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Abstract: A new approach to the Atiyah-Singer index theorem is described, using
the technique of continuous fields of C*-algebras. The proof is given in the case of
elliptic pseudodifferential operators on IRΛ

1. Introduction

In the study of pseudodifferential operators (abbreviated ΨΌOs) on a Euclidean
space, or, more generally, on an open manifold, in order to extract information on
the global properties of a ^DO, one imposes "boundary" conditions. For instance,
Seeley [S] investigated the class of elliptic *FDOs of order 0 on R77 with the prop-
erty, in a certain sense, of being equal to the identity at infinity. If P belongs to this
class, then its kernel and cokernel are finite-dimensional, and hence the (analytical)
m d e x ? index P = dim Ker P - dim Coker P ,

is defined. For such operators, an index formula of Atiyah-Singer type has been
established (see, for instance, [B-B]). Hόrmander [H] also studied a class of <FDOs
of order 0 on Rw and obtained an index formula. Bott and Seeley [B-S] and Callias
[Ca] studied differential operators with coefficients and their derivatives decaying at
infinity.

The classes of *FDOs mentioned above cover a wide variety of operators. Never-
theless, interesting operators are left out of the picture (or at least not directly
handled). For instance, in the one-dimensional case, the operator D = x + j ^ is one
of them. Not to mention that D is an important operator in quantum mechanics.

In [E-N-N] we presented a new, simple, proof of the Connes Isomorphism
Theorem for C*-algebra crossed products by R-actions, using continuous fields of
C*-algebras. As a byproduct, we obtained an index formula for the operator D
([E-N-N, Remark 4.8]). In the present paper, we study a whole class of ΨDOs by
similar methods, and establish an index formula (Theorem 3.1), describing the index
in terms of the symbol.

Let us describe briefly the content of this paper. The general idea behind our
proof is to consider the elements of C Q ( Γ * R W ) as the classical limit (as h goes to
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zero) of elements of the algebra of compact operators on L2(JR.n). More precisely,
the two algebras are considered as quotients of the C* algebra of the Heisenberg
group H2n+\, and the "limit" notion is provided by the topology of the spectrum of
H2n+\- I n m e second section we introduce the class of pseudodifferential operators
to which we apply this idea.

In the third section we state the main result of this paper, Theorem 3.1, which
describes the index of an elliptic *FDO of positive order in terms of the topology
of its symbol.

The fourth section contains construction of the analytic index of an elliptic op-
erator P. The main point here is that the index is actually a Ko class of the algebra
of compact operators on L2(JR.n)9 and we describe a convenient way of representing
it with the help of a graph projection e of a closed operator associated with P.

The proof proper of the Theorem 3.1 is given in the section five. The strategy
is fairly straightforward. In above terms, the graph projections ea form a continuous
field for h G [0, 1] (cf. Theorem 5.2), where the subscript refers to the operator with
symbol scaled by h, and where the limiting value e0 is determined by the symbol of
the operator P. The proof of this fact is the main analytic ingredient of this paper.
The canonical trace on the algebra of compact operators gives rise to a field of
cyclic cocycles for h > 0 which does not admit a continuous extension to h = 0.
We replace it by a family of equivalent (in cyclic periodic cohomology) cyclic
cocycles ω^ which is actually continuous in h on the whole closed interval [0,1].
The rest of the proof consists of identifying the right hand side of the equality:

index(P) = (ωh,eh) = ( ω Λ , ^ ) | Λ = 0 ,

where (,) denotes the pairing between AΓ-theory and cyclic cohomology.
In the last section we give an extension of the index theorem to the class of all

(not necessarily positive order) elliptic operators on IRΛ

2. Pseudodifferential operators on ]RΛ

In the present paper, the Fourier transform of a function wG5^(Rw) is given by the
formula

(Fu)(ξ)= f e-i{x>ξ)u(x)dx,
JR."

where (JC, ξ) = x\ξ\ H + xnξn and dx = dx\ dxn, and the inverse Fourier trans-
formation is defined by

where dξ = dξ\ dξn.
A pseudodifferential operator in IR" is an operator of the form

(Pu)(x) = (2π)-" / ei^a(x,ξ)(Fu)(ξ)dξ ,

where u is a compactly supported C°° -function, and a is a C°°-function on IR/7 xR" .
In order for the formula above to make sense, the function a has to satisfy certain
growth conditions as ξ approaches infinity. For instance, if \a(x, ξ)\ —> oo as ξ —> oo,
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then the growth rate must be polynomial. The choice of the asymptotic behaviour
in the direction of x is determined by the problems we are interested in.

In this paper we shall study the class of pseudodifferential operators investigated
by M. Shubin in [Sh].

Definition 2.1 ([Sh, Def. 23.1]) The symbol class Γ W (R"), m e R , consists of the
C°° -functions a on R" such that for any multi-index α, there exists a constant Cα

with
\d\a)\ ^ Cα(l + | z | 2 ) ^ , (2.2)

where \z\2 = z\ + + z2

n for z = (zi , . . . ,z n )eR Λ . We shall say that aeΓw(RΛ)
is of order m.

A symbol aeΓm(Rn x R") defines an operator, denoted by Pa, or Op(tf), by
the formula,

(Pau)(x) = (2π)-Λ /

(2.3)

The operator as above Pa will be said to be of order m.
Let us summarize certain basic facts concerning the operators Pa. For more detail,

see [Sh].
To begin with, Pa extends to a continuous map

Pa :

Here, of course, the space ^ ( R Λ ) of rapidly decreasing C°°-functions on R" is
equipped with the usual Frechet space topology.

Convention. We will allways consider pseudodifferential operators as defined
on

Let ( , ) denote the inner product in L2(

(φ,ψ)= Jφ(x)ψ(x)dx9
R"

For each aeΓm(Rn x R"), there exists <2/eΓm(R'7 x R") such that

That is, Pa has a formal adjoint. Since Pa, : ^(W1) -^ ^(W1) is also continuous,
the operator Pa extends to a continuous map Pa : «5^(Rny -» y ( R n y , where Sfίβl1)1

is the space of tempered distributions.
By definition, if m ^ m7, then Γ m (R") C Γ w / (R W ). If αGΓ°(R" x R " ) , then

Pa : ^ ( R w ) -> y ( R Λ ) extends to a bounded operator on Z 2 (R"). Moreover, if
α G Γ ( r x r ) , and /w < 0, then Pa is a compact operator on Z 2(RW). Set
Γ-°° = Π w Γ ( R " x l R n ) . Then Γ~°° = ^ ( R w x R Λ ) and, for any aeS'00, the
operator Pα is an integral operator with kernel in ^ ( R " χ ] R " ) . In particular, the
image of Pa : ^(W1)' -> ^ ( R " ) 7 is contained in ^ ( R " ) . Such an operator is called
infinitely smoothing. Let us now consider some examples.
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Example 2.4. Set a(x9ξ)=xh Then (Paφ)(x) = Xiφ(x),

Remark 2.5. Usually, operators of pointwise multiplication by C°° -functions are
considered to be operators of order 0, but in our setting, they may have non-zero
order. The above example is the case when the order of a multiplication operator
is one.

