributions of the zero locus of the vector field Q . (4)
mw

Notice that Q is an odd vector field on IITW such that Q2 € Jf(IITW). Let us
explain this fact. There exists a natural homomorphism of the algebra of vector
fields on W into the algebra of vector fields on IITW. (An infinitesimal diffeomor-
phism of W induces an infinitesimal diffeomorphism of IITW.) This homomorphism
transforms a vector field X into the Lie derivative Lx, considered as a vector field
on IITW (recall that the functions on IITW can be considered as forms on W;
therefore the Lie derivative can be regarded as a first order differential operator act-
ing on functions on IITW). It is clear that when a vector field A on W generates an
action of a subgroup of a compact Lie group, the corresponding vector field LA also
generates an action of a subgroup of the compact Lie group on IITW. We identified
Q with d + ix9 therefore Q2 is identified with dix + ixd — Lx. Thus we conclude
that Q2 e JT(IITW).

In (4), dV stands for f j^ i dxld^\ which is the canonical volume element on
IITW. Note that this volume element is (^-invariant; i.e., the divergence of Q with
respect to dV vanishes: d i v ^ g = 0. (The notion of divergence is naturally gener-
alized to the case of vector fields on an arbitrary supermanifold M by the formula
fM dV(Q • / ) = - JM dV(divdvQ)f).

Equation (4) is equivalent to Eq. (1) by virtue of (3) and the one-to-one corre-
spondence between sets of zeros of Q and zeros of X.

It is natural to conjecture that Eq. (4) remains correct if IITW is replaced
with an arbitrary supermanifold M, Q is an odd vector field on Af, dV is
any g-invariant volume form on M, and S stands for any g-invariant function.
We will see that this conjecture is essentially correct if Q2 € Jf(M); i.e., it is
compact.

3. Localization of Integrals over Supennanifolds

In this section we will formulate and prove several statements giving sufficient
conditions under which an integral over a supermanifold M is localized on a certain
subset of M.
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In what follows M is a compact supermanifold with dimM = («+,/*_). For any
vector field F on M we denote by RF CM the zero locus of its number part m(F).

Theorem 1. Let M be a compact supermanifold with a volume form dV. Let Q
be an odd vector field on M which satisfies the following conditions:

(i)

(ii)

Then for any neighborhood U(RQ) of RQ in M there exists an even Q-invariant
function go which is equal to 1 on some neighborhood O{RQ) C U(RQ) of RQ and
vanishes outside of U(RQ). For every Q-invariant function h E C(M) and every go
obeying the above conditions we have

fdVh = fdVgo-h. (5)
M M

The proof of Theorem 1 can be deduced from the following.

Lemma 1. There exists an odd Q2-invariant function a on M which satisfies

Proof of Lemma 1. Let us begin with preliminary remarks concerning the structure
of the supermanifolds. Consider an ordinary manifold N and a vector bundle a
over N. Then we obtain a supermanifold from the total space of a by reversing the
parity of fibers. This manifold will be denoted by TIOLN (a particular case of this
construction was used in Sect. 2). It is well known that every supermanifold can be
obtained by means of this construction [2].

If we begin with a supermanifold M, then the construction of a bundle a over
N = m{M) with M = IIa(N) can be described in the following way: let us fix an
atlas of the supermanifold M. Even local coordinates will be denoted by Latin letters,
odd local coordinates will be denoted by Greek letters. Let us represent the tran-
sition functions from local coordinates (JC1 , . . . ,X / I+;<^1 , . . . ,^ / 1-) to local coordinates
(Jci,...,xn+; I1,...,<f" ) as follows:

*• = / « + • • , (6)

? ^ + -.., (7)
where the omitted terms are of higher order with respect to the £'s. The set of
functions fl can be considered as the set of transition functions between local
coordinate systems on the body N of M. The functions <f>°p are transition functions
of a bundle a over N. One can prove that M is diffeomorphic to II(x(N). There
exists also an invariant construction of the bundle a (which is often referred to as
the conormal bundle, see [2]).

