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Abstract: We work out finite-dimensional integral formulae for the scalar product
of genus one states of the group G Chern-Simons theory with insertions of Wilson
lines. Assuming convergence of the integrals, we show that unitarity of the elliptic
Knizhnik-Zamolodchikov-Bernard connection with respect to the scalar product of
CS states is closely related to the Bethe Ansatz for the commuting Hamiltonians
building up the connection and quantizing the quadratic Hamiltonians of the elliptic
Hitchin system.

1. Introduction

The present paper continues the program [17, 10, 19, 20] aimed at analysis of the
scalar product of states in the Chern-Simons (CS) theory. It extends the considera-
tions of ref. [9] where we treated the SU(2) CS theory on the elliptic curve (times
the time-line and with insertions of time-like Wilson lines) to the case of a general
group G. As in the previous papers of the series, the point is to express the formal
scalar product of the CS theory, given by a functional integral over gauge fields, as
a multiple finite-dimensional integral. The latter, if convergent for every state, pro-
vides the space of CS states W with a Hilbert space structure and the holomorphic
vector bundle HfT, obtained by varying the modulus t of the elliptic curve and the
positions zn of insertions, with a hermitian structure.

The integral expressions for the scalar product of the CS states are close cousins
of the contour integral expressions for the conformal blocks of the corresponding
WZW conformal theory. In the elliptic case, the contour integral representations
were recently studied in ref. [12]. Our approach elucidates the origin of the compli-
cated expressions which appear in such representations for a general group: they are
induced by a simple trick, already used in [10], which handles a change of variables
in the functional integral.

The WZW conformal blocks are holomorphic sections 8 of the bundle HT of the
CS state spaces satisfying in the elliptic case the Knizhnik-Zamolodchikov-Bernard
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(KZB) equations [23, 3]

/ 1 \

= 0, n=l,...,N. (1)

Above, Hn =Hn(x,z) are operators acting on the CS states and K is a coupling
constant. The KZB equations may be interpreted as the horizontality equations
for a KZB connection in bundle W. The consistency of the equations (die flat-
ness of the KZB connection) requires that the operators Hn, n ^ 0, commute
for fixed (T,Z). In fact, Hn, n ^ 1, are quantum versions of the quadratic clas-
sical Hamiltonians hn of the elliptic Hitchin system which Poisson-commute. In
the case of an elliptic curve with no insertions the conformal blocks coincide
with the (linear combinations of) characters of the integrable representations of
the affine algebras. HQ in Eq. (1) is then proportional to the Laplacian on the Car-
tan algebra and the KZB equations reduce to the well known heat equation for
the elliptic theta functions. In the case of an elliptic curve with one insertion,
//O(T) becomes a version of the Calogero-Sutherland Hamiltonian [6]. For many
insertions, operators /fn(T,z), n ^ 1, are elliptic versions of the Gaudin Hamil-
tonians [15].

A hermitian structure on a holomorphic vector bundle induces a unique uni-
tary connection of the 1,0 type. One expects [18] that the scalar product of
the CS states induces this way the KZB connection. For the elliptic case with
no insertions, that was shown implicitly in [21] where it was proven that the
affine characters form an orthonormal basis of the space of CS states. For group
SU(2) in the elliptic case with one insertion the unitarity of the KZB con-
nection w.r.t. the scalar product of the CS states was proven in [9]. In the
present paper we study this problem for the general elliptic situation. We show
that, assuming convergence of the integrals giving the scalar product, the uni-
tarity of the elliptic KZB connection follows from a result announced in [12]
which provides a basis for the Bethe-Ansatz diagonalization of the commut-
ing operators //n(r,z), n ^ 0. The relation of the integral representations for
the genus zero conformal blocks of the WZW theory to the Bethe Ansatz was
observed in [1], see also [2, 26, 11]. The elliptic SU(2) case counterparts of
these relations go back to XlXth century works of Hermite on the Lame oper-
ator, as noticed in [6]. Recently, the integral representations for the elliptic con-
formal blocks were used in [12] to obtain the Bethe-Ansatz treatment of the el-
liptic Calogero-Sutherland model, an open problem till then. Our work exhibits
an intrinsic connection between the Bethe-Ansatz and the unitarity of the KZB
connection.

The paper is organized as follows. In Sect. 2, we describe briefly the space of
CS states in the holomorphic quantization and identify the states on the elliptic
curve as vector-valued theta-functions. Section 3 is devoted to the scalar product
of the elliptic CS states. As realized in [21] for the case with no insertions, the
formal functional integral over the gauge fields giving the scalar product may be
computed as an iterative Gaussian integral. The insertions for general group G are
handled by combining the methods of refs. [21, 10]. In Sect. 4, we describe the
KZB connection and recall its relations to the Hitchin integrable systems. Section 5
discusses the unitarity of the KZB connection and finally, in Sect. 6, we consider
the relations to the Bethe Ansatz.



Unitarity of Knizhnik-Zamolodchikov-Bernard Connection 269

2. Elliptic CS States

Let us recall the description of the CS states on the elliptic curve Fx = <C/(Z + TZ)
with insertion points zn, given in [8, 9], with due modifications required by the
replacement of the group 5(7(2) by G. For simplicity, we assume G to be simple,
connected and simply connected and will denote by g its Lie algebra. Let si denote
the (complex) vector space of the 0,1-components A = A^dz of the g-valued gauge
fields. The group # of complex gauge transformations g : 2TX —> G c acts on si by

A ^eA=gAg-l+gdg-\ (2)

with d = dzdz. The Chern-Simons states ?P are holomorphic functionals on si. For
the case with insertions of time-like Wilson lines, they take values in the tensor
product <&nVxn =_Fof the irreducible representation spaces of G of highest weights
An, associated to the insertions. States W verify the chiral Ward identity

