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Abstract: The stationary Schrόdinger equation is —d2.φ + λV(x)φ=zφ for φe
J£2(R+,dx). If the potential is bounded below, singular only at x = 0, negative on
some compact interval and behaves like V(x) ~ l/xμ as x —• oo with 2 ^ μ > 0,
then the system admits shape resonances which continuously become eigenvalues as
λ increases. Here λ > 0 and for μ = 2 a sufficiently large λ is required. Exponential
bounds are obtained on Im(z) as λ approaches a threshold. The group velocity near
threshold is also estimated.

1. Introduction

We study the transition of a spectral resonance (s.r.) value to an eigenvalue which
occurs at thresholds of the coupling parameter λ. A typical system is,

d2

Hλ = -—j + λV(x) on J2?2(R+,ί/x), for R + = (0,oo) , (1.1a)

with Dirichlet B.C. at x = 0 and having a shape resonance potential of the form,

ί
Jmin, 0<X<b

VM, b<x<c, (1.1b)

M(ΦY, X>C

where 2 ^ μ > 0 and Vm[n, VM are positive constants. The physically interesting
μ — 2 case requires λ sufficiently large. For μ > 2 our methods break down. One
serious problem is that the Agmon length of V at 0 energy is finite if μ > 2. We
refer the reader to [6] for a discussion which does not use shape-resonance theory.

The shape resonance problem has been studied by many authors (see [1] for
an extensive list) but mostly in the non-threshold cases — F m i n > V(ρό) = 0 (see
[8] for a consideration of the threshold case). Here we continue the work of [5]
by studying the past-threshold case (i.e. — Fmin < 0). It is demonstrated that the
appearance of eigenvalues from the bottom of the essential spectrum, in the μ ^ 2
cases, is due to the smooth transition of an s.r.value to an eigenvalue. We use an
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improved basic resolvent estimate which allows one to avoid the introduction of an
exterior Hamiltonian. The problem studied here has application to the multichannel
scattering theory of fiber optics [4].

In the remainder of the paper the word threshold will correspond to the
following,

Definition 1.1. Let A be a positive self-adjoint operator with σ(A) = [0, oo). Let B
be a symmetric A-compact operator which is bounded from below and let μn(λ) be
the nth-eigenvalue of Hλ ΞΞA + λB,λ>0 Then τn = lim inf {λ \ μn(λ) < 0} is called
the nth-threshold of Hλ. We say that τn is non-degenerate if μn(λ) has multiplicity
1 for λ > τn and τΛ_i < τn < τn+λ.

The following is a result of Simon:

Theorem 1.2. If ker(A) = {0} in the above definition and τn is non-degenerate,
then

lim
τn λ — Tn

= μ'n(τn) , (1.2a)

exists and is non-zero {negative) iff Hτ" has a zero eigenvalue with normalized
eίgenfunctίon φn. In this case,

Two types of threshold behaviors occur: Either μf

n(τn) = 0, in which case
μn(λ) ~ o(λ - τn) (i.e. super-linear), or μ^(τ«)ΦO, so that μn(λ) = μ'n(τn)(λ - τn) +
o(λ ~ τn) (i.e. linear; see Fig. I). Here we study the linear case and show that there
is a differentiable continuation of the eigenvalue into the 2n d Riemann sheet of
σ(Hλ). We will not use the explicit techniques of [3], although the work of Klaus
and Simon reveals a close connection between conditions (HI) and (H2) below.

We consider a class of potentials which satisfy the conditions (see Fig. 2);

(HI) a) 3Kmin, VM > 0 and c> b > a ^ 0: essinf V = -Fm i n,inf (^ c ) V(x) ^ VM,
inf(o,α) V(x) ^ VM, and if a > 0 then V(x) -> oo as x -^ 0 + is allowed;

b) Vx ^ c i) 3μt β (0,2) and Voo>0: xV'/V, ln(Koo/K)/ln(jc/c) G [μi,μ2],
OR ii) μ2 = 2 and 3Vt > 0: x2~μι Vx ^ x2V(x) ^ V2, μ\ ^ (-xV'/V) ^ 2.