Example 2.6. Consider the case a(x,ξ) = ξj. Then Pa = 4^-, which is also of

order 1.

Let a = (ay) be a k x k matrix of symbols of order m. Then the formula (2.3)

makes sense if we replace u by V = (Ck valued functions. Thus we obtain an operator

Pa : ^(Rn; V) -> ^ ( R π ; V),

where ^(IRW; V) is the space of rapidly decreasing V-valued functions. It is obvious
that Pa is given by the matrix (PQιj). All the properties of pseudodifferential operators
stated above also hold for Pa with a matrix-valued symbol a. We shall call a a M*-
valued symbol of order m.

Definition 2.7. A Mk-υalued symbol a of order m will be said to be elliptic if there
exist positive constants C and R such that

a(x, ξ)*a(x, ξ) ^ C(\x\2 + \ξ\2)mIk for \x\2 + \ξ\2 ^ R ,

where /* denotes the kxk identity matrix, ^ refers to the usual ordering of
self-adjoint matrices and * denotes the usual adjoint of matrices.

If the symbol a is elliptic, then the operator Pa will be said to be elliptic.

Example 2.8. Define a G C°°(R" x IR") by a(x9 ξ) = x + iξ. Then Pa = x + ^ ,
which is elliptic of order 1.

Example 2.9. For (JC, j , ^ ) G R " x l R f l , set

'x + iy iζ — η
a(x9y9ξ9η)= t

iξ + η x — iy

Then a is elliptic of order 1, and

/ x + iy

Example 2.10. The symbol a(x, y9 ξ,η) — x + iy + iξ — η is not elliptic (in the sense
of Definition 2.7).

Remark 2.11. Our definition of ellipticity (Definition 2.7) is strictly stronger than
the usual definition (e.g., Definition 1.1 of [T, Chapter 3]). For instance, the operator
of Example 2.10 is x -f iy + Ĵ  + ij-, which is elliptic in the ordinary sense.

Example 2.12. Define a symbol a by a(x, ξ) = (1 + log(l -\- x2 -\- ξ2))~ι. Then a is
of order 0, but not of any order smaller than 0. The symbol a is not elliptic.
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In our setting, a fundamental role is played by non-local effects, i.e., the be-
haviour of functions as |x| —> oo. Thus, we have to give up the property of being
properly supported ([Sh]). On the other hand, the pseudodifferential operators stud-
ied in the present paper still have good properties, enjoyed by operators belonging
to different classes, for instance the existence of a parametrix for any elliptic oper-
ator [Sh, Theorem 25.1]. Consequently, the regularity theorem holds [Sh, Corollary
25.1]. Furthermore, if Pa is elliptic, then Pa (as a possibly unbounded operator) on
Z 2(R"; v) is a Fredholm operator [Sh, Theorem 25.3]. We will denote by indexPfl

the index of a Fredholm operator Pa.
If a pseudodifferential operator is elliptic, then the formal adjoint Pα* of Pa is

also elliptic [Sh, Lemma 25.1], and

index Pa = dim Ker Pa — dim Ker P* .

Example 2.13 (2.8 continued). Consider the operator P := x + d/dx. Then P is
elliptic, and index P = 1. It is well known that the kernel of P is spanned by the

function φ(x) = e~~^.

Example 2.14 Let P denote the operator of Example 2.9. Then indexP = 1.

We conclude this section by recalling the following fact.

Theorem 2.15 ([Sh, Theorem 25.4]). Let P be an elliptic operator of order m>0.
If P has a bounded inverse on L2(Kn; V), then P~λ is the extension by continuity
of a pseudodifferential operator of order —m.

Remark 2.3. Denote the operator of Remark 2.11 by P. The spectrum of P*P is
discrete with infinite multiplicity, and so P does not have index.

3. The Index Theorem

In this section we will formulate the main result, the proof will be given in Sect. 5.
Once we know that if Pa is elliptic, then Pa has a Fredholm index (the analytic

index), and our next goal is to describe index Pa in terms of the topology of a (the
topological index).

As usual, we regard symbols as C°°-functions on Γ*R" = W1 xIRΛ Suppose
that a is an Mk-valued elliptic symbol of order m > 0. The operator of pointwise
multiplication by the C°°-function a is a closed operator on L2(Γ*RW; V). Let us
denote this operator by a, and its adjoint by α*.

Denote by ea the orthogonal projection of L2(T*WLn; F ) θ L 2 ( Γ R w ; V) onto the
graph of a. This projection has the following matrix:

a{\ +a*a)~ι a{\ +a*a)~λa*

Ellipticity of a implies that (1 +a*a)~ι, (1 + α α * ) - 1 are symbols of order —2m,
while (1 +tf*α)~~1α*, a{\ +a*a)~ι are of order — m. In particular,

(1 + α * α Γ \ ( l + aa*y\(l + a*a)-ιa*,a(l + a*a)ι
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Since 1 - α(l + a*a)~ιa* = (1 + αa*)" 1 , it follows that

a{\ + a*a)~ιa* eMj t(Co(Γ | tR7 I)~),

where CbtΓ'R 7 1 )" is the C*-algebra CO(Γ*RW) with unit adjoined.

Set ea = ea- (° J) GM2^(C0(Γ*R")). Since the entries of ea are symbols of
order — m, we see that

~ 9 9 — 2« —(2«+l)ro

|tr(e f l(d? f l)
2w)| ^ C(l + |JC| + |ξ| ) 2 for some C > 0 .

From the inequality — 2« — (2n + l)m < —2«, it follows that tr(βα(<iβfl)
2w) is inte-

grable on Γ*IRΛ
The main result of this paper is stated as follows.

Theorem 3.1. If Pa is an elliptic pseudo differential operator of positive order, then

where T*W is oriented by dxx Λ dξ\ Λ Λ dxn Λ dζn > 0.

The proof will be given in Sect. 5.

4. The Analytic Index

Let P be an elliptic pseudodifferential operator of order m > 0. We set 7Q =
P|C^°(1RW;F) and will regard Γo as a densely defined unbounded operator on
L2(W; V). Since P has the formal adjoint P*, the operator Γo is closable. Let T
denote the closure of Γo. The operator T*T is densely defined and self-adjoint, its
domain Γ*Γ contains CZ°(WLn; V), and

CR72; V) = P*P\C™(Wίn; V).

Set (P*P)0 = P*P\C™(Win; V). Then

CP*P)o C Γ*Γ,

and, since (P*P)o is self-adjoint,

^i i )o — 1 1 .

By [Sh, Theorem 26.3] (and its generalization), the spectrum of T*T is discrete
with finite multiplicities. Similarly, the spectrum of TT* is also discrete with finite
multiplicities. In particular, the eigenvalue 0 (if it exists) is isolated in the spectra
of Γ*Γ and ΓΓ*.

Denote by e the orthogonal projection of L2(JR.n; V) 0 L 2 ( R Λ ; V) onto the graph
of the closed operator T. The projection e can be explicitly written in terms of T:

(l + T*T)~ι T(\ + T*T)-χT*

We shall call e the graph projection of P.
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Since the spectrum of Γ*Γ is discrete and with finite multiplicities, (1 + Γ*Γ)~2
is a compact operator on Z 2(R"; V). An application of the polar decomposition of
T shows that (1 + T*T)-iT* is bounded. Thus

(1 + T*T)-\(1 + T*T)-{T* G JΓ(L2(1R"; V)) .