V(?A) = e ^ " ^ > 0 n g(zH\H)V(A), (3)

where S(g,A) is the action of the Wess-Zumino-Witten model coupled to A9 see
[8], and the subsubscript (n) indicates that the group element acts in the factor Vxn

of the tensor product space V.
Restricting functionals V to connections Au = nudz/xi for u in the Cartan alge-

bra h c and T2 = Im T, we can assign to every state a holomorphic map y : h c —> V
related to W by the equation

V(AU) = e^l"l2/(2T2) 0 , ( e ^ - f - ^ ) ( n ) y ( w ) , (4)

where |w|2 = (M, w) with the Killing form (•, •) normalized so that |a|2 = 2 for long
roots a (we identify g with its dual). Holomorphic maps y corresponding to states
V satisfy the following conditions:

y(u + qy) =y(w) for qv in the coroot lattice g v , (5.a)

y(U + T?V) = e-**<«W+2W> ^ ( e - 2 ^ v
 ) ( n ) 7 ( w ) ? ( 5 b )

0 = ®n(h\n)y(u) forAGh, (5.c)

y(wuw~l) = <8)« (w)«y(w) for w e G normalizing h , (5.d)

and

( 2 ) y (6)

for any root a, coweight py satisfying (pv,(x) = 1, u s.t. (w,a) = /w 4- ts with w,^
integers, /? = 1,2,... and f —> 0. Here and below ea is the step generator of g c

corresponding to root a.
We shall denote the space of maps y(u) satisfying the above conditions by

^T,£,A- Conditions (5.a) and (5.b) mean that y is a vector of theta-functions which
due to condition (5.c) take values in the zero weight subspace Vo C_Fand which by
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condition (5.d) are Weyl group covariant. Equations (6) specify their regularity on
the hyperplanes (u, a) G Z + tZ, where a e h are roots of the algebra g. They have
been obtained for G = 5(7(2) in [8] and for general G in [7], see also [14]. They
follow by demanding the regularity at t = 0 of the maps

where t \-+ Au>j — f2(u
f + tpy 4- e^dz, with u' = u - (m 4- w ) p v , is a 1-parameter

holomorphic family of gauge fields, hms(z) = exp[^((/w 4- TS)Z — (m + xs)z)py] is
a multivalued gauge transformation and gms(z) = hms(z)exp[—t~lea]h^}(z) is a uni-
valued one. Since (u\ a) = 0, AU'+tpv may be gauge transformed to Au'ft for / + 0 by
a constant gauge transformation exp[t~le0L]. Gauge fields hmsAU't0 lie on codimension
one strata in the space of gauge fields which cannot be attained by gauge transform-
ing Au's. Conditions (6) assure the global regularity of T but, due to the properties
(5.a~d), they are not independent for different m and s. For example, for all simple
groups different from 5(7(2) or SO{2r -h 1) it is enough to take m = s = 0.

3. Scalar Product of CS States

The scalar product of Chern-Simons states is formally given by the functional
integral

} DADA* . (7)

We shall perform the above functional integration reducing the scalar product
expression to a finite-dimensional integral which, if finite, will provide WXihx with
a natural structure of a Hilbert space. The finiteness has been proven in the special
cases (general G with no insertions [21] or SU(2) with one insertion [9]) and has
been conjectured to hold in general [18]. The strategy for the calculation of the
integral (7) will be as in [21] and [9] so we shall be brief discussing in detail only
the treatment of the insertions essentially borrowed from [10].

3.1. Change of variables. We shall reparametrize the gauge fields in the functional
integral (7) as

A = g~X (8)

with g a complex gauge transformation and u in some fundamental domain of the ac-
tion of translations u^> u + qw, u*-+u + xqy on h c . ( h c / ( 0 v + T0v)/Weyl group
is the space of gauge orbits of an open dense set of semistable gauge fields; ignoring
the Weyl group action produces an overall factor in the scalar product equal to the
order of the Weyl group.) We shall use the Iwasawa decomposition of the Gc-valued
field g:

g = exp £ v«e* exp[0/2] U = n exp[tf>/2] U = bU, (9)
La>0 J

where <j> takes values in the Cartan algebra h and U in the compact group G. Upon
the change of variables, the field U decouples from the functional integral (7) due
to the gauge invariance leaving us with a WZW-type functional integral over the
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Gc/G-valued fields b [21]

j(u9b)d(<t>(0)) Dbd2u, (10)

where Db = Ylz db(z) is the formal product of Gc-invariant measures on
the delta function fixes the remaining freedom in the parametrization (8) and the
Jacobian of the change of variables

Mb) = const. x-*-^sv>b*,A.+A:) d e t ( 4 ^ ) .

Above, r stands for the rank of G, hv for its dual Coxeter number and 6AU =
d -f [̂ 4M, • ] . The last determinant was computed in [21]:

= const

where 17 is the Kac-Weyl denominator:

(i - qlr
a > 0

with J denoting the dimension of the group and q = e2mx. The WZW action in the
parametrization (9) takes the form

S{bb\Au +A*U) = ~

where

Note that

a>0 J La>0

In terms of the Iwasawa variables, the invariant measure on G€/G is

j=l a>0

where <j>j = (/*/,<£) are the coordinates of <j> w.r.t. an orthonormal basis (Ay) of h.
Using the holomorphic functions y(u) to represent *F and the parametrization (9),
we obtain

Finally,

-l— jtxiAlAu) = -Kk(u9u)/x2
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With all these ingredients,

||!P||2 = const.J (y(u), <g>B(iKT1^*'^1 )wfeM«)>
hv) l

x exp I —

x exp [~

n ̂ (
/=1 a>0,2

In order to render the /ztt-dependent terms in the action of the last functional
integral quadratic, we shall introduce new variables Oj£)a>o defined by

n~ldnu= £&£*«. (12)
a>0

Since nu(z + 1) = nu(z) and nu{z H-1) = e"2wM/iM(z)e2TOI', it follows that

i i ^ t) = e-2K/<«'a>^(z) (13)

and that the change of variables is well defined since § is invertible (for generic u)
on functions satisfying the periodicity conditions (13). It is easy to see that the
change of variables (t£)*-*(fj£) has a triangular nature: i/£ = v'a +Fa((v'p)p<0L),
where ft < a if a — / ? i s a positive root. Hence, the formal volume element does
not change:

I] £ [I
a>0,2 a>0,z

Although the action in the functional integral (11), which was polynomial in vari-
ables v'a (and their derivatives) becomes quadratic in (derivatives of) rj'a9 there per-
sists the /?u-dependence of the insertions in the functional integral (11). Thus, we
have to invert relation (12) in order to express nu as a function of tf = £ a > 0 *j£ea-
This will be done generalizing a trick of [10].

