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Abstract: Topological invariants of three-manifolds are constructed using quantum
groups associated with the A,B, C and D series of Lie algebras at odd roots of unity.
These invariants are also explicitly computed for the lens spaces.

1. Introduction

Since the landmark discovery of Jones [1], there has been dramatic progress in
the field of knot theory and the theory of 3-manifolds. A distinctive feature of the
subject is its close connection with mathematical physics [2]. Indeed, many of the
important discoveries are prompted by ideas and techniques from various branches
of mathematical physics. For example, an intrinsically three dimensional construction
of the Jones and related link polynomials was developed in terms of the quantum
Chern-Simons theory [3]; new topological invariants of 3-manifolds were obtained
using conformal field theory [4], and quantum groups [5, 6]. It is our aim here to
study 3-manifolds using quantum groups [7, 8].

We will apply the construction of Reshetikhin-Turaev [5, 6] to the quantum
groups associated with the A,B,C and D series of Lie algebras at odd roots of
unity to obtain the corresponding topological invariants of 3-manifolds. We will
also compute these invariants for the lens spaces. Previously these quantum groups
at even roots of unity were considered by Turaev and Wenzl [9, 6], who made
essential use of a result of Kac-Peterson [10] on modular properties of characters
of irreducible integrable representations of affine Lie algebras, which does not seem
to apply to the odd roots of unity case in any obvious way. The HOMFLY and
Kauffman ploynomials associated with these Lie algebras were also used in [20]
to construct 3-manifold invariants, which were averages over all possible cablings
[19].

The Reshetikhin-Turaev construction makes use of two fundamental theorems in
3-manifold theory, due to Lickorish [11] and Wallace, and Kirby [12] and Craggs
respectively. The Lickorish-Wallace theorem states that each framed link in S3

determines a closed, orientable 3-manifold, and every such 3-manifold is obtain-
able by surgery along a framed link in S3. The disadvantage of this description
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of 3-manifolds is that different framed links may yield homeomorphic 3-manifolds
upon surgery. This problem was resolved by Kirby [12] and Craggs, and Fenn
and Rourke [13]. These authors proved that orientation preserving homeomor-
phism classes of closed, orientable 3-manifolds correspond bijectively to equiva-
lence classes of framed links in S3, where the equivalence relation is generated by
the Kirby moves. The essential idea of [5] is to make appropriate combinations of
isotopy invariants of a framed link embedded in S3, such that they will be intact
under the Kirby moves, and thus qualify as topological invariants of the 3-manifold
obtained by surgery along this link.

It requires detailed knowledge of representations of quantum groups at roots
of unity in order to explicitly carry out the Reshetikhin-Turaev construction. As
the representation theory at roots of unity is not very well understood, this is
by no means a straightforward exercise. In [5], the quantum group Uq(sl(2)) at
even roots of unity was investigated, yielding a set of 3-manifold invariants which
turned out to be equivalent to those arising from sl(2) Chern-Simons theory. We
should point out that it is the sl(2) invariants, which have been studied extensively,
both within the framework of quantum groups and that of Chern-Simons theory
[14-17], as well as using the cabling method [19, 20]. In particular, these invariants
were explicitly computed for the lens spaces [16]; the squares of their norms [6]
were shown to be the same as the Turaev-Viro invariants [22]; their connections
with the Casson invariants of homological spheres were also explored [23]. Also
as we have already mentioned, Turaev and Wenzl [9] carried out the construction
for quantum groups associated with the simple classical Lie algebras at even roots
of unity. The resultant 3-manifold invariants are believed to be equivalent to those
obtained from conformal field theory and Chern-Simons theory. In particular, the
invariants arising from quantum sl(n) at even roots of unity should be the same as
those constructed in [24]. The Reshetikhin-Turaev construction was also extended to
quantum supergroups [25], and the 3-manifold invariants associated with Uq(gl(2\l))
and Uq{osp(\\2)) were obtained.

