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Abstract: We study a natural construction of an invariant measure for the
2-dimensional periodic focusing nonlinear Schrδdinger equation, with the critical
cubic nonlinearity. We find that a phase transition occurs as the coupling constant
defining the strength of the nonlinearity is increased, but that the natural construc-
tion, successful for the 1-dimensional case and for the 2-dimensional defocusing
case, cannot produce an invariant measure. Our methods rely on an analysis of a
statistical mechanical model closely related to the spherical model of Berlin and Kac.

1. Statement of Results

1.1. Invariant measures. The periodic nonlinear Schrόdinger equation can be written

iut + Δu + \ pλ\u\p~2u = 0 , (1.1)

where u — u(x,t) is complex-valued and x lies in the ^-dimensional unit torus TF*.
The sign of the coupling constant λ is important for the behaviour of solutions to
(1.1). In the defocusing case, corresponding to λ < 0, there are global existence
results. In the focusing case, corresponding to λ > 0, for the problem on ]R.d, there
is a critical power pc = 2 + 4/d such that for p < pc there are global existence
results while for p > pc there are finite-time blow-up results. Both behaviours can
occur when p = pC9 depending on the value of λ and the initial value of \\u\\2.
These results [19] are for initial data in H\.

This paper is primarily concerned with the focusing case for d = 2 and p =
PC = 4, and more precisely, with the construction of invariant measures for (1.1).
A natural approach to the construction of an invariant measure proceeds as follows.
The L2-norm

\\u\\l =f\u(x,t)\2ddx (1.2)
TΓ*

and the Hamiltonian
H(u) = \\Vu\\l - λ\\u\\P (1.3)
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are invariants for (1.1) [18]. For N2 > 0, let χ^y) = 1 if -oo < y ^ N2 and
%N2(y) = 0 otherwise. Then the formal expression

dv(φ)=^(\\φ\\l}e'H^e-^^ Π dφR(X)dφf(X)9 (1.4)
z *eτ2

where φ(x) = ΦR(X) + iφι(x), m2 > 0 and Z is a normalization constant, is formally
invariant, in the sense that the measure of a given set of fields remains fixed as the
fields evolve according to the dynamics defined by (1.1). Combining the kinetic part
of the Hamiltonian with the ill-defined product of Lebesgue measures, and changing
the definition of Z, gives

dv(φ) = (\\Φ\\2^ dμc(Φ) , (1-5)

where dμc(φ) is the Gaussian measure on two-component fields with covariance
C = (-Δ + m2)-1 [10]. In particular, writing φ(x) = φR(x) - iφι(x\

fφ(x)φ(y)dμc(φ) = C(x-y) (1.6)

and expectations of φφ and φφ vanish. A constraint such as ^(ll^lli) *s required
for the focusing case λ > 0 to counteract the instability due to the interaction, but
can be omitted in the defocusing case.

The Gaussian measure dμc(φ) is supported on tempered distributions for d = 2,
so to make sense of (1.5) it is necessary first to make sense of the norms \\φ\\2

and \\φ\\p and then to show that %w 2(IIΦH2) β / l"^"^ *s integrable. This is the problem
of construction of the measure. To prove that the measure is invariant involves the
additional difficulty of extending the dynamics determined by (1.1) to the irregular
fields in the support of the measure.

The study of invariant measures was initiated by Lebowitz, Rose and Speer
[13, 14] for the 1-dimensional periodic focusing case. They showed that, for the

critical power p — 6 and for fixed λ, X^CIIΦIIi)^"^" 6 *s integrable for sufficiently
small N2 but not for large N2. Equivalently, for fixed N2 there is integrability for
small λ but not for large λ. This constructs a measure for weak coupling, supported
on fields with the regularity properties of Brownian paths. Bourgain [6] proved well-
posedness of ( 1 . 1 ) for almost every initial condition drawn from the support of the
measure, and proved that the measure is invariant. A number of other authors have
considered related issues for various 1 -dimensional partial differential equations, for
example [4, 15, 20, 21].