There is a natural homomorphism of the group Diff (A/) of diffeomorphisms
of M into the group of automorphisms of the bundle a (the existence of such
a homomorphism follows immediately from the existence of an invariant construc-
tion of a). Even vector fields on M can be considered as infinitesimal diffeomor-
phisms of M. Therefore they generate infinitesimal automorphisms of the vector
bundle a. In other words there exists a natural homomorphism of the Lie algebra
of vector fields on M into the Lie algebra of infinitesimal automorphisms of the
vector bundle a; the infinitesimal automorphism corresponding to the vector field A
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will be denoted by A. In local coordinates (z) = (jt',^*) on Af,

where c^(z) = a*a(jc) H , ba(z) = 6a(x) H . Here and below we denote the
higher order terms in f s by • •. Also, Q1 = £ £ , # ( z ) £ + E ^ i 1%Z)&W> w h e r e

Ar'(z) = Ar'Ot) + • • -, /£(z) = /£(*) + • • -. The coefficients £'(z), /£(z) can be easily
expressed in terms of a*a(z\ba(z)9 but we will not need explicit formulae. It follows
from [Q,Q2] = 0 that

^ ^ = 0 . (9)

It is easy to see that b*(x) defines a section of the bundle a; by definition this
section coincides with the number part of Q. The relation (9)_shows that this section
is invariant with respect to the infinitesimal automorphism Q2 of the bundle a. In
the conditions of Theorem 1 we can assume without loss of generality that the group
generated by Q2 is dense in some compact group G of transformations of M. We
conclude from this fact and from (?2-invariance of the section b" that this section
is also invariant with respect to the natural action of the group G on the bundle a.

Consider now any odd function a on M. In local coordinates a(z) = (Ta(jc)^a+
higher order terms in £'s. It is clear therefore that a determines a section of the
vector bundle a* dual to a. Let gap(x) be a G-invariant non-degenerate scalar product
on the fibers of a(m(Af)), establishing an isomorphism a(/w(M)) = a*(/w(M)). Such
a scalar product always exists, since G is compact. Let us take an odd function a
on M such that

One can assume that a is G-invariant. (If a is not G-invariant take its average with
respect to G. As b* and gap are G-invariant this operation does not change the terms
linear in £'s.) Therefore Q2a = 0 and m(Qa)(x) = 0a/?(*)*aOO*^(x)*O, whenever
x & RQ. This completes the proof of the lemma.

The lemma admits a simple corollary.
Let us introduce the notation

( 1 0 )

where a is the function constructed above. The odd function /? is defined on the
complement of RQ in M and satisfies there the condition QP = 1. (To check the.
last fact note that (QG)P = a and apply Q to both sides of this equation.)

Consider now an arbitrary neighborhood U(RQ) of RQ. Using the function j8 one
can construct a partition of unity on M , ^ n e J ^ n = 1, which satisfies the following
conditions:

i) supp(0O)C U(RQ),0 eJ,

ii) There exists a neighborhood O(RQ) of RQ such that (11)

O(RQ) C U(RQ) and g0 \o(R6)= 1 ,

iii) Qgn = 09n € J9gn = Qpn,n*0 ,

where the prt's are some odd functions on M.
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Proof. One can choose a finite atlas {Un,n G / } of M such that RQ C U « € / ' C / ^n c-
U(RQ) and O(RQ) n (LU/\ / ' un) = ®- Now take a partition of unity on M, £ w € /
/„ = 1, such that supp(/w) C Un9n G / . Without loss of generality we can con-
sider this partition of unity to be G-invariant (otherwise take its average with
respect to the action of group G). Therefore our partition of unity is also Q2-
invariant The partition of unity having the desired properties is given by {gn,n G J},
where J = (7\/') U {0}9gn = Q(pfn\n G I\I\g0 = 1 - £n€/\ / ' 9n- To prove this
note that by construction E n e / y /»(P) = 0 for /? G O(RQ) and E n e i y f»(P} = 1

for p*\JH&,Um. Then £ w € / V , QWf*XP) = 1 f<* Ptlkei'U* ™d E.efV'
Q(PfnXp) = 0 for p G R. Also, Q(Q(pfn)) = 0, as 02 /* = 0,/i G /.