Our purpose is to study the case of the quantum groups associated with the
simple classical Lie algebras at odd roots of unity. The organization of the paper is as
follows. Section 2 summarizes the structural and representation theoretical properties
of quantum groups, which will be necessary for the construction of 3-manifold
invariants. Section 3 presents the construction of 3-manifold invariants, while Sect. 4
gives the result of the lens space computations.

2. Quantum Groups

2.1. At generic q. Let us begin by quickly reviewing the major properties of a
quantum group Uq(g). We will work on the complex field C. Let g be any finite
dimensional complex simple Lie algebra. Denote by Φ+ the set of the positive roots
of g relative to a base (i.e., the set of the simple roots) Π — {αi,...,^}. Define
//* = 0 ί = 1 Cα, , E = 0 ϊ = 1 Roίi. Let (,) : £ x E -> R be an inner product of E such
that the Cartan matrix A of g is given by

A ί v 2(α z , α 7 )
A = {aυ)u=uau = 1 — T .

Then Jimbo's version of the quantum group Uq(g) is defined to be the unital

associative algebra generated by {kuk~x,eufx \ ί = 1,..., ι} with the following
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relations:

Kλ = i >

k -k~l

(1)

q-q-

tfejiei)1-**-' = 0, i*j, (2)
t=o L * V«,.«/>/2

where [*]^ is the Gauss polynomial. (Note the slightly unusual normalization of et

and fi in the first equation of (2).)
Drinfeld's version of the quantum group on the other hand is defined to be an

algebra over C[[h]] completed with respect to the h-adίc topology. It is generated
by {hi,ei,fi\i = l,...,i} subject to the same relations (1) and (2) with kt = qhι,
q = exp(A).

It is well known that (in either version) the quantum group Uq(g) has the
structure of a Hopf algebra. We will take the following co-multiplication:

±1\ _ ;,±1 ̂  u±\

and co-unit:

Then the antipode, which is an algebra anti-automorphism, is given by

Sift) = -kifi.

Following Lusztig [26], we introduce a set of elements of Uq(g)

{e^,f^\a&Φ\neZ+}, (3)

which satisfy, for all 0 ̂  y rg Ϊ,

^y^α 'V — ^ ea 9

^ fWk~l — /7~/I(α'αy) f(M)
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The ei and fa have properties similar to that of the root spaces of the Lie algebra

g. In particular, if α is simple, i.e., being equal to α̂  for a given z, then e^ = eh

f
At generic q, the Drinfeld quantum group admits a universal 7?-matrix, which

can be expressed as

R = qΣ!Uj^B\h&h, Λ ® i + Σc(s)E{s)®F(A , (4)

where 5 = ^diag((αi,αi),...,(α I }α,))^. The £ ( ^ and F ( i 5 ) are ordered products of

βαW)'s and ^(A2)'s respectively, while the C(5) are scalars, which are products of

^-factorials and powers of (q — g" 1 ) .

The universal i?-matrix satisfies the following defining relations:

RA(a) = A'(a)R9 \fa e Uq(g),

(A 0 i

from which one can easily deduce that

(S®id)R = (id

where the second equation is the celebrated Yang-Baxter equation.

2.2. At roots of unity. When q is a root of unity, Eqs. (1) and (2) still make sense
within Jimbo's definition of a quantum group. However, our discussions about the
universal /^-matrix, etc. all become invalid. Many other things become rather subtle
as well, thus requiring re-examination.

We assume that q is a primitive Nth root of 1, with N being an odd positive
integer which is not smaller than the dual Coxeter number of the Lie algebra g. Let
{εz I / = 1,2,..., r} be a basis of an Euclidean space with inner product (εt, Sj) = δfj.
Define

* = 0Ze f , XN=X/NX. (5)
i=\

For simplicity, we will work with the quantum groups associated with Ar-\9 Br,
Cr and Dr only. The exceptional cases will be treated in a separate publication.
In terms of the £/, the simple roots of these Lie algebras can be expressed in the
standard way, which we spell out below.