As for Γ(l + T*T)~ιT*, we have

1 - T(\ + τ*T)~λT* = (l + ττ*)- i ,

and discreteness of the spectrum of TT* implies that

Here, as usual, jr(Z,2(Rπ; F))~ denotes the C*-algebra j f(Z 2 (R r t ; F)) with unit
adjoined. Thus,

and

) 2 (R"; F ) ) ) .

In particular the difference class

Ό 0

determines an element of K0(X'(L2(WLn; V))).
Denote by KerP and KerP* the projections onto the kernel of P and the kernel

of P*, respectively.

Theorem 4.1. In K0(Jf(L2(W.n; V))\

Proof. The curve

/ (l+λ2T*T)~ι (l+λ2T*T)-ι(λT*)\
[i,oo) 9 ^

\λT(l + λ2T*T)~ι λT{\ + /ί2Γ*Γ)-UΓ* /

is norm continuous in M2(Jf(L2(JRn; V))~). Since the eigenvalue 0 is isolated in
the spectrum, by the spectral theorem we have, as λ —> oc, in the norm topology,

(l+λTT)
and

Γ(l + λ2T*TyxλT* = 1 - ( 1 + λ2TT*yx -> I - Ker Γ77* .

Since Ker Γ*Γ = Ker Γ = KerP and Ker TT* = Ker T = KerP, the conclusion
follows. D
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Corollary 4.2. Suppose that P is elliptic of order m > In. Then the operators
(1 + τ*T)~ι and (1 + TT*)~ι are of trace class, and we have the equality

indexP = Tr((l + ΓΎ)" 1 ) - Tr((l + ΓΓ*)" 1 ),

where Tr is the canonical {normal, semifinίte) trace on Jf*(Z,2(IRπ; V)).

Proof By [Sh, Lemma 25.1], the operators 1 + Γ T and 1 + TT* are elliptic.
Hence by Theorem 2.15, (1 + T*T)~ι and (1 + Γ Γ * ) " 1 are elliptic operators of
order -2m. Therefore, by [Sh, Proposition 27.2], these operators are of trace
class.

The operators (1 + τ*T)~ιΓ* and Γ(l + τ*T)~ι are elliptic of order -m <
-In. Hence, again by [Sh, Proposition 27.2], (\ + T*T)~ιT* and Γ(l + F T ) " 1

are of trace class.
Consider the trace class ideal Ci(L2(WLn;V)) of Jf(L2(ΉLn; V)). The observa-

tion above means that e e M2(C\(L2(Wι\ V))). Theorem 4.1, together with the fact
that C\(L2(Kn;V)) is stable under the holomorphic functional calculus, implies
that

ϋ
,0 1

in K0(£ι(L2(Wtn; V))). By evaluating the trace Tr, we get that

Tr((l + r Γ ) - 1 ) - Tr((l + TT*)~ι) = Tr(KerP) - Tr(KerP*)

= index P. D

5. Proof of the Index Theorem

The proof will be based on an idea introduced in [E-N-N]. Consider the family
stf1 = (A'(h)) of C*-algebras parametrized by the interval [0,1] defined by

A'ift) = X(Z2(IR*)), h>0 .

We can furnish srf1 with a structure of continuous field. As in [E-N-N] we make
use of the irreducible unitary representations (π&) of the (2« + 1 )-dimensional
Heisenberg group H2n+\. Write [y,x,z] for the element

1 x

,0

We use the Haar measure ( 2 π L + 1 dxdydz on H2n+\. The representation π^ on

L2(IRW) is given by

πh([y,x,z])φ(t) = ei(ήz+
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Let / e y ( Γ R " x t ) . Regard the Fourier transform Ff of / as an element of
^ C*(H2n+]). Then

πή(Ff)φ(t) = ^ - j ^ / (Ff)(y,x,z)e^+y ' '^φ(t + hx)dxdydz

and, if we denote by /(ί,x,ft) the function J f(t,ξ9h)e~ι(χ'® dξ, i.e., the Fourier
transform of / with respect to the second variable, then

πh(Ff)φ(t) = J-^. f f(t9x,h)<Kt + hx)dx .

Denote by pn(f) the operator

Ph(f)Φ(x) = ~^-γ J f(x, y, h)φ(x + hy) dy ,

which is a compact operator on Z,2(Rn).

Define p o ( / ) G C o ( Γ R ) simply by Po(f)(xΛ) = f(x,ξ,0). Let p(f) denote the
vector field h ι—> pn(f) The collection

verifies the assumptions of Proposition 10.2.3 of [D]. Hence, Γ determines a unique
structure of continuous field.

Remark 5.1. For any given Jf(L2(Rn))-valued continuous function a on (0,1],
any ε > 0, and any point hoe(0,1], there exists / G ^ ( Γ T x R ) such that
||p/fc(/) — a(h)\\ ^ ε, for all h in some neighbourhood of ho. Thus, the field
«fi/'|(0,l] induced by stf1 on (0,1] is a constant field. The field si1 is called
a field trivial away from a point.

By [E-N-N, Theorem 2.4], the family si = (Λ(ft)), where

fC 0 (Γ*R w ;End(F)), ft = 0 ,

W; F)), 0 < ft ^ 1 ,

is in a natural way a continuous field, trivial away from 0. Furthermore, jtf~ =
(A(h)~) is also a continuous field (see the proof of [E-N-N, Theorem 3.1]).

Let P : ^(IR"; V) -> ^(IR"; V) be an elliptic operator with symbol a of order
m>0. For ft > 0, let 7^ denote the elliptic operator given by the symbol a^(x, ξ) =
a(x, hξ). Denote by e^ the graph projection of P^. Set eo = ea (ea is defined
in Sect. 3).

The crucial technical result needed is given by the continuity property of the
family of projections e^ stated below, and its proof will occupy us for the main part
of this section.

Theorem 5.2. The vector field e = (en) of M2(stf~) is continuous.
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Proof. For notational simplicity we restrict ourselves to the case of *FDOs acting on
scalar-valued functions. Before embarking on the proof, let us explain the strategy.
The proof splits naturally into two cases.

In Part 1 we will prove the continuity at h > 0. This is the easy case, and it
consists of showing that if the symbols are close in a well chosen topology, the
corresponding operators are close in norm.

The interlude will contain certain more or less standard constructions and results
on various kinds of symbols associated to pseudodifferential operators and their
calculus.

In Part 2 we will prove the continuity at h = 0. Here the argument is more
delicate. Given an elliptic symbol a of order m > 0, we have to show, for instance,
the continuity of the field (1 + P/*P&)~1 Since for each fixed h the operator (1 +
PζPh)~x is defined by functional calculus, the field (1 + PζPh)~x is no more defined
by rescaling of a suitable symbol. Also by construction, the value of this vector field
at h = 0 is the operator of pointwise multiplication by the symbol (1 + a*a)~ι of
order -2m, which, in turn, gives rise to the field of operators Op((l + a*a\x) by
rescaling the symbol (1 + a*a)~ι. Knowing that the latter is continuous (this is the
content of Lemma 5.4), it is sufficient to approximate (1 + P/*P/0~1 by Op((l +
a*a)frl) around h — 0. This will be done in part two by analysing the behaviour of
a symbol of (1 +P Λ *P Λ ) " 1 as h -• 0.