For the 2-dimensional defocusing case with the critical power p = 4 and any
λ < 0, the construction of the measure (1.5) (without the unnecessary constraint
χN2 (\\φ ||^)) was an early achievement of the constructive quantum field theory
program [10, 16] and corresponds to the φ\ Euclidean quantum field theory.
Sense is made of the \φ\4 term by Wick ordering. The measure is absolutely
continuous with respect to the Gaussian measure and hence is supported on tem-
pered distributions. Recently, Bourgain [7, 8] proved that this measure is invari-
ant under the dynamics of a Wick ordered analogue of (1.1), which involved
proving well-posedness for almost every initial condition drawn from the support
of
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This paper is concerned with the corresponding construction for the 2-dimensional
focusing case, with the critical power p — 4. Jaffe [11] has considered the subcritical
power p = 3 and showed that for any λ e R, m2 > 0 and N2 > 0,

oc . (1.7)

This allows for the construction of a measure which is absolutely continuous with
respect to the Gaussian measure. In variance of this measure for a Wick ordered
version of (1.1), with p = 3, has not been proved.

1.2. Results. Rather than attempting to proceed directly with Wick ordered \φ\2

and |</>|4, we introduce an ultra-violet cutoff a>0 which regularizes the Gaussian
measure. With the cutoff, the regularized measure is supported on continuous fields
and there is no difficulty in defining powers of the field. A related procedure is tacit
in the definition of Wick ordering with the difference that the cutoff is removed by
a limit under the φ integral, whereas our limit will be outside the integral. Having
the limit outside is a broader construction since the limiting measure need not be
absolutely continuous relative to the Gaussian. There are various ways possible for
introducing the cutoff, and we choose to do so by replacing the covariance C by

Ca(x -y) = (-Δ + a2 A2 + m2γ\x - y) . (1.8)

The Gaussian measure dμca with this covariance is supported on fields which are
Holder continuous with any exponent less than (4 — d)/2 (a proof can be based on
the proof of [10, Theorem A.4.4]). We believe that our conclusions would remain
unchanged with other choices of cutoff, such as a lattice cutoff.

The Fourier coefficients of the covariance are given by

(1.9)
Ίd

while in position space,

e2πik x

-a2k* + m2' v J

We introduce the notation

$a — $a(N2) = / XN2(\\Φ\\\}^Ca(Φ) (l H)

and

Φ). (1.12)

Our goal is to study the limit of the measure with expectation {
as a —>• 0. We fix N2 and vary λ. The absence of Wick ordering will be discussed
below.

For strong coupling, the following theorem is similar to the result of [13] for
the case of d = 1 and p = 6.



488 D.C. Brydges, G. Slade

Theorem 1.1. There is a function K(λ,N2) which is positive for fixed λ and large
N2, or for fixed N2 and large λ, such that

Moreover, for any λ, N2 > G^im^^K^N2) = lim^^^K^N2) = oo.

The proof of Theorem 1 . 1 shows that the divergent behaviour arises from a small
set of configurations with very large (negative) energies, as in the corresponding
1 -dimensional result of [13]. In fact, it suggests that in the limit the measure con-
centrates on configurations where \φ(x}\2 becomes a delta function of mass N2,
centred at a point chosen from the torus with the uniform distribution. A configura-
tion whose limit is two or more delta functions sharing the mass can also contribute

,N2)a-2], but K'(λ,N2) <K(λ,N2).
To state the result for weak coupling, we first introduce notation. Let x\9...9

G T2 be distinct. Let

ΓJΦ(xjTJ

9 (1-13)
7=1

and define { )o by

TO))o = Π (Φ(xjrjΦ(XjTJ)o , (1-14)
7=1

where

= (1-15)
0 otherwise .

The "expectation" { )o corresponds to an uncountable product of distributions of
independent Gaussian random variables, each with covariance N2. Define

λo = λo(N2) = sup \λ ^ 0 : sup (eλ\mήa < oo \ . (1.16)
I 0<α<l J

Theorem 1.2. λo > 0, and for complex λ with 0 < \λ\ < λo,

α^O

In particular,

is independent of λ.