Ar-\ :

α z = Si - ε ί + i , / = l , . . . , r - 1

B L :

oίi = εt — εi+\, i = 1 , . . . r — 1, ocr — 2εr

OLj = ε, - 8/ + i , / = l , . . . , r - 1, α r = ε r _ i
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Denote by i the rank of the Lie algebra g. We define the quantum group Uq \g)
to be generated by {Ja, a = 1,..., r; <?/,/•, z = 1,..., z}, subject to the constraints (2)
and the following relations:

(Jaf = 1,

(7)

where

k = Ji(Ji+ιY\ / = l , 2 ,

Λ, 9 = Br ,

kr =

Jr-\Jr, g = Dr.

Remarks. In the case of Ar-\, the quantum group we have just defined is that
associated with gl{r) instead of sl(r). In choosing to work with gl(r) we avoid
complications related to the weight lattice of sl(r).

Our definition of UqN\so(n)) automatically excludes the quantum analogues of
spinorial type representations.

The algebra UqN\g) still has the structure of a Hopf algebra, with the
co-multiplication, co-unit and antipode for the {e^fi} generators as given in the
generic q case, and for the Ja we have

= l ;

It also admits a universal ^-matrix, which reads

R = X\ 101

where q5), ^ ^ and F^ are the same as in the generic q case, but the summation
over s is truncated by the extra relations

which follow from (7) and the Lusztig automorphisms [27, 26]. Thus the sum
involves only a finite number of terms. The factor J f is defined by
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where the Pa[μ], a = 1,..., r, μ = 0,.. .,N — 1, are idempotents defined by

vφμ

2.5. Representations. We now examine some facts about the representation theory
of UqN\g). Since ordered products of e^\ f^ and powers of Ja form a basis of
UqN\g), we can easily see that the quantum group is finite dimensional over C. It
is a standard textbook result that every irreducible left module over an associative
algebra is isomorphic to the quotient of the algebra itself by a maximal left ideal.
Thus the irreducible representations of UqN\g) are all finite dimensional. It can
also be shown that every irreducible Uq (g) module V(λ) admits a unique (up to
scalar multiples) highest and lowest weight vector, and is uniquely characterized by
the highest weight λ EXN> Let v+ be a highest weight vector of V(λ). Then by
definition,

Jav+ = q{KEa)υ+,

etv+ = 0 ,

where we take an arbitrary representative of λ in X to evaluate (λ,εa). Clearly q^e°)
is independent of the choice of the representative, thus is well defined on XN. In a
similar manner, we can also define a function e : XN x XN —> C by requiring that
its pullback by the canonical projection X —»X̂  be given by q^^ : X x X —> C

It is worth mentioning that in the cases of Br and Dr, no quantum analogues of
the spinorial representations exist for Uq (g) In the work of Turaev and Wenzl [9],
such representations were also discarded.

Let

^ * N 9 V α e Φ
(α,α)

Define * : Λ^ —> /L^ by A ι-» A* = —τ(/l), where τ is the maximal element of the
Weyl group of g. Then clearly A^ is stable under this map.

Note that the restriction of the canonical projection X —> X/NX to Λ^ is one
to one. We will continue to denote the image of A^ under this map by the same
symbol. This deliberate abuse of notation will prove to be convenient.

Irreps of Uq \g) with the highest weights belonging A^ are particularly inter-
esting. They can be obtained from the Uq(g) irreps with the same highest weights
by specializing q to the Nth root of unity. Also, results of [20] and [28] state that

Theorem 1. The tensor product of any finite number of irreducible Uq \g)
modules V{λf), λ* G A^, can be decomposed into

n ( 1 ) θ / , (8)
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where m(λ) is the multiplicity of V{λ) appearing in the tensor product. The module
Jί is a direct sum of indecomposable UqN\g) modules, which has the property
that for any module homomorphίsm f : Jί —>• Jί, the quantum trace of f vanishes
identically, i.e.,

tvΛK2pf) = 0 . (9)

Remarks A similar result also holds when q is an even root of unity [20, 28].
In the case of the B and D series of quantum groups, the result of [28] involves

quantum analogues of spinorial irreps. Since tensor products of tensorial irreps can
not yield spinorial representations of any kind, the result still holds for Uq (so(n)).