σ(Hλ)

0 —

H λ )

Fig. 1. Spectral dependence on coupling parameter
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Fig. 2. Past-threshold shape resonance potential

(H2) 3τ > 0 a non-degenerate threshold of Hλ with eigenvalue Eλ so that,
*)Eτ = 0e σpp{W)
b) 3δ0 > 1 so that for 1T in (1.2b) and λ > τ: |£ A + (λ - τ)ir\ = Θ(λ - τ)δ».

(H3) 3βo, So > 0 and an analytic function V(κ) defined on the truncated cone,

«fc,(c) = {c + ε0 + pe l / ; |p > ε0, \β\ g ^o},

where

a) F(JC) = for x e (c + 2ε0, oc);

b) VJ > c, KG ̂ 0(rf), |0c - dyV{j)(κ)l(V(κ) - V(d))\ < oc uniformly, y g 3;

c) 3Q > 0 so that \/κ e %(c), |Im F(/c)| ^ d |Re F(κ:)| + C2.

Main Theorem. Suppose that conditions ( H l ) - ( H 3 ) hold i) If μ2<2 in ( H l ) b )
then Hλ has a unique s.r. value z(λ) for λ<τ sufficiently large, so that z(τ~) = 0
and 3δ2 > I and Q > 0 so that,

\{λ-τ)r-z{λ)\ ύ

where pμ =
however C\ and C3

(1.3a)

(1.3b)

(1.3c)

λy-Q-n)im - C ^ . ii) // μ2 = 2 then δ2 = 1,
decreased if τ is increased. Furthermore p2 =

Remark. Conditions (HI) and (H2) are satisfied by many single-bottom potentials of
interest including those found in higher-dimensional problems [3]. The requirement
μi > 0 in (Hl)b) is not essential but is best handled on a case-by-case basis. Much
of our techniques still work if μn(λ) approaches 0 super-linearly, but we do not
consider the details here. The non-degeneracy condition can be dropped if extra
conditions on the splitting of eigenvalues are imposed [8].
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The paper is organized as follows. In Sect. 2 some notation is defined. In
Sect. 3 we consider the details for handling the 2 > μ > 0 cases. Modifications re-
quired to handle the μ = 2 case are discussed in Sect. 4. We also complete the proof
of the Main Theorem. In particular, details are given for estimation of the group
velocity.

2. Definitions and Notations

In this paper we work on the Hubert space Jί? = J£2(R+,dx) with norm denoted
|| || and inner product ( , •). The essential-sup norm is || ||oo. If S C R + then Xs(x)
is the characteristic function of S. The domain of an operator A is denoted <3)(A)
and its adjoint is A*. The commutator of operators A and B is [A,B] = AB — BA. A
full derivative d/dx is simply written as dx, whereas the momentum operator is p =
-iά/dx. Constants C are bounded, positive and independent of relevant parameters
(unless indicated).

Let H be a self-adjoint operator on a Hubert space Jf. A complex number
z φ cr(//), is called an s.r. value if 3 a group of operators % (which are unitary for
θ e R) so that z e σ(H(θ)), where H(θ) = %H^^e is an analytic family of op-
erators with @(H(Θ)) — Θ(H). See Fig. 3. In most applications Im(#) is restricted,
hence not all resonance values can be studied in this way.

When H is a Schrόdinger operator the Agmon length of the potential V{x) at
energy E is defined to be

p = f y/msix{0, V(x) -E}dx , (2.1)
b-

where Z?_ = sup{x e (a,b) \ V(x) <E} is the interior turning point. This provides
an important measure of the exponential decay of eigenfunctions in the Classi-
cally Forbidden region of H at E. For a detailed discussion see [2, Sect. 7], or
[8, Sect. 11].

3. The 2>μi>0 Cases

We assume (H1)-(H3) hold throughout our discussion. This ensures that eigenval-
ues have finite multiplicity and that σ(Hλ) has no positive eigenvalues or singular

σ(G)

Fig. 3. Comparison of spectra
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continuous spectrum. For a non-degenerate threshold τ > 0 we define a comparison
operator to Hλ for λ < τ, as originally used in [8],

Gλ = -3 X

2 + λV(x)XIc + 2(τ - A/MiXjr on j f , (3.1)

with Dirichlet B.C. at x = 0. Here τF(ci) = A\(τ — λ)δι for some fixed value of δ\ G
(max{2 - (50,μ2/2}? 1), ;4i > 0 and Ic = (0,ci), Jc = (ci,oo). To simplify notation
define ε = τ — λ and let H = Hτ~8, G = Gτ~ε. The proof of the following is given
in the appendix:

Lemma 3.1. With the above conditions 3C, f̂ , εi > 0 and a unique eigenvalue
Fτ~ε e σpp(G)Π(092Aιε

δi) so that,

\Fτ~ε - εr\ <Cε2-δι/Au for 0 ^ ε ^ ελ .