The remainder of this paper is organised as follows. In Sect. 1.3 we interpret
and discuss Theorems 1.1 and 1.2. Sect. 1.3.2 contains the statement of Lemma 1.3,
a result on the "spherical model" with partition function (1.11) which is a key
ingredient in the proofs of Theorems 1.1 and 1.2. In Sects. 2 and 3 we reduce the
proofs of these two theorems to Lemma 1.3. Finally, in Sect. 4, we analyse the
spherical model and prove Lemma 1.3.
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1.3. Discussion of results

1.3.1. Role of Wick ordering. Wick ordering with respect to the covariance Ca is
defined by

:\φ(x)\2: = \φ(x)\2 - Ca(0) , , (1.19)

|2 + 2Cα(0)2 . (1.20)

Wick ordering in the constraint replaces X ^ d l Φ l l i ) by Xw2+ca(0)(||0|l2)- As
a — » 0, Cα(0) diverges logarithmically. Hence Wick ordering in the constraint corre-
sponds to an asymptotic regime of Theorem 1.1. This conclusion is not changed by
Wick ordering the interaction in Theorem 1.1, because 4Cfl(0)||</>||2, ^ 4Cfl(0)(7V2 +
Cα(0)) = <9(| logβ|2), which cannot overcome the O(a~2) in Theorem 1.1. The di-
vergent lower bound of Theorem 1.1 implies that no limit in this regime can be
absolutely continuous relative to the Gaussian measure dμca at a — 0, with or with-
out Wick ordering in the constraint and/or interaction. Further comments appeared
below Theorem 1.1.

Theorem 1.2 closes off the possibility of limits as a — > 0 with λ fixed and small
and no Wick ordering in the constraint. This expectation cannot be associated with a
measure on any acceptable space of initial data, because all points are independent,
so the objects it lives on cannot even be distributions. Wick ordering the interaction
will not help: the constant term 2Cα(0)2 cancels in numerator and denominator and
the 4Cfl(0)|φ(jc)|2 is the same as taking m2 = O(\ Iog0|). In our proof of this theorem
m2 enters in an essential way only in the combination a2m2, and the theorem's
conclusion is unchanged with a logarithmically divergent mass.

There remains the possibility, which we do not address, that there are limits in
which N2 — > oo and λ —> 0 as α — > 0, in such a way as to correspond to the critical
point separating the weak and strong coupling regimes. Another possibility is that
there are invariant measures akin to the microcanonical distribution in which the
Hamiltonian is constrained as well as

1.3.2. The spherical model. Theorem 1.2 shows that the behaviour for small λ is
the same as the behaviour for λ — 0, i.e., the interaction plays no role in the limit.
For λ — 0, the left side of (1.17) reduces to

^!F(φ)χN2(\\φ\\2)dμCa(φ). (1.21)
"α

For the case of d = 2, this expectation is a version of the spherical model of Berlin
and Kac [3, 2].

The Berlin-Kac spherical model in d dimensions is a model of spins φx £ R on
a ^/-dimensional lattice with unit spacing and a~d sites. The partition function is *he
expectation with respect to a Gaussian measure of the constraint δ(Σχφ

2 — a~d).
This corresponds in our continuum language to taking a = 1 in the covariance Cα,
working on a torus of volume a~d, and using the constraint δ(\\φ\\2 — N2a~d).
Scaling this partition function to restore the volume to 1, followed by scaling the
field, also restores the factor a2 to the covariance and yields our partition function
with N2 replaced by N2a2~d. Thus our partition function corresponds to that of the
Berlin-Kac model if and only if d = 2.

Berlin and Kac evaluated the free energy of their spherical model exactly.
We will analyse the spherical model (1.21) in detail in Sect. 4. Using contour
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integration, the asymptotic behaviour of the partition function Sa will be determined,
as well as that of the correlation functions (1.21), as in the following lemma whose
proof is given in Sect. 4.

Lemma 1.3. (a) For any N2 > 0 there is an explicitly computable function
oc(N2) > 0 such that

lim a2 log Sa(N2) = -α(7V2) . (1.22)
a— »0

Corrections to this law are also computable.
(b)Ifλ<N~4,

l i m <|*0)| 2 Φ = 0-23)

(c) For F(φ) of the form (1.13),

lim ι(F(φ)}a = (F(φ))0 . (1.24)
α— »0

The failure to produce a limiting measure for small λ can be understood
to arise from an incompatibility of the constraint and the limit a — > 0 of the
Gaussian measure. For λ = 0, this incompatibility finds expression in (1.22), which
states that the probability with respect to the Gaussian measure dμca that the field
obeys the constraint decays exponentially fast in a~2. In the limit, the Gaussian
measure is supported on tempered distributions which cannot obey the constraint.