Thus the existence of the g-invariant partition of unity satisfying (11) is
proved.

Now we are in position to complete the proof of Theorem 1. Namely, consider
an integral Z = JM dVh9 where h is any (g-invariant function on M. Using the
g-invariant partition of unity satisfying (11) one can rewrite an expression for Z in
the following way:

Z= £ JdVQ(pnh) + fgoh.
nei\I'M M

But divdvQ = 0, therefore JM dVQ(pnh) = 0 for all n G I\V. So we conclude
that

Z = JdVgoh, (12)
M

supp(0o) C U(RQ) C M,S0O = O,0o \o(RQ)= 1 . (13)

The last thing to be proved is that the function go entering the partition of unity
can be replaced by any function obeying (13) without changing the value of the
integral (12). Suppose there is an even function gQ on M which obeys (x) with
O(RQ) replaced by O(RQ%RQ C O(RQ) C U(RQ). But then (g0 - g0) |O(^)no(^)
= 0, therefore go — g0 = Q(P(go — §o))> where /? is defined by the formula (x). We
arrive at the desired result by means of the following simple calculation:

/ dVgoh - J dVgoh = J dVQ(P(g0 - go))h = J dVQ(Ph(g0 -go)) = O.
M M M M

This completes the proof of Theorem 1.

One can weaken the conditions on Q2 in Theorem 1 in the following way.
Notice that the condition Q2 G Jf(M) means that there exists a compact group
G C Diff(M) such that Q2 can be represented in the form

dimG

Q2= E Pi*u A € R , (14)
1=1

where {^}£?G is a basis of Lie algebra ^ of G. It is always possible to choose
G = GQI (see the Introduction). Then the one parameter subgroup generated by Q2

will be dense in G.
One can generalize Theorem 1, assuming that the coefficients /?, in (14) are

arbitrary even functions on M. In the proof of Theorem 1 we used the fact
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that the pfs are constants only once - when we proved that from 02-invariance
of the section ba we can derive the invariance of this section with respect to
the natural action of the group G on the bundle a. However the G-invariance
of the section b* can be proved if we know just that the vector field Q is
G-invariant

From this remark it becomes clear that one can prove the following statement:

Theorem 2. Suppose that all conditions of Theorem 1 are satisfied except (ii).
Impose instead the following conditions on Q:

dimG
a) Q = ^Z Piei\ where pi are even functions on M .

1=1

b) The vector field Q on M is G-invariant.

Then the conclusion of Theorem 1 is true.

It follows from Theorems 1 and 2 that the values of the function h on the comple-
ment to an arbitrary neighborhood of RQ are irrelevant in the calculation of fM dVh.
One can express this statement by saying that this integral is localized on RQ.

Now let us discuss the localization of the integrals of functions invariant with
respect to several anticommuting odd symmetries. We will prove the following.

Theorem 3. Let {i3i}£Li be odd anticommuting volume preserving vector fields
on M (Le.9 {QhQj} = Ofor i^j,&VdvQi = 0,1 ^ ij ^ N). Let us assume that
{&,&} € X(M) and RQi = RQ, 1 ^ i S N.

Then for every function h on M, obeying Q\h = Qih = • • = Q^h = 0, the
integral of h over M is localized on RQ1 n RQ2 fl • • • PI RQN.

The precise meaning of the word "localized" is explained above.
To prove Theorem 3 let us notice that it follows from {Qi,Qj} = 0 that

[QhQj] — 0. Consider the group G, = [e*& ] defined as the closure of the one-
parameter subgroup {e*®*} c Diff (A/) in the compact open topology on Diff(M)
(see Introduction). Taking into account that Qf commutes with Qj we see that the
subgroups Gi and G, of Diff(M) commute (we use the fact that the one-parameter
subgroup {etQ*} is dense in the corresponding group Gz).

This means that the group G = G\ x G2 x • • • x G# acts in a natural way on M:

GxM-^M

^ 9\ o • • • ogN(x) .