Part 1 Continuity at ho > 0. In order to show the continuity of e, it is enough
to show the continuity of e = e — (̂  °ι), because the vector field ft •—• (jj ?) is
continuous, by construction.

From now on throughout the proof of Theorem 5.2, by abuse of notation, for
a given ΨΌO P, let us denote by P also the closure of P | ^ ( R " ) .

Since 1 + P ^ P ^ is of order 2m > 0 and is invertible on Z 2 (R"), by [Sh,

Theorem 25.4] there exists a ΨΌO Ro of order -2m such that (1 + P£QPh0)~X is

the extension by continuity of 7?o The ΨΌO (1 -f- P£Pn)Ro is of order 0, and hence

is bounded on Z 2 (R"). Consider the path of operators

(0,1] -^>B(L2

9(WLn))9

h i—> (1 -\-PfrPfί)Ro .

We assert that this path is norm continuous.

For any s e R, let Qs = Qs(WLn) denote the Sobolev s-space [Sh, Defini-
tion 25.3]. Any ΨΌO of order m defines a continuous mapping:

QS _^ QS-m

[Sh, Proposition 25.4]. We have

\\{\+P£Ph)Ro-(\Λ-P^Pκ)Ro\\ = \\(PζPh-P£,Pκ)Ro\\

^ \\P£Ph-P£,Ph,\\2m\\R0\\-2m,

where || ||2m is the norm on operators of order 2m considered as linear oper-
ators from Q2m to Q° (=Z, 2 (R")), and || | |_ 2 m is the norm on operators of
order —2m considered as linear mappings from Q° to Q2m. Since as h —> h'',
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σ(P£Ph) -> σ(/£,/V) as symbols of order 2m, and as (1 -\-PζPήo)Ro = 1, there exist
r0 > 0 and δ > 0 such that

||(1 +P*Ph)R0- 1|| ^ r o < l for |ft - ho\ < δ .

This implies that (I + P£Pf,)Ro is invertible for \h — ho\<δ. Hence there exists
a bounded operator g& such that

The operator Qa is given by

and one sees that as h —> ho, Q^ is uniformly bounded.
From (*) it follows that (1 +P£Ph)~ι = RoQh Recall [Sh, Proposition 25.4]

that the canonical inclusion Q2m ^ Q° is bounded. Thus, there exists a C > 0 such
that

11*11 ^ C||S||_2m

for every ΊPDO S of order —2m. Hence,

Therefore, (1 + JP /*A)~1 is uniformly bounded for \h — HQ\ <δ. We have

(1 + o

lPha -P*hPh){\

o --P*Λ||2m||Λo||-2»

Consequently,

Then

s \\ph-pΛo\\-m,-2m\\(i
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where || ||_m?_2W is the norm on operators as linear transformations from Q~2m to
Q'm. Therefore,

\\Ph(l + P ^ Γ 1 -Pho(l+PZoPhoΓ
ι\\-m ^ 0 as ft ft0 .

Thus, the vector field ft ι-» P^(l + P£Pf,)~ι is continuous for ft > 0.
Considering P* instead of P one can show that both vector fields ft ι—> (1 +

phph)~l and ft ι-> PΛ(1 + PζPh)~x are norm continuous for ft > 0.
This completes the proof of Part 1.

Interlude. Before continuing with the proof, we will collect some more or less
known facts on various kinds of symbols associated to *FDOs on R" and prove
a few auxilary results about their behaviour under our assumptions. It should be
perhaps pointed out that, in contrast to the case of IR", the results below are fairly
standard in the case of closed manifolds.

Let Sk denote the space of symbols of order k, considered in [Ku, Definition 1.1];
that is, peC°°(T*WLn) belongs to Sk if for any multi-indices α,j8, there exists
a Caβ > 0 such that

\D«Dβ

ξP(x,ξ)\ g Caβ(l + \ξ\f-W9 (x9ξ)eT*ΊR» .

The space Sk is a Frechet space with respect to the semi-norms

f = maxSup{|Z^jφO|(l + \ξ\Γk+m : (^)eΓR"}\p\f = | m a x ; S u p { | Z ^ j φ , O | ( l + \ξ\Γ

Similarly, the space Γk is topologized by the semi-norms

| | σ | | ^ = m a x Sχxv{\D«xD
β

ζσ{x,ξ)\{\ +

Suppose that k ^ 0. Let σeΓk. Then we have

\D«Dβ

ξσ(x,ξ)\ ^ Caβ(l + |JC| + |£|/-lαH/*l ^ Caβ(l + \ξ\f-^ .

This means that the space Γk is contained in Sk, and the inclusion map Γk —> ιŜ
is continuous.

By Theorem 2.7 of [Ku, Chapter 2] there exist C > 0 and /0 such that for any
/? G S°, if we set P = Op(p)9 then

<V (5.3)I I *
That is,

Therefore, the map

'011 ;£ C\p\fJ\\φ\

\\P\\ ί C

S° - B(L2

p^P =

\PC •

Op(p)

is continuous.
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Lemma 5.4. Suppose that σ G Γk, k < 0, with \\σ\\f^ < ε. Denote by σ& the rescaled
symbol σ^x, ξ) = σ(x,hξ). Then

\σh\γj <ε for all 0 < f t ^ 1 .

Proof. Let α, β be multi-indices such that |α-f/?| ^ IQ. By definition,

| Z ^ Z » f « 7 ( J C , 0 1 ύ h\f£\\ + \x\ γ W M

We have

|Z?^σ f i (x,O| = \hM(D«Dβ

ξσ)(x,hξ)\ ^hW\\σ

as ft ^ 1. Therefore,

|<4o

O) = max sup ̂ ^ ( x , 01(1 + \ξ\fl ^ \\σ\ff <ε
[α+p| ^ /o

for all 0<f t ^ 1. D

Given a symbol σ 6 Γk, denote by R(σ) the fΌO with right symbol σ,

R{σ)u(x) = Λ^Je^-y^σ{y, ξ)u{y)dydξ ,

while the f D O defined by (2.3) is regarded as a ΨDO with /e/ϊ 5jmZ>o/ σ,

L(σ)u(x) = Λ-Je^-^σ{x,ξ)u{y)dydξ .

An advantage of considering ^DOs with right symbol is that the formal adjoint
L(σ)* of L(σ) is given by R(σ*). We need another useful notion from [Sh]. Recall
that b(x,y/ξ)eCoo(JR3n) is an amplitude of order k if for some k\ we have

S Caβγ(l + 1*1 + \y\ + |ξ|)*-W-l/Ί-M(i + \x - y|f+l«l+l/»l+lrl . (5.5)

For convenience we will say that such a b is of o?γfer & and of degree kf, and

denote by Π ^ m e space of amplitudes of order k and of degree k'. For b G Π*'*>
an operator P(b) is defined by

For 6 G Π*"*'. s e t
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Lemma 5.6. Let σ G Γm and let I be a positive integer such that 21 — m is strictly

positive. There exist σj e Γm~2j\ j = 1 , . . . , /- 1, and b G [ ] m ~ 2 α ' with k' > 0 such

that

L(σh) = R(σh) + Σ VR(σJ

h) + ft'Op^).