For λ — 0, this incompatibility can also be understood from the perspective of
statistical mechanics, as follows. For d = 2, there is no phase transition for the
spherical model and the critical temperature is Tc — 0 [3, 2]. The limit a — » 0 is
analogous to a continuum limit for the spherical model, and the breakdown of the
limiting "measure" can be understood from the fact that we are essentially taking
a continuum limit without simultaneously scaling the temperature to the critical
temperature. The correlation length therefore approaches zero in the continuum limit,
corresponding to the complete decoupling expressed in Theorem 1.2. In order to
get a nontrivial continuum limit, we should drive the temperature to the critical
temperature Tc = 0 as we take a — > 0. This is discussed in more detail in Remark 4.5
below, where we argue heuristically that the correct way to do this corresponds to
Wick ordering the constraint. However, in view of Theorem 1 . 1 and the discussion
of Sect. 1.3.1, this option will not succeed in producing an invariant measure when
λ > 0 is held fixed as a — > 0.

1.3.3. Location of the critical point. For small λ, according to Theorem 1.2, the in-
teraction term plays no role in the limit a — > 0. On the other hand, for large λ,
Theorem 1.1 shows that the interaction term plays an overwhelming role. Our
methods are insufficient to locate a critical value of λ separating these two be-
haviours. For d — 1 and p = 6, Lebowitz, Rose and Speer [13] prove that the
corresponding critical point can be expressed in terms of the best constant in the
Sobolev inequality (writing ||| ||| for norms in IR1)

β ί Wφlllφti (1.25)
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by

This value of λc is the onset of finite-time blow-up for (1.1) on R [19]. For d = 1,
p — 6 and λ < λc, (1.1) is globally well-posed and the analogue [13, Theorem 2.2]
of Theorem 1.2 produces an invariant measure.

For d = 2, the Sobolev inequality is

4 <r
4 =

(norms are on IR2) and the analogue of (1.26) is

1

C2N
2 '

(1.28)

The constant €2 is given in terms of a radial function \j/ on R2, which is the ground
state of a nonlinear partial differential equation [19], by

We conjecture that the conclusions of Theorems 1.1 and 1.2 hold respectively for λ
above and below the value λc given in (1.28). This is the critical value for global
well-posedness for the nonlinear Schrόdinger equation on R2 [19].

1.3.4. Collapse of self-attracting walks. Our results for the nonlinear Schrodinger
equation are related to a collapse transition for self-attracting walks studied recently
in [5, 9] and to the Edwards model with the focusing sign [12].

For an ^-component field φ, the \φ\4 measure corresponds to the Edwards model
of polymers in the formal limit n — » 0 [1]. Le Gall [12] has shown that the Edwards
model partition function, with the focusing sign in the interaction, is finite for suffi-
ciently small coupling and infinite for sufficiently large coupling. Bounds are given
on the critical point for this transition, but they are not sharp.

Detailed studies have been made of the corresponding transition for a discrete
version of the Edwards model with the focusing sign: self- attracting walks. In [9],
the case of weak coupling is considered. Theorem 1.2 resembles the self-attracting
walk results, but for dimension d > 2, where the limiting partition function can
be evaluated exactly and is essentially trivial. For the self-attracting walk model
in d — 2, the weak coupling regime is not independent of λ. The strong coupling
regime is analysed in [5]. The strong coupling, or collapsed, phase is known to
persist to a critical value of the coupling constant determined by the best con-
stant in a Sobolev inequality, as in (1.28). The weak coupling results have not
been proved to extend to this same value, but this is conjectured to be the case.
This provides circumstantial evidence in favour of the conjecture that the critical
point for the nonlinear Schrodinger equation is also determined by the Sobolev
constant.

2. Strong Coupling

In this section we prove Theorem 1.1, using the method of [13, Theorem 2.2(b)]
together with Lemma 1.3(a). The proof involves showing that there is a set of
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fields, with energies of order —O(a~2), having small but sufficient measure that
their contribution alone gives the lower bound of Theorem 1.1.