Let n = 0 a > o Cea be the nilpotent subalgebra of g€ . The corresponding group
N c G c may be mapped into the enveloping algebra ^(n) (no completion problem
arises if we work in highest weight irreducible representations of G c) . <2f(n) is
graded by the positive cone Q+ in the root lattice Q:

according to the eigenvalues of the adjoint action of h, with eai • •
<$f(ii)«,+...+«w. The map z —• n~l(z) = v(z) may be viewed as taking values in
and it satisfies then the twisted periodicity conditions,

vq(z + 1) = vq(z\ vq(z + 1 ) = e - 2 * 1 ^ vq(z), (14)
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where vq denotes the ̂ (n)g-component of v. Relation (12) may be now rewritten
as an equation

for <^(n)-valued functions and solved with the use of the Green functions of the
twisted df-operator. Since (n~l)o = 1, we obtain

nul = £ (-*
K=0 K times

The Green function of df acting on functions obeying conditions (14) may be easily
expressed by the Jacobi theta function tix{z) = ^ ( - l y t f
fyhng

T) = -e- w ( T + 2 z ) ^i(z) . (16)

Ejq)licitly, it is equal to

with JC = (u,q). Hence Eq. (15) takes the form

-.«*^2yi---rf2». 08)

the y(i/) matrix element, we may insert the partition of unity GdnQUa,, \llam>an)
W where vectors \^iaH,an) corresponding to weights \ian form an orthonormal

basis in the representation spaces V^. This gives

into which we may insert the expressions (18) for n~l(zn). As in [10], the final
renormalization of the functional integral over the Cartan algebra-valued field <f> will
kill most of the terms obtained this way leaving only the ones with \fxan,an) equal
to the highest weight vectors \Xn) and the sequences of positive roots (ai , . . . ,a p )
composed uniquely of simple roots. We may then write

= jje-<*(*>,;u>
n K a

2
(19)
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where {k\ = ®n(An\, a = (a u , . . . . a i^a^i , . . . ,<*N,K N ) = (CLU...,OLK) is a sequence
of A' = j ^ Kn simple roots satisfying

K N

£<*=£4., (20)
5=1 «=1

y = (y\,u...9y\,Kl,y29u.'.,yN,KN) = (yu...9yK) is a sequence of A: points in 3\
and the kernels FA« are composed of the Green functions of twisted d

n
X • * • X P{u^KH)(yn,KH-\ - yn.K.). (21)

"• • •" in Eq. (19) contains the terms that will drop under the renormalization of the
^-integral.

3.2. Functional integration. The above use of Eq. (15) to express the Y\' dependence
of the insertions reduces the rj' integral to the form

/ ft (3<X*)(3«VAX».)
15=1 L zn a>0

x n rf2(n <
a>0,z

T ftto-1 (22)
with a running over the permutations of K points and with da = e

The determinants are well known

n dd(d%ri=const.e-^/6|77oor2fiu-^i2r

a>0 7=1

:exp| — j W , < t y ) _ _ \u-u\

After the ^-integration and an easy combinatorial manipulation, see [10], trading
the sum over root sequences a into sums over permutations (two a's satisfying
Eq. (20) differ necessarily only by a permutation), the scalar product formula (11)
becomes

|| n 1 = const, e-*"2/6 f l 11 - ql\2r f ft e-<«*>« ft c<*-<*>*>
/=1 «=1 5=1

x exp J {d(f>9 d(j>) H \u — 5p 5(</>(0)) \\ D(f>J |i7(w)|2

5=1

(23)

where K = k + hw and a is a fixed sequence of A' simple roots satisfying (20).
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The remaining ^-integral is of the Gaussian (Coulomb gas) type and may be
easily performed:

= const. fte'tfd"2 -M^Sf'wm

= const. x^ e b Ft I1 - 9\ e ~ * * ^ ^i' J'ww-y >rw > ? (24)

where we should take / = — E« ^A« + E* a^.F* which corresponds in the Coulomb
gas jargon to external charges at points zn and screening charges at points ys. The
Green function is

#(z) = hi |i?i(z)|2 + T^-(Z - z)2 + const. (25)

Renormalizing the divergences due to the singularities at coinciding points by point-
splitting, as explained in [10 and 9], we finally obtain for the scalar product of CS
states the following finite-dimensional integral expression:

1 • 5=1

where B(u) = TI(u)y(u\

1 N 1 K

S is a multivalued holomorphic function of T and non-coincident zn's and ys
9s and

G a holomorphic multivalued map with values in the dual space V* of V given,
respectively, by

+ E ( o k o ^ l n ^ C K - J v ) (28)

with ^ ( z ) = i?1(z)/t?/
1(0) and

= E E ^ k , ( T « ( t , « , z , < r y ) { t \ ® n ( e { a < x ) n r - - e { a ( l ) l h K n \ n ) . ( 2 9 )

Using the transformation properties (16), it is straightforward to verify that for
H = e-£5(G,0), <f = ( 0 , . . 4 . . . , 0 ) and ^ defined similarly,

n

H(x,u + qv,z,y) =

H(x,u + xqv,z,y) =

H(x, u,z + 5", y) = (-l ) < ^ > / K # ( T , u,z,y),
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X, U9Z + T<f, y) = ( -

H ( x 9 u 9 z , y + t < f ) = ( - 2 :

It is then easy to see that the under-integral expression in (26) is univalued under
the u >-• u + ( t )#v , zn »-̂  zn -h ( T ) 1 , ys*-> ys + (T)l transformations.