Proof. The proof is modeled on that of [Sh, Theorem 23.2]. We present a complete
proof. (It should perhaps be mentioned that the proof of [Sh, Theorem 23.2] is not
correct as given; it uses an invalid inequality in Line 2 of page 174.)

Set w = x — y, so that

σh(x, ξ) = σh(y + w,ξ) = σ(y + w, hξ).

Using Taylor's formula at w = 0, we get

σ(y + w, hξ) = σ(y, hξ) + E ^w\d*σ)(y, hξ) + n(x, y, ξ),
0 < | α | < / α !

where

n(χ,y,ξ)= Σ -yj(\-t)ι-\d«σ\y + twM)dt.
| α | = / α ! 0

The *FDO with right symbol (x - y)a(d*σ)(y,hξ) coincides with the ΨΌO with
right symbol

= Σ ̂

which is of order m — 2|α|. Set

The operator with amplitude 77 is equal to that with amplitude

1 1

Σ -7 /( i - t)ι-\-Dξy((d»(y + ^
| α !

Σ 7
|α|=/ α ! 0

= Σ ti -J
|α|=/ α ! 0

Let us show that this amplitude belongs to γγn~2l^k

 with k' > 0. It is enough to
show that the integrand is estimated uniformly in t. Since σ G Γm, one has

\((-DξTδ«σ)(y + tw,hξ)\ ύ Cβ(l + b + M + | ^ | ) m - 2 / .

Choose / such that m — 2/ < 0. Then

(1 + \y + tw\ + \hξ\)m-21 g (1 + M + \y + tw\ + \hξ\)m-2l(l + M) 2 ' "" 1 .

It is easy to see that
w + y + tw

+ \y\
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for all x, y e 1R", 0 ^ t ^ 1, w = x - y. Hence,

\((-Dξ)*d*xσ)(y + twM)\ ύ C'(l + |x| + | j | + \hξ\)m-2l(ί + |JC - ^ | ) 2 / " m ,

where C" is independent of ί. In a similar fashion, one obtains estimates for deriva-
tives. Therefore, if we set

b(x,y,ξ)= Σ lτf(l-t)ι-ι((-Dξr
\a\=e α ! 1

then b e [ ] ^ - 2 / ' 2 / - w

? 2/ - w > 0. Thus,

as required. D

= R(σh) + Σ ^ ( ^ ) + hl0p(bh),
7 = 1

The next lemma gives a convenient way of constructing left symbols for oper-

ators defined by amplitudes from the class γ\kk .

Lemma 5.7. Suppose that b e Y\k'k' with k ^ 0, k' > 0. Then the left symbol σ(A)
of A — Op(Z>) is given by

σ(A)(x, ξ) = Os- j^-ySe-'y ' "b(x,x + y,ξ + η)dydη

(oscillating integral, see eg., [Ku]).

Proof. For uζ£f(W), one has

Au(x) = J e

= (2^Γ / e-i{y'ξ)b(x,x + y, ξ)u(x + y) dydξ .

As a function of (y, ξ), the function b(x,x + y, ξ)u(x + y) belongs to the class for
which oscillating integrals are denned, see [Ku, Chapter 1]. In fact,

βl+β2=β

(l + W

Since « e 5 " ( R " ) , \δβ

y

2u(x + y)\ is bounded. Therefore

\(da

xd
β

y)b(x,x + y,ξ)u(x + y)\

S Έ C a β l ( i + \ ξ \ γ ( i | | | / ? i

S C(ί + \ξ\)k(l + \ y \ f .
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Therefore,

Λu(x) = Os- ^ / e-^bfrx + y, ξ)u(x + y) dydξ .

Notice that the last expression is valid for any function u with all derivatives
bounded, i.e., such that

S Ca for any a .

By (23.57) of [Sh],

σ(A)(x,ξ) =e-ίχ-

For later reference we record the following easy inequality.

Lemma 5.8. For k > 0, one has

\ξ + φ * ^ (1 + |JC| + |ξ|)*(l + |ιj |Γ* . D

2. Continuity at h = 0. In order to compare eo and e^ (ft > 0), we need to
realize the C*-algebras yί(ft) on a single Hubert space.

For ft > 0, consider the unitary % of Z2(Γ*IRW) defined by

Set B(h) = ul(Jf(L2(W)) (8) I K C ^(L2(Γ*RW)), ft > 0, and
Co(Γ*Rw).

By a straightforward computation,

(**) (u*h(ph(f)® Όuh)φ(x,ξ) = ^ f e i

for / G ^ ( Γ r x R ) , φetfiT+TR"). For / G ^ Γ R M R ) , define
5(L2(Γ*RW)) by the right-hand side of (**). Notice that the right-hand side of (**)
makes sense also for ft = 0. In this case, the right-hand side of (**) is precisely
the pointwise multiplication operator by the function f(x, ξ9 0). So set λo(f) equal
to the pointwise multiplication operator by / ( , ,0). The function ft h-> | | ^ ( / ) | |
on [0,1] is continuous (see, for instance, [R, Theorem 3.5]) and, the totality of
vector fields λ(f) : ft ι-> /U(/) determines a unique structure of continuous field of
C*-algebras J* = (B(h)) over [0,1]. It is clear that s& and $ are isomoφhic.

Given a symbol σ e Γk, let Pσfι denote the ΨDO with symbol σh. Set Pσh =
ut(Pσh ® l)uh, ft>0. Then

(* * *) Pσhφ(x, ξ) = J-γfe><χ-y-n>σ(x9 ξ + hη)φ(y, ξ)dydη ,

for </>eL2(Γ*Rw). The right-hand side of (* * *) makes sense when ft = 0, and
coincides with the pointwise multiplication operator by the function σ £ COO(77*RW).
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Denote by Pσ the field Pσ = (Pσ(h)) of operators

(σ, h = 0 ,

[Pσh9 0 < ^ l .

By the definitions of the fields 36 and Λ , we see that if σ 6 Γ~°° = ^ ( Γ * ^ ) , then
P σ is a continuous section of 38. Actually, we have the following.

Lemma 5.9. If σ EΓ\ k < 0, then Pσ is a continuous section of $.

Proof By (5.3), for σ ES°, the norm | | P σ | | is estimated by \σ\j . For a given ε > 0,

there exists σf e Γ~°° such that | |σ - σ ' H ^ < ε. Then by Lemma 5.4,

\σh - σf

ή\fj < ε for all 0 < h ^ 1 .

Hence for h > 0, we have

||Λ, -ΛίII = \\P,t -PaiW = \K~a'h\\ ̂  \σh - σ'h\^<e.

It is clear that

||Λ(0) - Pσ'(0)|| = sup \σ(x, ξ) - σ'(x, ξ)\ £ \\σ - σ'WfJ < ε .