Consider the odd vector field Q = YM=\ ciQi-> where {ci}^=l is a set of real numbers.
It is easy to check that Qh = O,divrfK0 = 0 and Q2 = Y!L\ C?Q?- Therefore,

Q2 e Seie G and we conclude that Q2 € JT(Jf).
One can choose {ci}f=l in such a way that the one-parameter subgroup gener-

ated by Q2 is dense in G. Then RQI — p(*=l Rg = p ^ RQ{. Taking into account
that RQ C RQ2, we see that RQ C H^LI &Qr ̂ u t Q ^s a l^ar combination of Q/'s,
therefore CiLi^Qi ^RQ- Th^ &Q coincides with UjLi^ft- Using Theorem 1 we
see that the integral JM dVh is localized to RQ = f]f=l RQ{. This proves Theorem 3.
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To conclude the present section let us make the following remark. Theorems 1
and 2 state the localization of integrals of g-invariant functions on the zero locus
RQ of the number part of Q. In the next section we will apply Theorem 1 to give
conditions of exactness of the stationary phase approximation. We will see that under
these conditions one can make the stronger statement that the integrals at hand are
localized on the zero locus KQ of the vector field Q.

4. Exactness of Stationary Phase Approximation

In the previous section we formulated sufficient conditions for the localization of
integrals over supermanifolds. Here we will consider the problem of calculation of
such integrals. Namely, we are going to describe a class of examples in which the
integral can be exactly computed by means of the stationary phase method.

Throughout this section we consider the integral

Z = fdV-h,
M

where h is a Q-invariant function on M and M,dV,Q satisfy conditions of
Theorem 1. This means that our integral is localized on RQ. Denote the zero locus
of Q by KQ. We restrict ourselves to the situations when KQ is either a finite subset
of M or a compact submanifold of M. Moreover, we will assume that the odd
codimension of KQ C M is equal to its even codimension. In the case when KQ is a
finite subset of M the last restriction means that the even dimension of M is equal
to its odd dimension.

Let us begin with one important remark which will be exploited throughout the
rest of the paper. Suppose one can find an odd function a on M such that Q2a = 0.
Then Q(eiX&) = 0 and therefore

^ / dVheaQa = JdVQ(heiXQff) = 0 . •

(To conclude that the last integral is zero we used the fact that the volume element
dV is (2-invariant; i«e-> div</pf? = 0.) We see that JMdVhea®a does not depend
on X. Therefore,

Z = lim JdVheiXQa . (15)
A-»oo M

In what follows we will use (15) with the function a which was constructed in
the proof of Lemma 1.

First we will compute Z for the case when KQ C M is finite. As was mentioned
above we assume in this situation that the even dimension n+ of M is equal to its odd
dimension «_. It follows from the condition of finiteness that actually KQ C m(M).
(To prove this, notice that if the point p € M having local coordinates (*(/?), £(/?))
belongs to KQ, then any point with coordinates (*(/?), c£(/?)), where c is a real
number, also does.)
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Let {z = (x, £)} be a local coordinate system on M centered at a fixed point p
such that Q(p) = 0. In such coordinates

Q = (b'(x) + b%(x)&? + • • O^j + (4(*Ka + • • 0^7 , (16)

where "..." denotes as always higher order terms in ^'s. We call this zero non-
degenerate if det(f£(O)> ^ 0, det(4(0)) ^ 0 (recall that /i+ = *_ ) .