3. Construction of Three-Manifold Invariants

3.1. Technical results. In this subsection we present some technical results which
will be of crucial importance for the remainder of the paper. Express the universal
R matrix of UqN\g) as R = Σt at ® bt, and define

Then

u~x

u
t

S2(χ) = uxu~\

Define

a=ί

where 2p = Σ^αeΦ+oc *s t n e s u m °^ ^ e P°sitive roots of g. Set

v = uK2p .

Then v is central, and satisfies

Acting on an irreducible UqN\g) module V(λ) with highest weight λ,υ takes the
eigenvalue

where q-^1^ = e(λ + 2p, -λ).

Let V be a finite dimensional Uq (g) module. We denote the corresponding
representation by π. Define

Cγ = tr κ[(π (g) i d ) ^ - 1 0 \)RTR] , (10)

where try represents the trace taken over V. Then Cv belongs to the central algebra

of lήN\g) [30].
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If V = V(λ) is an irreducible module with highest weight λ G Λ^, we denote

the associated central element Cγ by Cχ. Acting on an irreducible Uq (g) module
V(μ) with highest weight μG/lJ , Cχ takes the eigenvalue

χμ(Cλ) = trvaM2hμ+P) = Sλμ/Q(μ),

with

Q(μ) = Σ

where Ψ" represents the Weyl group of the Lie algebra g. The eigenvalue of Cχ
in the trivial irrep reads Q(λ)/Q(0), which coincides with the ̂ -dimension of V(λ).
We will denote it by Dq(V(λ)).

Some properties of the matrix (Sχμ) are worth observing:

Sλμ — Sμλ •>

Sσ(λ+p)-p,μ — detσSχμ .

It immediately follows the second identity that Sχv = 0 if λ G A^ — A^.

We wish to find a set of complex numbers dχ, λ G A^, which render the central

element of UqN\g) defined by

ι)Cλ, ( 1 1 )

vanishing on all irreducible UqN\g) modules with highest weights contained in A^.

Lemma 1. i) There exists at least one set of dχ, λ G A^, such that

dχ = dχ*, Vλ G Ajf , (12)

and δ takes zero eigenvalue in all irreducible Uq (g) modules with highest weights
belonging to A^.

ii) One such set is given by

dλ = ΩQ(λ\ 1 G 4 ,

(l + *±i)(2p,p) (13)
Ω = ( -

Wι(q))'

Proof. The vanishing of the central element δ in an irreducible Uq (g) module
V(μ),μ G Λχ9 is equivalent to the following equation:

•]Sχμ . (14)

Therefore, for the purpose of proving the lemma, it suffices to construct a set of dχ,
j , which satisfy (14) for all μ € Λ^.
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Instead of constructing the ί/ /s directly, we solve the following auxiliary
equation for the unknowns xχ, 2 G XN'-

Sλμ . (15)
λexN

Note the difference between this equation and (14): the sum on the right-hand side
is now over X^. Let us try the following ansatz:

Xλ = cq-2(>-+P,P) ;

where c is a λ independent complex number. Inserting it into the right-hand side of
(15), we obtain

Σ xλq
{λ+2p'λ)S) = c Σ dQtσq2{μ+p'σip)) Σ q{λ>λ)+2iλ>σiμ+p))~2ip>p) .