The observation above means that Pσ can be approximated by fields of the form
Pσ>, σ' eΓ~°°. Hence Pσ itself is a continuous field. D

Let now a be elliptic of order m > 0. We have to show the continuity of the
following fields of operators:

( Λ ^ Γ Γ 1 and
(l+PaP;)-ιPa.

Before giving the proof, let us recall the strategy. Take, for instance, (1 +
PaP*)~ι. Since a is elliptic of order m>0, the symbol b defined by

is of order —2m. By construction,

^ ( 0 ) = (1 +Λ(0)Λ(0)*)~ 1 = the pointwise multiplication by b .

By Part 1, the field (1 +PaPZ)~ι is continuous on (0,1]. By Lemma 5.9, the field
Pb is continuous on [0,1]. Therefore, in order to show the continuity at h — 0, it is
sufficient to verify that

||(1 +Pa(h)Pa(fιγyι -Pb(h)\\ ^ 0 as h -> 0 .

Notice that for h > 0, one has the equality

ll(i + Pa(h)Pa(ήyrι -Pb(h)\\ = ||(i +pahp;hτ
λ -pbh ll.

Thus we only have to show that

I K I + ^ Λ Γ ' - ^ I I ^ O a sδ^o.
The main component of the proof is the following proposition.
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Proposition 5.10. Fix an elliptic a e Γm, m>0 and set P^ = L{a^). The following
holds'.

PhP£ = R(ahah*) + "Σ hjR{σ{) + hNOp(bh),
7 = 1

where σJ £ fim-ij^ ancj ^ ^ a n ampHtude oj order 2m — 2N ^ 0 and of degree
AN > 0. The operators Op(Z?/0 are bounded uniformly in h.

Proof We can write:

PZu(x) = R(at)u(x) =

and
Φ) = r^γfeί{x yΛ)P(x,yM)u(y)dydξ =

where p(x,y,ζ) = a(x,ξ)a(y,ξ)* is an amplitude of order 2m.
Set w = x — y, so that

= p(y + w, y, ftξ).

As in the proof of Lemma 5.6, use Taylor's formula at w = 0 to get that

p(y + w,yM) = a(yMMyΛξy+ Σ ^wa(d«p)(y,y,hξ) + rN(x,y,ξ),
0<|α|<N α !

where

r N ( x , y , ξ ) = Σ ^ w N \
\OL\=N α ! 0

The operator with amplitude

is the same as the operator with symbol of order 2m - 2|α|,

Set

σiyξ)= Σ ~

Then Oj e Γ2m~2J.

The operator Op((rτv)^) is equal to the operator with amplitude

Σ -.}(-DξΠ
\a\=N a 0

= Σ ^rf((-DξTd«
\<x\=N α i 0
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Set

*,y,0= Σ -:/
r»αi

First, observe that

SNe
2m-2NAN

Now, we have

\(-DξTδ«xp(x,y,ξ)\

Λ J V - 1

523

0ίι+OL2=CC

x (1 + \y\ - y\

= m +

x(l + |x-^l) | m" | α

Since m > 0, we have

m— |α| — I oci 11 ̂  m + |α| + |αi| and

Therefore,

\(-Dξfd
x

xp(x,y,ξ)\ S Cβ(l + |x| + b | + \ξ\)2m~2N(l + \x- y\)2m+2N

From this it follows that

ί Cβ(l + \y + tw\ + b | + \ξ\)2m-2N(l + \tw\)2m+2N

ύC'a{\ + \y\ + \tw\ + \ξ\)2m-2N{\ + \tw\)2m+2N .

Choose N such that 2m-2N 5Ξ 0. Then

(1 + \y\ + \tw\ + \ξ\)2a-2N S (1 + \y\ + \ξ\)2m-2N ,

(1 + \tw\)2m+2N S (1 + |w | ) 2 m + 2 Λ ί ,

the latter inequality following from the fact that 0 ^ t 5Ξ 1, 2m + 2ΛΓ > 0. Therefore,

\ξ\)2m-2N \χ~

2N-2m \2m+2N
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and C"f is independent of t. Hence,

\SN{x9y9ξ)\ ύ C0(l + |*| + \y\ + \ξ\)2m-2N(l + |JC - y\fN .

In an analogous way one obtains estimates for higher derivatives of S#. This proves

that SN does indeed belong to Y\ m~ '
We are now in position to apply Lemma 5.7, where we set b = SN and k' = AN.

Set Ah = Op(Z?̂ ) and let s,t be even non-negative integers. We consider the function
of (y,η),

(η)-s(Dy)
s(y)-t(Dηyb(x9x + yM + hη) ,

where x and ξ are regarded as parameters (we borrow the notation from [Sh]). By

(5.5) and Lemma 5.8,

tβ

s c Σ Σ

+ \y\ + \hξ + hη\f-2j-p2 x (yf+2J+P2h2j}

£ cΣΣ{(>iΓs(yr'-p]{yf+2J+P2(yΓ2J-p2 * (i +1*1 +
J

\HY

Therefore, if one chooses s, t such that —s — k<—n and — t + ̂  < —«, then the
function

is integrable as a function of (7,^).
By Lemma 5.7,

σ(Ah)(x,ξ) = Os-j±-$e-i

= J^γh'i{y'n) (η)-sΦy)s(yΓt(Dηyb(x,x + yM + hη)dydη ,

and

with Co independent of h. By a similar computation,

with Cαi5 independent of h. It then follows that {σ{Afi)}o<fι^\ is a bounded set

in S°. Now an application of (5.3) completes the proof of Proposition 5.10.
It should be pointed out that, in the case of k = 2m — 2N strictly negative,

although for each fixed 0 < h ^ 1, the symbol σ(An) is of order k, the set {σ(An)}
is not bounded in the space Γk

9 nor in Sk. D
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We can now complete the proof of the second part of Theorem 5.2. By Propo-
sition 5.10 we have the decomposition:

7=1

Now,

σJ

h) + hNOp(bh) .

+aha*ήΓ
1)R(l Λ-aha\)

hNL((l 1

ft)||: 0<h ^ 1 } < O O ,

sup{||Z((l + ahal)-χ)\\: 0 < h ^ 1} < oo .