Consider the odd function a constructed in the proof of Lemma 1:

Notice that QG(X, £) = gaLp{x)ba{x)b^{x) + dap(x)^a^ H , where dap(x) is some
matrix. The condition Q(Qcr) = 0 leads to the following relation between dap(Q)
and bfjiO) = -£?£j{9aLpb*bP){0):

(18)

From (18), the nondegeneracy of the zero of the vector field Q at p and the
nondegeneracy of scalar product g it follows that the matrix rfa/?(0) is also non-
degenerate. Therefore the point p e Kg is a non-degenerate isolated critical point
of the function Qa. Consequently, there exists a neighborhood U(p) of the point p
such that p is the only critical point of Qo restricted to U(p). It also follows from
(18) that

sdet(Hesse(T(/7)) = sdet(-J0'(/>)), (19)

where / = antidiag(l, 1,. . . , 1) is 2/i x 2n matrix, Q'{p) is the (super)matrix of first
derivatives of coefficient functions of operator Q at the point p. Let us note that
the condition of non-degeneracy given above can be reformulated in terms of Q1: a
point p is a non-degenerate zero of Q if IQ'(0) is non-degenerate as a supermatrix.
Finally, the answer for Z can be obtained by means of the following calculation:

Z = fdVh7^'1 fdVgoh
(l= lim /dVgoheaQ°

M M ^—*°° M

x- P(P)KP) (1?) ^ P(P)KP) ( 2 0 )

y/sdet(-IQ'(p)) '

where supp(#o) C UP€J^ ^C/7)* S'O \RQ = 1 and f/(/7) are chosen in such a way that
the intersection of the critical set of a with \JpeK U(p) is just KQ\ p(p) is the
volume density at p. The third equality in (20) is due to the formula generalizing
the stationary phase approximation to the supercase (see e.g. [9] for details).

Let us make a few remarks about (20). First, as it should be, the final answer for
Z doesn't depend on the choice of the non-degenerate inner product g^ in a(m(M)).
Second, notice that (20) states that Z is represented as a sum of contributions of the
zeros of Q; this is a stronger statement than the one given by the general theorems
of the previous section.

Finally, consider the integrand of Z in the form h = e*5, where £ is an even
^-invariant function. It is easy to check that Kg is contained in the critical set of
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S. (This fact will be proved below in a more general situation.) Suppose also that
Hess(S) is non-degenerate at every p e KQ. Then one can rewrite (20) as follows:

,2.)
x/sdet(Hess(5f)(/?))

The stationary phase approximation leads to precisely such an expression for Z,
but with p running through the critical set K$ of S. Formula (21) means that
the stationary approximation is exact and the points of KS\KQ do not contribute
to Z.

Now we will discuss more general conditions on h and Q leading to the exactness
of the stationary phase approximation for Z.

Our considerations are based on the following statement:

Lemma 2. Let h be a Q-invariant function on M such that h \KQ = 0. Let us as-
sume that KQ is a compact submanifold of M and suppose Q is non-degenerate on
KQ; i.e., the supermatrix d±Q(p) of transversal derivatives of Q at every p €KQ
is invertible. Then

JdVh = 0. (22)
M

Let us introduce the following system of local coordinates in a neighborhood
of KQ: let {x';<f} = {**',*'";£"',£*"}, 1 g i £ *+, 1 ^ a ^ *_, 1 ^ i' ^ n^,
^ a' ^ /*'_, 1 ^ /" ^ < , 1 ^ a" ^ n'!_, *+ = «'+ + < , * _ = n'_ + n'_i, be such
that KQ is singled out by the equations x1 — 0, £' = 0. In other words the indices
labeled by ' are related to transversal directions and tangent indices are labeled by
". Note that by our assumption n'+ = n'_. Let us also introduce cumulative notations
for even and odd local coordinates in the vicinity of KQ : {z7'} = {x1', £*'},{/"} =
{x1", £ a"}. In this notation KQ is singled out by the equation z' = 0.

We begin the proof with the following remark. Consider any g-invariant function
S on M which is locally constant on KQ (i.e., it is constant on each connected
component of KQ). Then KQ C KS, where Ks is the critical set of S. To see this it
is sufficient to present S in the vicinity of KQ as a power series in (z')'s and impose
the condition QS = 0. As a consequence of the nondegeneracy of Q on KQ we will
obtain -§T\KQ = 0. Also ^TT\KQ = 0 as S is locally constant on £ e . Therefore the
inclusion A^ C Ks is proved.