λexN ffG# λ e XN

Recall that XN = X/NX, where X is the root lattice in the case of Br, Cr and Dr

series of Lie algebras, and in the case of the A series, is an integral lattice in the
dual of the Cartan subalgebra of gl(r) (instead of si(r)). We can easily see that the
variable of the summation on the right-hand side can be translated by any element
of XN without affecting the final result. (However, we must note that translating the
variable by things like Sj/2-\-NX is not allowed.) Shifting the summation variable
by ^γ~ - 2σ(μ + p), we arrive at

Σ
λexN λexN

Σ

which uniquely determines

c = qV+ψ)(2p,p) I J2 q(λ>λ) .
/ λexN

Set
N-l 2

Gk{q) = Σ qhj

7=0

For all the quantum groups Uq (g) which we are considering,

λexN

where the result holds for UqN\so(n)) as well because the spinorial representations
are excluded automatically. Therefore

q(l + ψ)(2p,p)-2(λ+p,p)
Xλ= ^ ω r ' λeXN'

is a solution of (15).
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To construct the dχ from the xv, we consider the affine Weyl group ifN

generated by

μ H-» σα(μ + p) - p + kNot,

where σα G #~ is the reflection associated with the root α of #. It is a standard
result that 1VN acts on the chambers, i.e., the open connected components of

- U U
2(μ + p,α)

(α,α)

simply transitively, with a fundamental domain

0 < ^ / 7 ; < N,
(α,α)

We define the action of # # on XN by

which clearly coincides with the action of the ordinary Weyl group Hi on X^
defined by

σ(λ + p + NX) = σ(λ + p) + ΛX, Vσ e TT, λ e X .

From the two properties of iΓN on X ®ZR we can deduce that the image of A^
under the canonical mapping X —> XN furnishes a fundamental domain for the action
of W. For any λ, μ G Λ^ C XN and σ, ω G if, σ(λ + p) - p, ω(μ -f p) - p G ^
have the following important property:

σ(λ -^r p) — p — ω(μ + p) — p iff σ = ω, λ = μ .

The properties of Λ^ under the action of the Weyl group and the fact that

Sχv = 0 if λ e Ax — Ax allow us to re-write

V^ (λ+2p,v)ςi _ V-̂  V HetίTY /-, x
/ v -̂ v̂  ύvμ — 2 ^ iL^ α e ΐ σxσ(λ+p)—p

vexN -

which immediately yields

dλ= Σ detσΛ:σ(A+p)-p, λ e A% . (16)

Now Eq. (13) follows directly, and it is also clear that dχ = dχ*.

Several features of the dχ are worth observing. Recall that the ^-dimension of

the irreducible Uq (g) module V(λ) with highest weight λ G A^ is given by

Dq(V(λ)) = Q(λ)/Q(0).

Clearly dχ is proportional to the g-dimension,

dλ = do £>,( V(λ)\ do = Ω Q(0), VλeΛ+.

This phenomenon also appeared in the even N case [9, 20].
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Retrospectively, if do were unknown, and we merely postulate that dχ is propor-
tional the ^-dimension, then the μ — 0 case of (14) requires that the proportionality
constant do obey the following relation:

V - Σ q{λ+2pΛ\Dq{λ)f .

A direct evaluation indeed yields ΩQ(0) for the right-hand side, providing a con-
sistency check for our result.

From now on we will take δ as being defined by (11) with the dχ coefficients
given by (13). We also define the set

of all the irreducible UqN\g) modules with highest weights belonging to A^. An
important property of the central element δ with the dχ's given by (13) is

Lemma 2. Let Y be a Ό\ \g) module which is the tensor product of a finite
number of elements {not necessarily distinct) of/V{A^f). For any module homo-
morphism f:Y-+ Y,

Mγ{K2pδf) = 0 ,

where try represent the trace taken over Y.

Proof It immediately follows from the definition of δ and Theorem 1.
Let us define

* = Σ dλq-(λ+2P>»Dq(λ), (17)

where Dq(λ) denotes the quantum dimension of the irreducible UqN\g) module
V(λ) e -T(Λ+). Then we have

z = (-\)\φ+\
\/N

By using the "strange formula," z can be cast into the form ±Qxp(~ι2ηπ ™ mβ \
where g' — [g, g], and h is the dual Coxeter number of this Lie algebra. The η is 2
for sp(2r) and 1 for all other cases. Furthermore, if we set &1 = ^2λeΛ+(Dq(λ))2,

then direct calculations give z = d1^1.