It is useful to compare the above expression for the scalar product of the CS
states with the genus zero ones obtained in [10]. The genus zero states are deter-
mined by their values !F(0) = y at A = 0 belonging to the G-invariant subspace VG

of the tensor product jKof the representation spaces. Adapting the notations to the
ones of the present paper, Eqs. (19.20) of [10] read

|| «F||2 = const./ n
5=1

**2*.

where

n<n' n,s

s<s'

and

with

FK(z y) = — FT - -
- "* - nK V zn - ynA ynj - yn>2

The similarity to the genus one case is obvious.

yn,Kn-\ -

(3D

(32)

(33)

(34)

4. Knizhnik-Zamolodchikov(-Bernard) Connection and the Hitchin Systems

The trivial bundle with the fiberKover the spaceX§ = <EN\A9 where A contains vec-
tors z with coinciding components carries a 1-parameter family of flat holomorphic
connections defined by

where H^{z) are the Gaudin Hamiltonians [15]:

=EE -^
a=\ n' */i zn' ~

(35)
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with (t°) forming an orthonormal basis of Lie algebra g. Connection V appeared
(implicitly) for the first time in ref. [23]: it was shown there that the genus zero con-
formal blocks y of the WZW theory satisfy the (Knizhnik-Zamolodchikov) equations
Vy = 0. In fact, the WZW conformal blocks are horizontal sections of a (generally
proper) subbundle HT° c J $ x VG. The fibers W? of iT° may be identified by the
assignment V —> ̂ (0) with the genus zero CS state spaces. The subbundle iT° may
be described by giving explicit algebraic conditions, depending holomorphically on
z, on the invariant tensors in V [29, 16]. The KZ connection V preserves the
subbundles X% x VG and HT0 of the trivial bundle X% x V.

The extension of the Knizhnik-Zamolodchikov connection to the genus one case
was first obtained in ref. [3] and elaborated further in [8, 6, 14, 12]. We shall use
the description of the genus one CS states by the theta functions 6(u) = FI(u)y(u).
The spaces WXfZ of states form a holomorphic bundle over the space of pairs (t,z)
with no coincidences in zn*s viewed as points in «^. The holomorphic sections of
iV correspond to holomorphic families (T,Z) —> 0(T,Z, • ). The KZB connection is
given by the formulae

V f = df, V f . = dSm9 VT = dx + -Z/ 0 (T,Z) , VZn = dZn + -Hn{x9z) ,(36)

compare to Eqs. (1). Explicitly [6, 14, 12],

(37>

(38)

where JM = EyC^) 2 m& P = ^i/^i- T^e expressions for //„, » ^ 1, reduce to the
ones for the Gaudin Hamiltonians (35) in the limit T —> Zoo. The operators Hn,n ^ 0,
acting, say, on meromorphic functions of u € h c with values in _F0 commute, see
[14]. Their commutation forms part of the conditions assuring the flatness of the
KZB connection (36). Although the coefficient functions in Hn have poles on the
hyperplanes (w, a) € Z 4- tZ, the connection maps holomorphic families of genus
one CS states into families with the same property, due to the increased regularity
(6) of the CS states on the singular hyperplanes, see [8, 14].

The commuting operators H% for genus zero or Hn at genus one are quantizations
of classical Poisson-commuting Hamiltonians of the, respectively, genus zero and
genus one Hitchin integrable systems [22, 4, 24, 5]. Let us briefly recall this relation.
Given a Riemann surface Z and a group G, let s/ denote the corresponding space
of 0,1-gauge fields and ^ the group of complex gauge transformations, as in the
beginning of Sect. 2. Both are (infinite dimensional) complex manifolds and we
shall work in the holomorphic category. The cotangent bundle T*s/ is composed
of pairs (A9$), where $ is a 1,0 form on I with values in Lie algebra g c . The
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action (2) of 9 on st lifts to the symplectic action (A94>) •-> (9A,d$ = g<Pg~l) on
T*J/ with the moment map

M(A,0) = dA + A A 0 + # A 4

(the 2-forms on Z" with values in g c form the space dual to the Lie algebra of ^ ) . If
z is a sequence ofN insertion points in Z and X a corresponding sequence of Cartan
algebra elements, then we may symplectically reduce T*s/ w.r.t. the ^-coadjoint
orbit of Ylm ^n&zn defining the reduced phase space

where 9hx is the subgroup of 9 fixing ^2nXn8Zn. The symplectic form on T*s/
descends to (the non-singular part of) 9hx turning it into a finite dimensional (com-
plex) symplectic manifold (we shall ignore here the singularities o£&hx). For a G c

invariant homogeneous polynomial p on g c of degree dp, the assignment

(4 *)•->/<*)

defines a map on T*s# with values in the space of Jp-differentials (sections of the
dfi symmetric power of the canonical bundle on I). All those vector-valued maps
Poisson-commute since they depend only on 4>. They descend to &hx giving a
system of Poisson-commuting maps hp with values in the (finite-dimensional) spaces
of meromorphic tfp-differentials with poles of order ^ dp at the insertion points zn.
Their components form a maximal set of classical Hamiltonians in involution turning
&hx in t o a11 integrable system introduced and analyzed in [22] for the case without
insertions, see [24, 5] for the generalization including the insertions.