Consider now the odd function a constructed in Lemma 1. By construction
Qa \KQ = 0, Q(QG) — 0. Therefore in the vicinity of KQ we have

Q<T(Z",Z') = SI>,j>(z")zI'zJ' + higher order tenns in (z ;)'s . (23)

To deduce the statement of Lemma 2 we notice that

JdV -h1^1 fdV- goh
 (=} lim / dV. gohea^ . (24)

M M A-*°° M

The last expression in (24) is equal to zero; we obtain this result from the standard
formula for the stationary phase approximation. It is important to stress that such
a formula can be applied because (as we are going to prove below) the Hessian of
XQo in the directions transverse to KQ is non-degenerate. We don't need an exact
formula for stationary phase approximation; we use only that the leading term in this
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approximation is of order k° (because n'+ = n'_ ) and that the answer is proportional
toh\KQ= 0.

So, let us prove the nondegeneracy of the Hessian of XQo in the directions
transversal to KQ. At the point of KQ with coordinates z" this Hessian coincides
with the supermatrix Si'j>(z") entering (23). First we will prove that the even-even
and odd-odd parts of Srtj' are degenerate or non-degenerate simultaneously. Then
we will show that the even-even part of Si'9j* is non-degenerate.

In the vicinity of KQ we have

Q = a'Az^z'V JL + y;,(z",z'y ±n. (25)

The nondegeneracy of Q in a neighborhood of KQ means that the matrices ctji,(z"90)9

af!(z",0) are invertible. The condition Q(Qo) — 0 leads in particular to the follow-
ing condition on Svyjt\

»90)Ss>,y>(z") + ̂ ,(z\0)SVJ,{z") = 0 . (26)

We will need a corollary of (26) for the number parts of matrices which enter
it. The odd matrices Oj,(zf/,0) and ay(z/f,0) have zero number parts, therefore it
follows from (26) that

^ > { z " ) ) = 0 . (27)

From the invertibility of o£(z",0), aj!(z9O)9 it follows that
0, det(m(d$'(z">0))) ^ 0. Therefore, in view of (27), the matrices m(Ss>,y>(z")),
m(Si'j'(z")) are singular or non-singular simultaneously. We will prove that
det{m(Si>j>(z"))) ̂  0. Then by (27) det(m(S,$/,y/(z"))) ^ 0. Invertibility of the num-
ber parts of matrices depending on odd variables leads to the invertibility of matrices
themselves; therefore we conclude from the above considerations that the matrices
Si'j'(z"\ Ssy(z") are invertible.

So it remains to prove invertibility of the number part m{Si'j>(z")) of the even-
even block 5/7/(z/;) for all z"'s. By construction, m(Qa(x,0) = 9<xp(x)ba(x)bp(x)9

where g is a g2-invariant scalar product in a(m(M)). Therefore

Ib'ix'^^^b'ix) . (28)
dxl x'=o

It follows from LTXQ = 0 that

Q = (** 0^0*11 + GypPa + 9yJyA (*) = 0 , (29)

where k\ /« are the coeflScients of Q2 introduced in the text following (8). Consider
(29) in such coordinates in the vicinity of the point (z",0) that gap(z'\Q) = <5a0.
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Then (29) written at the point (z",0) e KQ gives

4 * + < * -
Noticing that Q\KQ = 0, we get a£,,(z",0) = 0 for all tangent indices 8". Then it

follows from the last equation that a^bf"^ = 0. But det(cfy)\KQ(x) ^ 0 by nonde-

generacy of Q in the vicinity of KQ. Therefore in the given coordinates b(, '\KQ = 0.

Therefore by (28) m((Qa)itjf)\KQ = (6f/ •6y/')|*e> which is non-singular (recall

that nondegeneracy of Q means that b/f, is non-singular). Therefore Lemma 2 is
proved.