3.2. Three-manifold invariants. In the construction of 3-manifold invariants using
quantum groups, the Reshetikhin-Turaev functor from the category of coloured rib-
bon graphs to the category of finite dimensional representations of quantum groups
plays the central role. For detailed discussions of coloured ribbon graphs and the
functor, we refer to [6]. We will not need to consider the full category in this
paper, rather, the subcategory consisting only of the coloured ribbon graphs without
coupons will suffice for us. We will adopt the same convention as that of [25],
which differs from that of [6].

As in the last section, we denote by V(λ) the irreducible UqN\g) module with
highest weight A, and i^(Λ^) the set of the irreducible UgN\g) modules with
highest weights belonging to A^. As we have already pointed out, if V(μ) G
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then its dual module V(μ)* = V(μ*) also belongs to Ψ"(Λ^). Furthermore, no two
elements of Y*(Aχ) are isomorphic if their highest weights are distinct. We will
colour ribbon graphs with irreps in i^(A^).

Consider as examples the ribbon (k,k) graphs depicted in Fig. 1.
We colour the ribbons of both Fig. la and lb by {V(λι),V(λ2)9...9V(λk)}9 while
colour the annulus of Fig. la by the irreducible module V(μ). We denote the
resultant coloured ribbon graphs by φ^ and ζ^ respectively. It is straightforward
to obtain,

(18)

which map V{λ\)®> V{λ2) <8> ® V(λk) to itself.
To construct topological invariants of a closed, oriented 3-manifold ML, we first

give it a surgery description, namely, representing it by surgery along a framed link
L embedded in S3. The fundamental theorem of Lickorish-Wallace asserts that every
closed, oriented 3-manifold can be described this way. Then we make appropriately
weighted sums of the framed link invariants of L associated with different repre-
sentations in such a way that the final combinations are invariant under the Kirby
moves. It follows from Kirby's theorem that these combinations are homeomorphism
invariants of the 3-manifold.

Assume that the framed link L (in blackboard framing) consists of m components
Li, i = 1,...,m. It gives rise to a unique ribbon graph by extending each component
Li to an annulus, which has Lj itself and an L[ as its edges, where L\ is a parallel
copy of Li such that the linking number between the two is equal to the framing
number of the latter. We denote this ribbon graph by Γ{L).

We colour Γ(L) by associating with each component Lz with a V{λt) G y{Λχ).
Set c = {Λ ( 1U ( 2 ),...,/ί ( m )}, where some ; ^ > s may be equal, and denote by <g(L)
the set of all the distinct c's. The ribbon graph coloured by modules associated with
c will be denoted by ΓC(L). The Reshetikhin-Turaev functor applied to ΓC(L) yields
F(ΓC), which is a homomorphism of the trivial UqN\g) module to itself, thus is a
complex number.

We define

Σ(L)= (19)
ι=\

Fig. 1.
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where the dχ are the set of constants given in (13). Σ(L) has the following important
properties:

Proposition 1. Σ(L) is independent of the orientation chosen for L, and also
invariant under the positive Kirby moves depicted in Fig. 2a and Fig. 2b.

Proof The first statement of the theorem follows from the fact that dχ — dχ*,
\/λ e Λχ9 while the second statement is a direct consequence of the lemmas of the
last section and Eq. (18).

On the other hand, Σ is not invariant under the Kirby (—) moves given in Fig. 2c
and 2d. In particular, if L' is the framed link obtained by applying once the special
Kirby (- ) move Fig. 2c, namely, adding a framing —1 unknot, to the framed link
L, then

Σ(L')=zΣ(L),

that is, under a special Kirby (—) move, Σ is scaled by z. Since \z\ = 1, the square
of the norm of Σ remains intact under both the Kirby ( + ) moves and the special
Kirby (—) move. In view of the fact that these moves together generate the entire
Kirby calculus, we conclude that

Proposition 2. The following quantity

V(ML) = \Σ(L)\2 ,

is a topological invariant of ML.