Let us specify first the above construction to the genus zero case. In that case,
(almost) each gauge field A is in the gauge orbit of A = 0, i.e. it is of the form

A = h~ldh

for h e 9 with h determined modulo h »-• h^h with constant ho. Equation M(A, 0) =
^2n XnbZn becomes now

which has a unique solution

4E
2ni n z -

provided that the sum of the residues vanishes:

The group 9hx is composed of arbitrary gauge transformations g s.t. g(zn) e G<[,
acting on h by h H-> hg~l. Above, Gfn denotes the subgroups of the G c stabilizing
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Xn under the adjoint action. For the symplectically reduced phase space P% x (the
superscript 0 referring to the genus zero case) we obtain

where \in = h(zn)Xnh l(zn) run through the (co)adjoint orbits 0^. The latter are
naturally complex symplectic manifolds and it is not difficult to check that, as
a symplectic manifold, P% x is the reduction of x@xn by the diagonal action of Gc.

Since for an invariant polynomial p, p($) = p(h<P), the corresponding Poisson-
commuting Hamiltonians on P^ k are

In particular, for the quadratic polynomial given by the Killing form p2 = ( • , • ) ,
we obtain the quadratic meromorphic differential

where the residues at z — zn are

These are, up to normalization, the classical versions of the Gaudin Hamiltonians
of Eq. (35). The latter may be obtained from AjJ's by replacing the coordinates
[ia

n = (fin,?*) on the coadjoint orbit 0^ by the generators ^n) of g acting in the
irreducible representation VxH obtained by geometric quantization of 0^.

Similarly at genus one, for E = « ,̂ (almost) each gauge field is in the gauge
orbit of the gauge fields AU9 i.e. it is of die form

with u e h c and hu = e7^"""^2. Hence the gauge fields A may be parametrized by
pairs (u,h) with the identifications

(II ,*) = (wuw~\wh) = (u + qv
9hph) = (II + T < 7 V , / * - U ) (39)

for qv in the coroot lattice Qw and w in the normalizer N(bF) c G€ of h c . Equation
M(A, <P) = Yln^zn becomes now

) " 1 ^ ) ^ • (40)
Upon decomposing
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with /ij in the Cartan subalgebra h c , Eq. (40) may be solved, provided that
5̂ ,/xJJ — 0, with use of the Green functions of the twisted and untwisted d-operator
on ^ :

(*) = <P°dz + ± £ (n £P M ( z - zn)^*ea + p(z - zn)^ dz ,(

where #° is an arbitrary constant in h c . The symplectically reduced phase space
Phx becomes

with the identifications

As a symplectic manifold, Phx is a symplectic reduction of T*hc x ( x ^ B ) by the
group JV(hc) x i (Qv + t g v ) . The Hitchin Hamiltonians become

= p if + 2b? (7C

which for p = p2 and upon writing hP2(u,0°,fi)(z) = hP2(u90
o
9fi)(z)(dz)2

9

reduces to

-

- TL E f E^
H 7 C n,n' \ a

n

with the residues at zn

- TO IT? n,+n \ a

and the holomorphic (actually z independent) piece

ho(u, <t>°,ti) = (0°, 4>°) - - L E (2* £ a,
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Hamiltonians hn, n ^ 0 are the classical versions of the elliptic Gaudin Hamiltonians
Hn of Eqs. (37) and (38), see [24, 25].

The SU{n) elliptic Hitchin system corresponding to one insertion has unexpect-
edly appeared recently in the description of the low energy sector of supersymmetric
Yang-Mills theories [4].

5. Unitarity of the KZB Connection

One of the essential features of the structures discussed above should be the com-
patibility of the KZ and KZB connections with the scalar product of CS states.
The integrals in Eq. (31) have been conjectured in [17] (and proved in many cases)
to converge precisely for invariant tensors y e W® and to equip bundle iT0 with
the hermitian structure preserved by the KZ connection. The latter condition means
that for all local holomorphic sections z H-> y(z) of bundles nF°, corresponding to
holomorphic families z •-> Y(z) of CS states,

4 J | ^ | | 2 = ( I F , V 2 ^ ) . (41)

In order to see why one should expect such a relation, it will be convenient to
express the scalar product integral in the language of differential forms, following
refs. [27,28]. Let CO(JO = \y~xdy. Introduce the V*-valued K forms

- y\,\) ACOO>U - y\a) A • • • Aco(yhKl-x - yhKl)

A • • • A co(zN - yNA) A co(yNfi - yNa) A • • • A (o{yNtKN-\ ~ yN,tcN)

and

We may rewrite the scalar product formula (31) as

||!F||2 = const./
\

where YL stands for the space of y's with ys's not coinciding among themselves and
with zn's. We use the conventions that |£°|2 = (-if^-^^fi^ Afl« and that
the integral of the forms of degree lower than the dimension of the cycle is zero.
Assuming a sufficiently strong convergence of the integrals, we may enter with the
holomorphic exterior derivative under the integral so that

Yt

const. / 3(e~ i*° <O°, y)) A e" i*° (OP, y),
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where the d-operator on the l.h.s. acts on the z-variables and the one under the inte-
gral may be taken as acting on both z- and y-variables. The_F*-valued holomorphic
multivalued forms (2° have two basic properties:

8Q° = 0 and (dS°) Afl° + £<fe« AH%Q° = 0 (42)

with the contragradient action of the Gaudin Hamiltonians on the _F*-valued form
O°. The first relation is trivial. The second, more involved one, has been proven in
[28]. Using Eqs. (42), we obtain

d\\W\\2 = const./ e-^Of J^dzm A (Q°, U + -Hn) y) Ae-i*Q(fl°,7>,
YL ' n \ \ K J I

which implies the relation (41).
The above analysis has its counterpart for the elliptic case. We again conjecture

that the integrals in Eq. (26) converge for 6 corresponding to CS states (in fact
exactly when the regularity conditions (6) are fulfilled) and that the resulting her-
mitian structure on the bundle *W renders the KZB connection unitary, see [9] for
the proof of this conjecture for the case of G = 5(7(2) and one insertion. In order
to substantiate the conjecture for the case of general G and arbitrary insertions, let
us rewrite the genus one scalar product integral (26) in the language of differential
forms. Define

coq(z) = P{Utq)(z)dz - ^dxP{Utq)(z)dx ,

see Eq. (17). It is easy to see that dcoq = 0, if d differentiates only the variables
(r,z). Set