We now construct an analytic family of operator associated with H. The group
of operators °lίl are obtained from the vector field vε(x) defined on R + by,

vε(x) = (x- dx)(l - exp[-σ(5i - (Φ)V(x))])X{duOo)(x) . (3.2)

Here B\>ir and τV(d\) = B\ε. This generates a flow φe on R+, which is the
solution of the differential equation,

-jgψθix) = vε[φθ(x)], φQ(x) = x . (3.3a)

For θ = iβ the analysis of [8] gives,

\φiβ(x)-x\ ^ βvε(x) , (3.3b)

which implies that Image(φβ) C ^βo(c) for |j8| ^ βo. Hence, from condition (H3),

Viβ(x) = V{φiβ(x)) = V(x) + iβvε(x)V'(x) + R , (3.3c)

with \R\ ̂  Cβ2V(x). Furthermore, the transformations,

/ 2 ) , (3.4)

are well defined for |Im(θ)| ^ βo and are unitary for θ G R. The Jacobian is defined
as J^e = \dχ(pθ\' The analytic family of Hamiltonians become,

H(θ) = %HV_Θ = p2

θ + (τ - s)Vθ(x) , (3.5a)

where the kinetic term is,
2 2 P + ^θ, (3.5b)

and the remainder term is,

^ = ( 1 / 2 ) / , " 3 / ; - (5/4)Λ- 4(Λ') 2 (3.5c)

A rather tedious calculation using (3.2) and (H3)b) gives the following bounds:

/ ^ Cβσεk^ (for * = 1,2) , (3.6a)

S Cβσ(l+βσ)ε2^, URe^Hco ύ Cβ2σh2^ . (3.6b)
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Next we choose B\>ir and define B2 G ( ^ # i ) so that

, , (3.7)

1

where τV(d{) — BfS. This estimate can be made to hold due to (Hl)b), since
d2 —> oo as B2 —» f̂ +. It is now clear that on [ύf2)oo), ΞlΛΓμ > 0 so that, ignoring
lower order terms,

2εV - τ(2V + i F') ^ 2 ε ^ - τF[2 - (1 - dx/x\-xVr/V)}

^ ε(ir - (2 - μx)B2 - (dx/d2)μxB2) ^ Kμε , (3.8)

which is the key Exterior estimate. We also fix B3 G (i^,B2). For AQ > A\ choose
the minimal distances c\ which satisfy the condition τV{c{) =AiSδι. Now for some
smooth step function 0 ^ q(x) ^ 1, define the cutoff functions guipc),

l=92i+g22+ &, Q\ = Q\ + g2

2, g2

4 = g2

2+ g2

3, g2 = gog4 ,

where q(x) is chosen so that q{x) = 1 for x ^ 0 and q(x) = 0 for x ^ 1. From the
Chain Rule we obtain the estimates, for j — 0,1,2,

| ^ / ) | | o o ; * = 1,2,4} ^Cjε^9

| ^ / ' ) | | o o ; t = 0,3} ^ Cy ε ^ 2 (3.9)

Throughout we use the notation φk = gkφ and consider Ή2 to be the positively
oriented contour defined by \εV — ζ\ =A\εδ2, where δ2 G (l?min{(5o,2<5i/μ2}) ^s

fixed. Then for any φ G ®(H),

, (3.10)

which is the Interior estimate. In the Classically Forbidden region [ccί/3] we find,

\\(H(Θ) - ζ)φ2\\ ^ ]^

\\Φ

^ ^ε{B, - r)/2 \\/θ~
ιdxφ2\\ + (B3 - r)(ε - ε/2 - Cε^2)IIΦ2|| (3.11a)

This gives two estimates involving g2{x). For the comparison operator,

\\(G-ζ)φ4 ^ y/^iAi-6^^)12 \\δxφ4\\ +Aι(εδ'/2 + &(ε)) \\φ4\\ . (3.11b)

Finally, from (3.8) we obtain,

\\(H(Θ) - ζ)φ3\\ ^ j^lm{-e2'^(φ3,(H(θ) - ζ)φ3)} ^ εβKμC\\φ3\\ , (3.12)
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with the definition

γ3 = (pφ39v'pφ3)/\\pφ3\\2 e (1 - Cσe-\ 1) .