7=1

By (5.10),

and by (5.9),

Therefore,

If we set

p(x,y,ξ) = (1 +a(x,ξ)a(x,ξTΓισJ(y,ξ),

then p € U~2J'k> w i t h k> > °» a n d

Therefore,

7=1
0

as ^ —> 0. It is easy to verify that

L{{\ + ahalΓλ)R{\ + aha*h) = L((\ + aha*hr\\ + 0*4)) + hθp(qh),

where q is an amplitude of order —2 and of degree > 0. By (5.10),

Obviously, I ( ( l +ahal)~\\ +aha*h)) = 1. Therefore,

+PhP*)-\\\ ^
7=1

and

as ft -> 0.
For notational simplicity, set

stants δ > 0 and c > 0 such that
= ^ ( ( 1

1| —> 0 (5.11)

). By (5.11), there exist con-
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This, in particular, means that if 0 < ft ^ δ, then i^( l -j-/y^) is invertible. Thus,
there exists a bounded operator Sn such that

and this ^ is given by

We know that \\Sh - 11| -> 0 as ft -> 0. We have that (1 + PhP£)~ι = ShRh and that

)~ M

From this it follows that

s u p { | | ( 1 + / y > / * ) ~ 1 II: 0<h

We have the inequality

Therefore,

as ft —> 0. We already know that (1 +PfrP/*)~1 is continuous for h > 0. Hence by

the property (iv) of Definition 10.1.2 of [D], (1 + PhP£)-χ is continuous at ft = 0.
Next, we turn to the proof of the continuity of (1 +PhP£yλPh at h = 0. The

strategy is the same as above. So, let us briefly discuss the proof.
By construction, (1 + Pa(0)Pa(0)*)~lPa(0) is the pointwise multiplication oper-

ator by the function (1 +aa*)~ιa. Therefore, it is enough to verify that

||(1 + PhPZΓιPh -L((l +ahalΓιah)\\ -> 0

as ft -> 0.
It is not difficult to see that for 0 < h ^ δ, the operator (1 + PhP£)~ιPh is

written in the form

(1 +PΆP;yιPh =Sh{L{{\ +ahal)-ιah) + hOp(Ph)} ,

where p is an amplitude of negative order and of positive degree. It follows then that

(I + PnPZΓ1 - L((\ + aha*hΓ
ιah) = (Sh - 1)L((1 +αftβJ[)-1αΛ) + hShOp(ph),

and that

||(1 + PhP£TxPh - L((\ + ahairλah)\\ -+ 0

as h -> 0.
e continuity of (1 + P Λ P ΛThus the continuity of (1 +PΛPΛ*)~ 1PΛ at ft = 0 is proved.

One can show the continuity of (1 + PhP£)~λP^ and (1 +P£Pfi)~ι in a similar,
though perhaps more tedious manner.

This completes the proof of Theorem 5.2. D
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Proof of Theorem 3.1. Once the continuity of the field of graph projections is
established, we can prove the index theorem, Theorem 3.1, by generalizing the
arguments of [E-N-N, 4.7]. However, in the present paper we give a more visual
presentation of the idea behind the proof, which will occupy us for the rest of this
section.

For an elliptic operator P : ^ ( R " ; V) -> ^ ( R w ; V\ the graph projection e be-
longs to M2(Jf(L2(Win; V))~\ as we know. If dim V = d, then

Jf (Z2(R"; V)) = Md(Jf(L2(Ί^n))l

Thus,

e G M2d(Jf(L2(Kn)Γ) and e = e - j G M2d{^T{L2{W))) ,

where (° J) G M2ί/(C), and / is the d x J identity matrix.

For each h > 0, the sub-*-algebra {pΛ(/); t G ̂ ( Γ * R n x R)} is precisely the
sub-algebra Jf°° of integral operators with integral kernels in 5 ^ ( R " x R n ) , and
hence is closed under the holomorphic functional calculus in JfXZ^R")). As for
the case of ft = 0, the sub-*-algebra {po(f);f e ^ ( Γ * R n x R)} is the subalgebra
^ ( Γ * R W ) of C 0(Γ*R"). The subalgebra t ^(Γ*R 7 ί ) is also stable under the holo-
morphic functional calculus.

It is well known that Jf°° C i?1(Z2(R'7)). Denote by Tr the restriction of the
canonical trace of JΓ(L2(RW)) to Jf°°. For j = 1,...,«, set Dj = ^ and let Mj

denote the pointwise multiplication operator on (Z2(RW)) by the coordinate func-
tion Xj. For any T^J^00, the commutator [Dj, T] extends to a compact oper-
ator, and δ2j-\(T) = [DJ9T] defines a derivation δ2j-\ : tf°° -> ^° ° . Similarly,
δy(T) = [Mj, T] also defines a derivation of JΓ°°, y = 1,...,«. It is straightforward
to check that δjδk = δkδJ9 j9k=l,...,n, and that Ύτ(δj(T)) = 0 for any T G JΓ°°,
7 = 1,...,«. From those observations, it follows that the {In + l)-linear functional ω
on Jf°° defined by

is a cyclic 2^-cocycle.
Let q G JΓ°° be a rank one projection. Then

ω(q,...,q)= 1 .

Since JΓ°° is stable under the holomorphic functional calculus, the pairing between
the class of ω and K0{Jf{L2<R"))) is well defined. By definition ([Co, Proposi-
tion 14]),

Recall the continuous field of C*-algebras srf' = {A'{fι)) introduced in the begin-
ning of this section. For each h > 0, po defines a densely defined cyclic 2«-cocycle
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on A'{h) = Jf(L 2 (R w )). We denote by ε0 the cyclic 2«-cocycle on £f(T*WLn)
defined by

where T*W is oriented by dx\ A dξ\ A Λ dxn A dξn > 0.

Let h G [0,1] be fixed. For f,g e ^ (Γ*R W x R), let us define / *h g by

(/ *h g)(x, y, K) = (2n)~n J /(x,z, h)g(x + hz9y- z, h) dz .

In particular, if h = 0, then

where fg is the product in Co(Γ*IR/*).
For h > 0, we have

= Ph(f H9) in 5 ( I 2 ( R " ) ) .

By a straightforward computation,

^ ^ ^ . (5.12)

Furthermore,

It is easy to see that, for given fo,...,f2n G ̂ (Γ*IRW x R), the function

h^ω(ph(f0),..., pΛ(/ 2 M)

is continuous on (0,1].

Lemma 5.14. In the limit as h —> 0,

ω(pή(fol , P Λ ( / 2 J ) -> εo(Po(/o)9 ? P o ( / 2 J )

Proof (see [N-N] also). By the definition of ω, we have
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Let us analyze the term Tr(p^(/0)ί5i(p^(/1)) δiniPhifm)))- ^Y t n e observations
(5.12) and (5.13),

Similar computations apply to the other terms, with the result that

l i m ω ( p Λ ( / 0 ) , . . . , p h { f 2 n ) ) = n . ^ . I hdf\ Λ ' ' Λ dfin
n^o (zπi) n\

Everything we have shown above can be generalized to matrices over ^ ( Γ * R M x
R). As for cyclic cocycles, it is enough to consider the cup products ω#tr, ε o #tr
of ω, εo and the matricial trace tr on matrices.

Lemma 5.15. For fθ9...9f2» G M ^ Γ r x R ) ) , we have

l im(ω#tr)(p Λ (/ 0 ),. . .,p h {f 2 n )) = — ^ — / tx{hdfλ Λ Λ df2n) .

Now we are in a position to complete the proof of Theorem 3.1.
Given an elliptic pseudodifferential operator P of order m > 0, with symbol α,

denote by e = (en) the field of graph projections. Since 6^(H2n+\) is stable under the
holomorphic functional calculus in C*(//2«+i), there exists a continuous field e°° =
(eh°°) e M2(Md(Γ)~) of projections such that \\e - e°°\\ < ε < 1. So, in particular,
efi°° ~ ea (Murray-von Neumann equivalence).