Lemma 2 admits a simple corollary which is important for our further consid-
erations:

Lemma 3. Let S be an even Q-invariant function, where Q satisfies all conditions
of Lemma 2. Suppose S \KQ — 0. Then JM dVeips does not depend on the parameter
P and can be calculated therefore according to the following formula:

JdV= lim JdVeW. (30)

Really, since S \KQ =O,jpfM
 dVeipS=lM dvSe^S = 0 in accordance with Lemma 2

applied to the integral Z with the integrand h = Seips.
Before proceeding further let us explain what we mean by saying that the

stationary phase approximation for the integral JMdVeips is exact. Consider an
asymptotical expansion in powers of j?"1 for such an integral. Let us present the
critical set of S as a union of level sets of 5 on Ks; Ks = ^ 1 } U ^ 2 ) U • • • UK$;
i.e., Si = S1^ is constant and 5/ ^ Sj if i ^ j (each set K^ is a union of connected
components). Then the asymptotical expansion of the integral at hand takes the form

+rf-A+l + ••• + 4 + c ' . r ' + • • • ) , ( 3 1 )
M i = l

where A is some number equal to the difference between the odd and even co-
dimensions of Ks in the case when the latter is a submanifold of M\ c's are some
constants. We say that the stationary phase approximation for the integral is exact
if the equation JM dVel^s = Ylj=\ e^Sjci is satisfied (in particular this means that
4 = 0 for 1 ^ i ^ N and k ^ 0).

Based on Lemma 3 one can easily prove the following theorem:

Theorem 4. Let S be an even Q-invariant function on M which is locally constant
on KQ. Suppose Q is non-degenerate in a neighborhood ofKQ. Then the stationary
phase approximation of the integral JM dVe^s is exact.

We proved already that under the conditions of Theorem 4, KQ CKS. Let us
decompose KQ into a union of level sets KQ = {Jj=lKl,L ^ N. In other words
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Using Theorem 1 let us present the integral under consideration in the form

/ dVe*5 = £ eW f dVflW-W , (32)
M j=\ M

where 5) = S \KJ and g^ is an even 0-invariant function from Theorem 1 having

support in some neighborhood of KL By virtue of Lemma 3, the integrals in the

right-hand side of (32) do not depend on /?, since S — Sj vanishes on KL

Therefore the stationary phase approximation for the integral JM dVe^s is exact.
This proves Theorem 4.

We proved even a stronger result: the coefficients cj, in the decomposition
(31) vanish if K^DKQ is empty. This means that the asymptotical expansion for
fM dVe^s receives a contribution only from part of the critical set Ks, namely from
the set KQ.

Let us also notice that all statements in the present section can be generalized
to the case when Kg is not a submanifold of M9 but is a union of compact sub-
manifolds, not necessarily of the same dimension.

5. Appendix

In this paper we utilize more or less the standard terminology of supergeometry
(see for example [2, 10]). We will use the definition of an (m | n)-dimensional
supermanifold as an object obtained from domains in (m | «)-dimensional superspace
ft(m\n) p^ted together by means of invertible maps. (See for example [10] for a
more precise definition.) The body m(M) of the supermanifold M can be identified
with the submanifold of M singled out by the equations f! = £2 = • • • = £n = 0,
where 51, £2 , . . . , f1 are odd coordinates. This condition is independent of the choice
of coordinate system because we do not consider families of supermanifolds and
therefore the transition functions between different local coordinate systems do not
depend on external odd parameters.

With every {m \ «)-dimensional supermanifold M one can associate an /i-dimen-
sional vector bundle over m(M% the so-called conormal bundle (see [2] for an
invariant definition and Sect. 3 for the coordinate construction). For every function
F on a supermanifold M we can consider its number part m(F) as a restriction
of F to the body m(M) C M. If A is an even vector field then one can define its
number part as a vector field on m(M). If in local coordinates the vector field A
corresponds to a first order differential operator

then its number part corresponds to an operator
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The number part of an odd vector field Q is defined as a section of the conormal
bundle. If in local coordinates

then this section is specified by means of functions ql(x,0\q2(x,0)9...9q
n(x,0).

Let us finally mention that we denote by sdet M the superdeterminant
(Berezinian) of a supermatrix M. The supermatrix M is invertible iff the even-
even and odd-odd blocks of M are non-singular in the usual sense; then sdet M
exists and its number part does not vanish.
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