Once σ is chosen sufficiently large and fixed, β > 0 can be chosen sufficiently small.
We now present,

The Basic Estimate Lemma I 3.2. Under conditions (H1)-(H3) and for Θ = iβ
with \β\ sufficiently small, the following holds for all φ G

\\(H(θ)-ζ)φ\\2 1 A
k=2

+ εC4Σ\\g'kφ\\2 . (3.13)

The same estimate holds for G with φ G 2{G) and g2 replaced with g4

Proof We start with the IMS formula [8, Lemma 6.1],

\\{H{Θ) - ζ)φ\\2

£ (1/6) Σ 2\\{H{Θ) - ζ)φkf + (l/6)\\(H(θ) ~ ζ)<h\\2 - R(Φ)

Z A\&Dλ\\φf + ε2D2\\g4φ\\2 + ε2D3\\g2φ\\2 + εD4\\dxg2φ\\2 ~R(φ) , (3.14)

so the result is completed by establishing,

Claim 3.3. For R(φ) = £ L i \\[H(θ),gk]φ\\2, 3Q >0so that,

R(φ) ί ε^ ^ C , \\φ\\2 + C2\\(H(Θ) - ζ)φf - ε(B, - T)C 3 Σ \\g'kφ\\2 . (3.15)
k=0

Proof First note that,

R(Φ) ύ cβ Σ(\\fi2g'AΦ\\2 + MΦW2 + WfθlLΠΦW2) • (3.16)

To study this inequality set h = gr

k and J = β~^2. Now consider the term

\\hJdxφ\\2 ύ (l+Θ(β))Re{φ,-dxh
2Jdxφ)

C2Re(φ,h2(H(θ) - ζ)φ)

ί 2C2\\h'φ\\2 + (l/2)\\hJδxφ\\2+ C2\\h2φ\\2

- ζ)φ\\2 - C2 inf Re(#"β + τVθ - ζ) \\hφ\\2 .
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Hence, combining the known estimates gives

\\hJdxφ\\2 ^ εAδ^Dλ \\φ\\2 + 2\\(H(Θ) - ζ)φ\\2 - ε(B3 - r)D2\\hφ\\2 . (3.17)

Now, using (3.6) and (3.9) in (3.16) and employing (3.17) gives the claim. D

A similar estimate to (3.15) holds for G. Combining (3.14) and the claim for
ε > 0 sufficiently small completes the lemma. D

Define the projection operators,

We now show

Theorem 3.4. There is a constant C > 0 so that for ε > 0 sufficiently small,

\\PB ~ Qc(θ)\\ ύA\^-χC < 1, \Fτ~ε - z(τ - ε)| S 2Aιε
δ> . (3.19)

Furthermore, z(λ) is differentiate for λ <τ.

Proof Define the resolvents R(G) = (G - ζ)~ι and R(H) = (H(θ) - ζ)~\ Then

\\Pe ~ Qs(θ)\\ ^ Aλε
b- sup {2\\R(G)Q\\\\\Q\R{H)\\ + \\R{G)Q\\\\\

\\g4R(H)\\}

Here it is useful to note that g\g\ — —g^g^ = —gig\. In this way all terms
involving Q\ can be replaced with g2 and g^ terms. From (3.19) we know that
the dim(βε(θ)) — d i m ^ ) = 1 for ε sufficiently small and this obtains the second
statement in (3.19).

For continuity let us define z = z(τ — ε), z0 = z(τ — εo), etc. Note that the con-
tours ^* can be deformed slightly without changing (3.13). Now we consider,

H\θ) ΞΞ %\p2 + (τ - ε)V)<%ε_ϋθ .