(20)

However, V(Mχ,) is not the Reshetikhin-Turaev invariant, which we aim to
obtain. To achieve that, further work is required. We consider the matrix AL =
(^ij)mxm which is the intersection form on the second homology group H2(WL,Z) of

Nothing,

Nothing,

d
Fig. 2.
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WL, where WL is the 4-manifold bounded by ML. A more down to earth interpretation
of ΛL is the linking matrix of L defined in the following way: au is equal to the
framing number of the zth component of L, and α/7, i+j is the linking number
between the /th and / h components of L. Let σ(AL) be the number of nonpositive
eigenvalues of Aι9 then it is clear that σ(Aι) = σ(A^) — 1, while the positive Kirby
moves leave σ(AL) unchanged.

Therefore z~σ^Aι^Σ{L) is invariant under the positive Kirby moves and the special
negative Kirby move, thus

Theorem 2. We have the following topological invariant of the 3-manifold ML\

(21)

Remarks. There exist several versions of the Reshetikhin-Turaev invariants in the
literature, e.g., those given in [5, 9 and 6]. Although the kernel of all those invariants
is Σ(L), they differ nontrivially (i.e., L dependency) in the factors multiplying Σ(L).
Our definition follows that of [5],

In the special case of gl(2), (21) is closely related to the topological invariant
of [31].

4. Computation of Quantum Invariants

We compute the quantum invariant 3F for the Lens spaces L(rn,n), where m,n G Z
are co-prime. Observe that different pairs of co-prime integers (m,n) and (mf,nf)
can lead to homeomorphic manifolds. To avoid (some) repetitions, we assume that
0 < n < m. This exhausts all the possible lens spaces apart from S3 and S2 x S\
which can be treated separately. For any such pair (m,n), there always exists a
unique set of integers {a\,...,as} for some s with 2 ^ αz G Z, such that the ratio
m/n can be expressed as a continued fraction

m 1

n ao L i

Consider the framed link given by Fig. 3.

The integers a\,a2,...,as are now the framing numbers of the respective com-
ponents of the link. Surgery along this framed link yields L(m,n).

Fig. 3.
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Fig. 4.

In order to compute the topological invariant ^(L(m,n)), we need some prepa-
rations. For each λ G XN, we define

w = ί dλ/Q(λ)9 λeΛ+

N,
Wλ \ o, λ $ Λ+ .

Then from the discussions on the properties of X^ and A^ under the Weyl group
1V we can easily deduce that

( Q 2(A+p,«) ±o(modAΠ Vα G Φ +

2-̂  wσ(λ+p)-p = < i7 ; . (ϋ)

σ G -#• I 0, otherwise .

Let us consider the coloured r ibbon graph given in Fig. 4.
W e denote the graph b y Γ(a\,...,akiμ\,...,μk)- T h e /th annulus from the right

has 2α; positive twists, and is coloured by the irreducible UqN\g) module
with μι G Λ~χ. The ribbon is coloured by V(λ), λ G A^.

Define

Hf\aλ9...9ak) = Σ fldμtF(Γ(ak9...9ak;μι9...9μk))9
μι, ,μkeΛ+ /=l

hf\al9...9ak) = Q(λ)Hf\au...,ak).

It is easy to see that

o

Σ

Note that the sum on the right-hand side is over XN instead of A^. It is also

important to observe that although H^\a\) is only defined for λ G A^9 h^\

makes perfect sense for all λ eXN. Furthermore,

This in particular implies that if there is an α G Φ + such that 2 ( ^ α ) = O(modTV),

then hλ\a\) vanishes identically.

Hf\a\,a2) can be expressed as

Σ
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In the above equation, the sum over μ2 can be extended to the entire set X^ without

affecting Hf\a\,a2) in any way. By using Eq. (22) we can cast it into the form

μ€XN

Note again that /^ (01,02) has similar properties as h\ (01), namely, it is well
defined for all λ£XNi and

hψ{aua2) = detσh%λ+p)_p(aua2), Vσ e HT .