A• • • Acop l K i(y\,K l-\ - y\tKx) A • • • AcopNl(zN -yNy\)

• A COPNKN (yN,KN-l - yN,KN

(43)

with pnJ = Y$U a/1,1'

We still have to dress Q with the duJ differentials. The convenient way to do this
is to define the form

ft = e~ ** f dwl A • • A dwr A (Q, 9) + - V ^ dwl A • • • dx • • • A rfwrdtty <O, 0) ) ,

(44)
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where wJ = (hJ,w) with w given by Eq. (27) and, as before, 0 = Uy. It is easy to
see that Eq. (26) may be rewritten as

||<F||2 = const.T"r/2 / e ^ | w ^ 2 e"*s(Q,6)
2

d2ru

= const. x~r/2 / e ^ | w - ^ |fl|2 . (45)

This holds since the terms with dx differentials do not contribute to the integral
over the cycle UYXyZ composed of points (u,y) with identifications u = u -f- ( T ) # V ,
ys = ys + (T)1 which form the (r +/if)-dimensional torus ^ r + * (with coincidences
of >>/s among themselves and with zw's removed). The gain from adding the
terms with rfr's is that the form Si transforms under the maps u •—• u -f ( t )^ v ,
.ft *-* .ft + (t) l (and zn H->zn+ ( T ) 1 ) exactly as the functions H9 see Eq. (30),
and, as the result, the form under the last integral in Eq. (45) is well defined
o n UYXyZ.

We would like to compute the holomorphic differential of the norms squared
||^P||2 of a holomorphic family of states. Due to the fact that the integration cycles
UYTtZ depend nontrivially on the differentiation variables, this requires a more sub-
tle consideration than in the genus zero case where we could ignore this problem
(assuming enough convergence at the coinciding points). Ignoring again the coincid-
ing points, the geometric setup is as follows. We are given a bundle m : Jf —• M of
multidimensional tori over the space J( of pairs (T,Z). Let us forget for a moment
the complex structures on these spaces considering them as real manifolds. On Jf
we are given a differential form rj of degree equal to the dimension of the fiber
(we shall not need an obvious generalization of the story to forms of arbitrary de-
gree) and we are studying a function / on the base obtained by fiber-wise integra-
tion of rj

In local trivialization of the bundle, only the components of rj with differentials along
the fiber contribute to / . If there are no convergence problems, then obviously

df(n)= J d±rj= J dri, (46)

where the differential d1- in the transverse directions is defined using a trivialization
and the second equality follows since d^rj = (d — d±)rj is a closed form when
restricted to the fibers so that its fiber-wise integral vanishes (again assuming no
convergence problems).

Let us first see how this argument may be used in the simplest case with no
insertions, where we have

= const.x~r/2 f e^ |u" f i |210(*)|2d l ru = const.x~r/2 f e^1""5'2 |fl|
9? grr

2
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where 0(M + ? V ) = 0(w) and 0(W + T? V ) = e-*/K<*V'T*v+2w>0(w), i.e. 0 is an r-
dimensional theta-function of degree 2K, and

Q = 0dul A • •.. A dur + V) duj0dul A • • • dx • • • A dt/
iniKp J

is a holomorphic r-form which under M H M + (x)qv transforms the same way as
the theta-function 0. Note the relations:

duj A Q = -^—dx A dUJQ, £ </wy A dtt,ft = ^ - d x A JMfl . (47)
27ZK J £KK>

The (2r)-form rj = e^1"""1' |fl|2 is well defined on the bundle JT of tori obtained
by varying 3^r with x. Applying the above geometrical considerations to the case
at hand, we obtain

d\\ n2 = const. x~r/2 / (d + ^{dx - </T)A) (e^1"""'2 |ft|2) .

Clearly, only the holomorphic exterior derivative d will contribute under the integral
to d||!F||2. Explicit differentiation gives:

d\\n2 = const.r2-
r/2/e^|M""12 (fel«

+^-dx A +</T A dx + ^2duJ A duJ ) Q J A fl
4T y ;

Q J

= const.x~r/2 J e^1"""'2 ( ( 0 | w - «|2JT A + ^ < / r A E(II^ - V)duj

dx A +JT A 3T + r-~^T A JM J fl J A fl ,
2TZK J J

(48)

where to obtain the last equality we have used the relations (47). The latter expres-
sion may be simplified if we notice that

JL* A E 4, (.ft'-"' («,, + f K - »')) » A 0)

-P-dxA) Q) AQ
4T2 ) )

(49)

with e^|w""|2((atty + ^ (w>-w y ) ) f lAf l being a (2r)-form well defined on Jf.
It follows that the fiber-wise integral of both sides of Eq. (49) vanishes and,
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consequently, that

= const.T2"
r/2/ e^|M~fi|2 ((dx + 4 ^ ) « ) Aft

= const x~r'2 f e^|tt-tt'|20OO f 5T + -^-Au) 0(u)d2ru = (<F, VT<F) ,

which proves the unitarity of the KZB connection for the case with no insertions
in a way that maybe was not the simplest (two straightforward integrations by
parts would do) but which has the virtue of generalizing to the case with arbitrary
insertions (modulo convergence problems).