Due to [8, Theorem 3.2] the pure point spectrum is independent of the scaling %{j
so we have z e σ(H'(θ)) and is non-degenerate. Hence using a common contour
for the projections, we obtain,

Q'H' - Q0H0 = zQ' - z0Q0 = (z - zo)Q' + zo(Q' - β b ) . (3.20)

Rearranging terms and taking the norm gives,

\z - zo\ ^ Ate
h sup {|f - zo| \\R(H')(ε - εo)VoR(Ho)\\}

If V(x) is not bounded at x = 0 then define the cutoff functions hk{x),

1 = h\ + h\, hiix) = q((2x - a)/a) . (3.21)



Resonances Become Eigenvalues 669

The IMS formula gives, for φ e @(H0),

\\(Ho - ζ)φ\\2 ^ (l/2)τ2 | |M Vφ\\2 - R(φ),

where the remainder term satisfies (see the proof of Claim 3.3),

Hence we obtain, for any u G ffl,

2\\uf + C\\R(H0)u\\2 ^ (τ2/2)p! VR(H0)u\

which implies the resolvent bound

We can now return to (3.20) and insert 1 = h\ + h\ between the resolvent operators
on the right-hand side. This implies differentiability. The improved estimate of (1.3c)
is obtained below. D

4. The μι = 2 Case

The theory of the previous section requires δ\ = δ2 = 1. The consequence of this
is that the threshold τ must be sufficiently large to obtain the convergence of pro-
jections.

To obtain the basic estimate we require A0>A\ to be sufficiently large. Then
B\ > B2 > BT, > Y* are chosen as required. We show the following in the Appendix,

Lemma 4.1. Under conditions (H1)-(H3) Lemma 3.1 holds with δ\ — 1.

The Chain Rule and condition (H2) combine to give,

a ' (4.1)

Next choosing ^ 0 to be the circle defined by |ε — ζ\ = εβr0 for some r0 < 1, ensures
that the Interior estimate (3.10) holds with δ2 — 1 and ε replaced by εβr0. The
Exterior estimates (3.8) and (3.12) will hold if σ and τ are chosen sufficiently large.
For the Classically Forbidden region a careful analysis gives, for β sufficiently small,

\\(H(Θ) - O0 2 | | ^ v ^ C i | | S * 0 2 | | + βftC2||02|| • (4.2)

We now present,

The Basic Estimate Lemma II 4.2. Under conditions (H1)-(H3) and for θ = iβ

with \β\ sufficiently small, the following holds for all φ G

\\(H{θ)~ζ)φ\\2 £

+ εB3C3\\dxg2φ\\2 + ε(B3 - τT)C4 Σ H^ΦlP (43)
4=0

The same estimate holds for G with g2 replaced by g$.
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Proof. Using a relation similar to (3.14), we need only obtain the bound,

R{φ) S ε2(4)Λ)2Ci | |0 | | 2 + C2\\(H(Θ) - ζ)φ\\2 - ε(B3 - ^ ) C 3 Σ \\g'kφ\\2 . (4.4)
k=0

The details are clear from Sect. 3 however note that r 0 —• 0 + requires τ —>> oo. D

We can now show,

Theorem 4.3. For τ sufficiently large and ε > 0 sufficiently small, 3C > 0 so that,

\\Pe - ρ c(0)| | ^ C/τ < 1, | F τ - ε - z(τ - ε)| ^ 2ε/?r0 . (4.5)

Furthermore, z(λ) is differentiable for λ < τ.

Proof Unlike in Sect. 3, uniform convergence of the projection operators requires
τ to be sufficiently large. Consider

Pe ~ Qε(θ)) || ^ sβr0 sup

\\g2

4R(H)φ\\2}

^ εβr0 {Cλ/ε(B3 ~r) + C2/εβ) ^ Cr0 .

Hence for r0 > 0 sufficiently small we obtain (4.5). Note that this imposes a lower
bound on τ from Lemma 4.2.

For the differentiability of the s.r.value, we combine estimates in (4.3) with
(3.20) to obtain a bound on \dz/dε\ independent of ε. A sharper estimate is obtained
below. D

Proof of the Main Theorem. To improve the estimate on \Fλ — z(λ)\ in (4.5) to
exponential order we refer the reader to [2, Sect. 7], [8, Sect. 14] or [5]. Details for
estimating Im(z) can also be found in these references.