We have

index/* - ([e{] - ^ j ) ] ,[(2πi)B«!ω]
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and, as h ^ e^°° is norm continuous for h > 0, and Jf°° is stable under the holo-
morphic functional calculus,

0 0 \ Ί \
j ,[(2πi)nn\ώ\) for all h > 0.(*) = \[e?] -

Then, by continuity (Lemma 5.15),

0 0

0 1
9[(2πi)nnlεo]) =

0 0

0 1
,[(2τπT« ! £ o ] ) ,

since Sf(T*JR.n) is holomorphically closed in CQ(T*JR.n).

Although eo = βo — (Q 0

{) does belong to the domain of the extension of εo, we
do not know yet that

A problem arises from the fact that in general in a subalgebra A of CO(Γ*IRΠ)
such that ^(Γ*lR n ) C A, and <?β <Ξ A, the classes |>fl] - [(° °)] and [ej°] - [(°0 °)]
may be different in AΓ0(^). To circumvent this difficulty we can argue as follows.

Let A be the subalgebra of C o ί Γ * ^ ) consisting of symbols of order ^ —m. It
is straightforward to show that A is stable under the holomoφhic functional calculus
in CO(Γ*RW). We have ea e Mld(A). Now, the equality

0

holds in ^o(^) ^^d £o is defined on A. The equality (**) above follows.
This finishes the proof of Theorem 3.1.

6. The Topological Index

In this section we shall briefly discuss a variant of the topological index formula.
Suppose that Pa is an elliptic pseudodifferential operator of arbitrary order, with

symbol α, acting on Z 2(RW,CV). So, a is a v x v matrix valued symbol. For such
an operator,the IndexPa is well defined [Sh]. Since a is elliptic, there exists R > 0
such that a is invertible on |x|2 + \ξf §; R. Denote the (In — 1 )-dimensional sphere
x\2 + |£ | 2 =R by S2n~x. The restriction of a to S2n~ι is a GL(v,(C)-valued C°°
function on S2n~ι.

Denote by X the outward unit normal vector field on S2n~x C Γ*R". Let us
choose the orientation of S2n~ι so that the (In — l)-form \χ(dx\ Λ dξ\ Λ Λ c/x« Λ
rfξΛ) on S2n~ι is positive.

Theorem 6.1 (cf. [H, Thm. 19.3.1], [B-S, Thm. A]). Suppose that a is an elliptic
symbol The following equality holds.
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Proof.

Part 1 The positive order case. We will show that

In order to do so, we need to recall the description of ^°(Γ*IR") in terms of
complexes of vector bundles with compact support ([A-S]).

For any locally compact space Y, denote by (tv

γ the product bundle Y x C v

on Y. Since a is an isomorphism on |x| + \ξ\ ^ 0, the triple ( ( C ^ ^ ^ C ^ * ^ , ^ )
is a complex of vector bundles with compact support. Hence we get the class
[<Cv

τ*w,<Ev

τ*WL'»a'\ e K°(T*WLn). Let Bo and B^ be closed subsets of ( Γ Ί R / 1 ) * = S2n

such that S2n = Bo U B^, Bo Π B^ = S2n~\ and 0 e Bo. By the clutching construc-
tion, we obtain a vector bundle E = (C ô Ufl C ] ^ . When we describe AΓo(Γ*R") as
difference bundles, the class [E] — [<Ev

s2n] is precisely the class [ C ^ ^ C ^ * ^ , * * ] .

Suppose now that σ is a GL(7V, (C)-valued C°°-function on S2n~ι. Again by the

clutching construction we get a vector bundle C ^ U C ^ . Then the map σ H^ [ C ^ U
C L ] ~ [ C ^] G ^ 0 ( ^ ) determines a (well defined) map δ : ^

and°°induces an isomoφhism onto K°(T*Win) C A:°(52n).
It is not difficult to see that, by the canonical isomoφhism

R " ) ) ^ K\T*WLn),

the classes [efl] - [(° °)] and [C^o Uα C ^ ] - [C^2J coincide. Thus,

in KoiCoiT+WL^^KO^WL"), where [α] is the class of a in K\S2n~x) ^

The left-hand side of (*) is the pairing between a iCj -class [a] and a (2«—
l)-trace on C(S2n~ι), while the right-hand side is the pairing between a ATo-class
[efl] - [(o j)] and a 2«-trace on CO(Γ*RW). Since ^ ( C ^ 2 " - 1 ) ) is singly generated,
in order to complete the proof of Theorem 6.1, we have only to exhibit an elliptic
operator P of positive order with index P = 1 and to show that the left-hand side
of (*) takes value 1 for such a P.

We construct an M2y_i((C)-valued symbol η on R 7 by induction. Set a\(x\9ξ\) =
x\ +iξ\. Suppose that aj-\(xι,...,Xj-\,ξ\,...,ξj-\) is defined. Define aj by

fl/'-lCKlj >Xj-\Λu- - 9 ζj-1 ) ~(xi + ίζj¥

where / is the 2j~2 x2J~2 identity matrix (cf. [V]).
It is clear that aj is elliptic, of order 1. Notice that Paχ = x + ^ . This is a stan-

dard construction of elliptic operators on higher-dimensional spaces. More precisely,
Pan is the tensor product Pan = Paι # # Pa ofn copies of Paι (see, e.g., [B-B]).



532 G A Elliott, T Natsume, R Nest

Hence, index Pan = 1. Therefore, the right-hand side of (*) is equal to 1 by Theorem
3.1. A straightforward computation shows that the left-hand side of (*) is also equal
to 1. Thus, the equality (*) holds for arbitrary elliptic symbols of positive order,
and Theorem 6.1 is proved in this case.

Part 2. The nonposίtive order case. Suppose that P is elliptic of order m ̂  0.
Let / be a positive integer such that 2/ + m > 0. Choose an elliptic operator Λo
of order /, and consider Λ = ΛQΛ0. Choose R > 0 sufficiently large that the (left)
symbols σ(Λ), σ(ΛP), σ(P) are invertible on |x| +\ζ\ ^ R2. Since Λ is formally
self-adjoint, index (Λ) = 0. Hence, index (P) = index (ΛP).

It is easy to see that, by asymptotic expansion,

σ(ΛP) - σ(Λ)σ(P) e Γ2l+m~2 .

From this it follows that σ(ΛP), σ(Λ)σ(P) are homotopic on the sphere S2n~ι =

{(x9ξ): \x\2 + \ξ\2 = R2}. Therefore, in K\S2n~x\ we have the equality

[σ(ΛP)] = [σ(Λ)] + [σ(P)] .

By the choice of Λ, we obtain an asymptotic expansion of σ(Λ) such that the leading
term σo(Λ) is self-adjoint, and σ(Λ) — cro(Λ) ^ Γ2l~2. Hence, σ(Λ) and σo(Λ) are
homotopic, and

[σ(Λ)] = [σo(Λ)] = 0

inKι(S2n-1). Therefore,

Hence, by Part 1 of the proof,

index(P) = index(ΛP) = ^7 1 ) ! / tr((σ(ΛP)- 1Jσ(ΛP)) 2"- 1)

Thus, the formula given in Theorem 6.1 is valid also for elliptic operators of
non-positive order. D

The topological index formula in Theorem 6.1 is identical to the formulae in
[B-S] and [H] except for sign. This difference comes from the different choices of
the orientation on S2n~ι.
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