To treat the general case, we shall apply the formula (46) to the differential form

rj = e5^'w~w' e~«5fl with ft given by Eq. (44) and satisfying the generalization

of relations (47) with duj replaced by dwJ. As before, we obtain, denoting by d'
the holomorphic exterior derivative in all but u directions,

2 = constT"r/2 / (d + £-dTA) {t^w~^ \Q\2t.T"r/2 / (d + £-
UYX,Z_ \ 4 T 2

d||«F||2 = const.T"r/2 / (d + £-dTA) {t^w~^ \Q\2)

= const.x~r/2 J
UYr,z_

+— E(™j - ™j)dwj A +-?-dx A +ff + £ d u J A du?\ii] A fl
12 j 4 T 2 J J J

= const.x~rl2 J e ^ | w - "

- wJ)dUJ + -^-dx A +ff + ^—dx A Au
4t2 2TIK:

^ n

A large part of the right-hand side vanishes by integration by parts with use of the
relation generalizing (49):

-^dx A £du J fe^
|w-*'2 (idUJ + ™(w> - wJ)\ QAO

A + - ^ - J T A
2V \ 2 2 /

4- j^r-dx A Au + £-dx A jQj Af l , (50)
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and we obtain

= const.T"r/2 / e^w~*
UYZ,Z_

= const. T2-
r/2 / e^|w-*'2 ( (V + -j-dx AAU--Z Kdzn A ^

IT,,£ \ \ 4 7 t K K n

Ae«*(Q,0) dzru. (51)

The duj -terms may be transformed with use of relation

E E Pi id(yn i-\ - yn 0 A Q = — dx A ̂ Q , (52)
n i = l ' 27T

in the notations of Eq. (43) and with yn^ = zn, which follows easily from the defi-
nitions of the forms Q and coq. Equation (52) may be rewritten as

\Y.Kdzn - J2 oiidyA A Q = ^-dx A duJQ -Y,dznA hLQ , (53)
\n s ) In n K)

with the contragradient action of h^ on the V* -valued form Q. The last relation,
upon substitution to Eq. (51), yields

3||«F||2 = const.x~r/2 J e ^ | w -* ' 2 e~i5 * (d'(Q,6) - -dS A (Q,0)
UYX z \ K

Au(Q90) - ^dxA EduJ((du

A duJ({h(n)Q,0}))AQ d2ru

J
const.T2-'/2

- -^—dx A AUQ + - £dz n AhLfoQ,6
471K K n

+ (-lf/a9ff0 + -^dx A Au6 -\Y.dzn A hl^oS} A Q dlru

The crucial result is the following equalities:

= 0 and (dS) AG + dx AH0Q+ Y,dzn AHnQ = 0 (54)

with the contragradient action of Hn
9s. The first of these equalities is a straightfor-

ward consequence of the closedness of the forms coq from which Q is built. The
second, more technical one, has been announced in [12] (as Prop. 9). Using these
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relations, we finally obtain

d\\Wf = const.T"r/2 / e^ | w - " | 2 | e -^ | 2 ( - l f (Q,d'9 + ±dT AHo0
UYt,2 ' • \ K

£ f e Ai/6>\ AQ d2ru =

which proves the unitarity of the KZ connection w.r.t. the scalar product (26) modulo
the control of convergence of the integrals.

6. Bethe Ansatz

The basic algebraic relations (42) responsible for the unitarity of the KZ connection
turn out to be a disguised (and compact) form of the Bethe Ansatz solution of the
eigenvalue problem for the Gaudin Hamiltonians (35). This was remarked in [1] in
the context of contour integral representations for the solutions of the KZ equations
and developed further in [2, 26] and in [11] where a relation between the Bethe
Ansatz and the Wakimoto realization of the highest weight modules of Kac-Moody
algebras was explained.

The elementary fact is that if, for fixed z, a configuration y_ of K non-coincident
points in the plane satisfies the equations

Z 0, s=l, . . . , tf , (55)

then the second relation of (42) reduces to

J2 dzn A (4.SW) + fl?(2))QW) = 0 .

The last equation gives the Bethe Ansatz solution for the common eigenvectors of
the operators H%(z) acting by the contragradient representation in V*:

( ^ W ) + /#(z))G°feZ) = 0 (56)

in the notations of Eqs. (33,34). The conditions (55) required for Eq. (56) to hold
have the explicit form

)—l— = £ <**>*)7r-ir • (57)

The above genus zero story has its elliptic counterpart, as remarked in [6] for
the case of G = SU{2), see also [9], and in [12] for general simple groups. For
fixed T,Z and for y satisfying the equations

, Z ) = 0, s = l , . . . , * , (58)
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or explicitly, with p = i?j/i?i,

5)p(zw - ys) = £ (asSaX>y - * ) , (59)

the second relation of (54) reduces to

(T,t/,Z,Z) = 0 .

(60)

Operators Hn(r,z), n^O, act in the space of meromorphic functions / of variable
u G h c taking values in _FJ, obeying the periodicity conditions

f(u + qv) = /(w), (61)

with possible poles on the hyperplanes (u, a) € Z + TZ. Equation (60) gives the
Bethe Ansatz solutions for the common eigenvectors of Hn

9s in that space

= 0 ,

) n ( , ) ) ( , , , Z ) = 0

in the notations of Eqs. (21,29).
A slightly modified version of the above argument allows to extend this con-

struction and also to find Bethe Ansatz eigenvectors of Hn's acting in the space of
meromorphic _FJ-valued functions satisfying the twisted boundary conditions

= e<^v>/(M) (62)

with £ e h c . Denoting

™* n s

and combining the second equality of (54) with the relation (53), we obtain

(dS)AQ + dxAH0Q+ £ dzn A HnQ = 0 , (63)
n

which results in the eigenvalue equations for the twisted-periodic Bethe Ansatz
eigenvectors:

) ,z ,Z ) = 0 ,

(dZnS(T,z,y) + //w(T,z))e<tt^>G(T,i/,z,Z) = 0

holding provided that dysS = 0, i.e. that

D <An, <xs)p(zn -y,) + <& a,) = £ <<v,<*)pOy - ys). (64)

In particular, for £ in the weight lattice P, we obtain more periodic Bethe Ansatz
eigenvectors.
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As explained in refs. [7 or 12], in the special case of G = SU(n) and one
insertion of the w/w-fold symmetric power of the fundamental representation, op-
erator Ho acting on the Jo* -valued functions reduces to the elliptic Calogero-
Sutherland-Moser multi-body operator and the above techniques were used in
[12, 13] to obtain its Bethe Ansatz diagonalization. The above case is a quan-
tization of the very same elliptic Hitchin system which appeared in the effec-
tive low energy description of supersymmetric Yang-Mills theories [4]. For the
SU(2) case, one recovers this way [6] the classical Hermite results about the Lame
operator [30].

References

1. Babujian, H.M.: Off-Shell Bethe Ansatz Equation and tf-point Correlators in the SU(2)
WZNW Theory. Preprint Bonn-HE-93-22

2. Babujian, H.M., Flume, R.: Off-Shell Bethe Ansatz Equation for Gaudin Magnets and
Solutions of Knizhnik-Zamolodchikov Equations. Preprint Bonn-HE-93-30, hep-th/9310110

3. Bernard, D.: On the Wess-Zumino-Witten Models on the Torus. Nucl. Phys. B 303, 77-93
(1988)

4. Donagi, R., Witten, E.: Supersymmetric Yang-Mills Theory and Integrable Systems.
hep-th/9510101

5. Enriquez, B., Rubtsov, V.: Hitchin Systems, Higher Gaudin Operators and r-Matrices.
alg-gepm/9503010

6. Etingof, P., Kirillov, A., Jr.: Representations of Affine Lie Algebras, Parabolic Differential
Equations and Lame Functions. Duke Math. J. 74, 585-614 (1994)

7. Etingof, P., Frenkel, I., Kirillov, A., Jr.: Spherical Functions on Affine Lie Groups.
hep-th/9407047

8. Falceto, F., Gawedzki, K.: Chem-Simons States at Genus One. Commun. Math. Phys. 159,
549-579 (1994)

9. Falceto, F., Gawedzki, K.: Elliptic Wess-Zumino-Witten Model from Elliptic Chern-Simons
Theory. Lett. Math. Phys., in press

10. Falceto, F., Gawedzki, K., Kupiainen, A.: Scalar Product of Current Blocks in WZW Theory.
Phys. Lett. B 260, 101-108 (1991)

11. Feigin, B., Frenkel, E., Reshethikin, N.: Gaudin Model, Bethe Ansatz and Correlation Func-
tions at the Critical Level, hep-th/9402022

12. Felder, G., Varchenko, A.: Integral Representations of Solutions of the Elliptic Knizhnik-
Zamolodchikov-Bernard equations, hep-th

13. Felder, G., Varchenko, A.: Three Formulas for Eigenfunctions of Integrable Schroedinger
Operators, hep-th/9511120

14. Felder, G., Wieczerkowski, C: Conformal Blocks on Elliptic Curves and the Knizhnik-
Zamolodchikov-Bemard Equations, hep-th/9411004

15. Gaudin, M.: Les fonctions d'onde de Bethe. Paris: Masson, 1983
16. Gawedzki, K.: Wess-Zumino-Witten Conformal Field Theories. In: Constructive quantum

field theory II, eds. Wightman, A.A., Velo, G., New York: Plenum, 1990, pp. 89-120
17. Gawedzki, K.: Quadrature of Conformal Field Theories. Nucl. Phys. B 328, 733-752 (1989)
18. Gawedzki, K.: Constructive Conformal Field Theory. In: Functional integration, geometry and

strings, eds. Haba, Z., Sobczyk, J. Basel, Boston, Berlin: Birkhauser, 1989, pp. 277-302
19. Gawedzki, K.: 51/(2) WZW Theory at higher Genera. Commun. Math. Phys., in press
20. Gawedzki, K.: Coulomb Gas Representation of the SU(2) WZW Correlators at Higher Genera.

hep-th/9404012, Lett. Math. Phys., in press
21. Gawe.dzki, K., Kupiainen, A.: Coset Construction from Functional Integral. Nucl. Phys.

B 320, 625-668 (1989)
22. Hitchin, N.: Stable Bundles and Integrable Systems. Duke Math. J. 54, 91-114 (1987)
23. Knizhnik, V., Zamolodchikov, A.B.: Current Algebra and Wess-Zumino Model in Two Di-

mensions. Nucl. Phys. B 247, 83-103 (1984)
24. Nekrasov, N.: Holomorphic Bundles and Many-Body Systems, hep-th/9503157



290 F. Falceto, K. Gawedzki

25. Olshanetsky, M.: Generalized Hitchin Systems and Knizhnik-Zamolodchikov-Bemard Equa-
tion on Elliptic Curves, hep-th/9510143

26. Reshethikin, N., Varchenko, A.: Quasiclassical Asymptotics of Solutions of the KZ Equation.
hep-th/9402126

27. Schechtman, V., Varchenko, A.: Integral Representations of iV-point Conformal Correlators
in the WZW Model. Preprint MPI/98-51 (1989)

28. Schechtman, V., Varchenko, A.: Arrangements of Hyperplanes and Lie Algebra Homology.
Inv. Math. 106, 139-194 (1991)

29. Tsuchiya, A., Kanie, Y.: Vertex Operators in the Conformal Field Theory on PI and
Monodromy Representations of the Braid Group. Adv. Stud. Pure Math. 16, 297-372 (1988)

30. Whittaker, E.T., Watson, G.N.: Course of modern analysis. Cambridge: Cambridge Univ.
Press, 1958

Communicated by G. Felder