Finally, to obtain bounds on the derivative of z(τ — ε) we recall the notation
used in the proof of Theorem 3.4. Then

(z - zo ) β 0 = (H1 -z)Q'- (Ho -z)Q0. (4.6)

Now let ψ be the resonance which solves (HQ — zo)ij/= 0. Then we obtain the
formula,

ε — εo Zπ v0

 zo — 4

From the bounds on the resolvent found in (4.3) and (3.19), we can take the limit as
ε -> ε0 and find dz/dε = (ψ,Q0V\l/)/\\ψ\\2. Here we need the fact that \\Q' - β o | | =
G(ε — εo). To simplify the derivative let us consider the difference,

k=o
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where α is finite and pμ is easily calculated from Definition (2.1). In particular,

d d\

c c

Exponential bounds on resonance states were obtained by Sigal in [8, Sect. 13].
Combining these estimates give dz/dε — (ψ, Vι//)/\\ιl/\\2 + Θ(e~Pμ).

To complete the estimate in (1.3) let φ be the normalized zero state of Hτ and
define,

ψ = gιφ-(l -Qo)giφ .

Calculating as in [8] gives,

fr||;* = 0,1,2). (4.8)

It can be shown that ||(1 — g\)φ\\ and Θ2 are (9(e~Pμ). Finally we observe, for Pεo

as defined in (3.18),

ll(i - Qo)gιΦ\\ = ||flfi(i -Peo)Φ\\ + lltei^o - βo^OΦII (4.9)

The first term on the right-hand side is handled in (A.3) of the Appendix. As for
the last term in (4.9) a bound was obtained in (4.5) (or (3.18) for Sect. 3) with
remainder Θ(e~Pμ). D

Appendix

For τ as in (H2) define c\ = min{x|τK(x) = 2εVm[n}, /* = (α,c*) and J* = (c*5 00).
Then we introduce the operator,

Gl~ε = -% + ( τ - s)V(x)Xi* + 2εVmmXj* on ̂  , (A.I)

and present,

Lemma A.I. For ε>0 sufficiently small 3\F;~ε G σ{Gτ~ε) Π [0,ε(2Fmin - 'V)
δ

Proof. By hypothesis 3Eε e σ(Hτ+ε + 2εVmm), where Eε = ε(2F m i n - Ψ") +
for some ί>o > 1 and 0 < Ψ" < Vm[n. Since

we conclude Eε ^ F*~ε. Conversely, since

GΓε ^ Hτ~ε = Hτ - εV ,

we have by min-max theory [6] that F*~ε ̂  0 and that it is a unique
eigenvalue. D
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Proof of Lemma 3.1. Let φ be the normalized eigenfunction corresponding to
the eigenvalue F of Gτ~ε. Also let P* be the projection of Gl~ε onto F*. Then
defining,

gives (Gl~ε -F*)ψ* = 0. Hence,

(F-F*)(ιA,<A*) = (ιA,[(τ-ε)F(x)% ( c i,c Γ ) + 2β(FminZy* - ε ^ " 1 ^ ! ^ ) ] ^ ) . (A.2)

For the left-hand side note that,

(ψ,ψ*) = l-\\ψ-ψ42 = l-(9(e-^).

The right-hand side of (A.2) is clearly Θ(e~p*) from [8]. As in (4.7) we calculate,

9 ^ ]\/τV(x) - εδιAι dx ^ \fτVZ>(\ - Ax/A0γ
/2cμ2/2 Jx~μ2/2dx > p* .

c c

This demonstrates that F = F* + 0(e~^*).
Now let 0 be the normalized zero state which solves Hτφ = 0. Also let Pε be

the projection of Gτ~8 onto F τ ~ ε . Then

0 = (φ,PεH
τφ) = Fτ~ε(φ,Pεφ) + (

Thus rearranging terms gives,

F τ - β = _ ε r + ^ l ( | | ( j P ε _ i)φ\\) + εδ*Θ2(\\Xjφ\\).

As a contour take ^ i = {ζ\\ζ\ = sδιA\} and observe that,

ε
2π

If V is singular at 0 then we can introduce the cutoff functions hk defined in (3.20)
and proceed as in the proof of Theorem 3.4. D

Proof of Lemma 4.1. The details above clearly apply if ^i = 1. Note however that
(A.3) requires A\ to be large if ||Pε — 1|| is to be small. D
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