By repeated applications of (22), we can easily establish the recursive formula

μexN

which immediately leads to

Hf\ax,...,ak) =

where μk+\ = λ e

Ωk

Σ
μι, ,μkeXN

7ΣI=i[α«(j"«+2p5)UI)+2(μI+ps/ίI+i+p)] (23)

Setting λ = 0 in HχS\a\,...,as), we arrive at

(24)

The linking matrix for the framed link of Fig. 3 is given by

/ fli 1 0 0 ••• 0 0
1 0 2 1 0 •••0 0
0 1 03 1 ••• 0 0
0 0 1 04 ••• 0 0

0 0 0 0
v 0 0 0 0

1
1

where 2 ;£ a, e Z, Vz. It is quite obvious that the matrix is positive definite. Thus

^(L(m,n)) = H^(au...,as). (25)

The two degenerate cases, S3 and £ 2 x Sι

9 are easy to handle. We have

^(S3) = 1 ,

^(S2xSι) = z-1 Σ dλQ(λ)/Q(0).

To evaluate tF(S2 x Sι) more explicitly, we apply (22) to obtain

Σ
λeλt

+\ Σ
λexN
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β(0)

The far right-hand side coincides with d^1. The fact that #XS 2 x Sι) = d^λ can
actually be deduced from general arguments, but here we have arrived at this result
through direct computations.

5. Some Remarks

Recall that the Reshetikhin-Turaev construction is usually formulated in terms of
modular Hopf algebras. A modular Hopf algebra is a quasi-triangular Hopf algebra
with a distinguished set of irreducible representations which satisfy some rather rigid
conditions. The essence of these conditions is recapitulated by Lemma 1, though it
should be observed that Lemma 1 does not suffice to make UqN\g) qualify as a
modular Hopf algebra.

From any given modular Hopf algebra, it is possible to construct a three-
dimensional topological field theory (see Chapter IV of [6]; for a somewhat dif-
ferent construction, see [32]) of the kind defined by Atiyah [33], by extending the
Reshetikhin-Turaev invariant to an invariant of 3-cobordisms. Given Lemma 1, the
method of [6] should also apply to the UqN\g) with some modifications, though
we have not yet gone through the details.

Acknowledgements We thank Dr Q H Yin for assistance This work is supported by the
Australian Research Council

References

1 Jones, V F R : Bull Am Math Soc 12, 103 (1985)
2 Kauffman, L H : Knots and Physics Singapore: World Scientific, 1991
3 Witten, E: Commun Math Phys 121, 351 (1989)
4 Kohno, T : Topology 31, 203 (1992); Crane, L : Commun Math Phys 135, 615 (1991)
5 Yu Reshetikhin, N and Turaev, VG : Invent Math 10, 547 (1991)
6 Turaev, VG.: Quantum Invariants of Knots and 3-Manifolds Berlin-New York: Walter de

Gruyter, 1994
7 Drinfeld, VG : Quantum groups Proc ICM, Berkeley, (1986), p 798
8. Jimbo, M: Lett. Math Phys. 10, 63 (1985)
9 Turaev, V and Wenzl, H : Inter J Math 4, 323 (1993)

10 Kac, V G : Infinite dimensional Lie algebras 3rd edition, Melbourne: Cambridge Press, 1990,
pp 163-167

11 Lickorish, W B R : Ann. Math 76, 531 (1962)
12 Kirby, R: Invent Math 45, 35 (1978)
13 Fenn, R and Rourke, C : Topology 18, 1 (1979)
14 Axelrod, S and Singer, I : Chern-Simons perturbation theory Proceedings of XXth Conference

on Differential Geometrical Methods in Physics, Singapore: World Scientific, 1991, pp 3-45
15 Freed, D and Gompf, R: Commun Math Phys 141, 79 (1991)
16 Jeffrey, L: Commun Math Phys 147, 563 (1992)