Proof of Theorem 1.1. Let φ be a smooth field on the torus and ζ = φ — φ. Trans-
lation in the Gaussian measure gives

dμca(φ) = exp[-(φ,C-V) - 2(C~V QlΦcJO . (2.1)

Let

Ea(φ) = (φ, C~lφ) - λ\\φ\\\ = || Vφ||2 + a2\\Aφ\\2

2 + m2\\φ\\2 - λ\\φ\\4

4 . (2.2)

By (2.1), there is a function W(φ9ζ)9 odd in ζ, such that

dμCa(ζ) . (2.3)

To make an appropriate choice for φ, let ^ be a function on IR2 obeying (1.29).
Since (1.29) is homogeneous in ψ, we may assume 0 < |̂ ||2 <N. The function ψ
is positive, radial, belongs to C°° Π//1, and is a constant multiple of the ground
state of the equation Aψ — \jι -f ψ3 = 0 [19]. Also, being a radial Hl(JR.2) function,
ψ obeys the estimate \ψ(x)\ ^ c|jc|"1/2|^|^ι (\x\ ̂  1) [17], which together with
the differential equation implies |^^|2 < oo (recall that ||| ||| denotes norms on R2).
We regard opposite boundaries of [— \, ^f as identified, yielding the torus T2, and

choose a smooth function η with support in (— \,\)2 which equals 1 in [— |, |]2.
Let

x G T2 . (2.4)

Then φa is a smooth function on the torus, and

\\Ψa\\2 ^ ίΨl\2 < N. (2.5)

Also, as a — > 0,

\\Ψa\\l = \ml- 0(1), (2.6)

\\9a\\i = a~2(M- o(l)), (2.7)

||Vς»β||i = β-2(|V^|i-o(l)), (2-8)

\\Δφa\\2

2=a-\lΔnl-o(\)). (2.9)

Using (1.29), this gives

Ea(φa) = α-2[(l - AC2||^i) ||V.A|||2
2 + ί^ll + <*!)] - (2-10)
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Let δ = N - I f l iA lb > 0. Then ||£||2 ^ δ implies \\φa + ζ\\2 ^ N and hence

Using this inequality to obtain a lower bound on the right side of (2.3), and then
applying Jensen's inequality together with the fact that W is odd in ζ, gives the
lower bound

j eλ^χN,(\\Φ\\l)dμCa(φ) * e-E°^Sa(δ2) , (2.12)

where Sa is the spherical model partition function (1.11). By (1.22), logSa(δ2) ~
-a~2a(δ2) with α(<52) > 0. The right side of (2.12) therefore gives an exponentially
divergent lower bound of the form exp[K(λ,N2)a~2], provided λ is sufficiently large
that

κ(λ,N2) = (λc2\m\22 - υiwiiii - PΆiβ - ̂ 2) > o . (2.13)
For fixed TV2, clearly limχ^^K^ N2) = oo. Also, for fixed λ, lim^^
= oo (we can take I f i A l b = N — I and hence δ = 1 for large TV2). D

3. Weak Coupling

We will prove Theorem 1.2 using Lemma 1.3 and the following version of the
Vitali convergence theorem [16, Proposition VIII. 19].

Lemma 3.1. Suppose that fa(λ) is a family of functions which are analytic and
uniformly bounded in \λ\ < A0 Suppose that g(λ) is analytic on the same disk and

that limfl_>o /Jw)(0) = 0(lf)(0) for all n = 1,2,3,... . Then fa converges to g(λ) on
the disk.

Proof of Theorem 1.2. To show that 10> defined in (1.16), is positive, it suffices to
show that there is a positive λ and M such that for all small β,

(e^\\Φ\\4)a ^M . (3.1)

For this we apply Jensen's inequality in the form

λJ\φ(X)\4dX < Γ I000I2

 rλ\φ(x}\2f\φ(u}\2dUJr Π ? Λ

^ = J Γ I JL/ \I9 J UJi ' \J'Z'JJ \φ(u)\2du

(A similar application of Jensen's inequality was used in [9, Theorem 2.1].) Let
b,λ>0 and 0<B ^ N2. Then

b_eλbB = b_ + b_(eλbB _ι}^b_+ b_(eλbN> _ 1} g i + b_e^ (3 3)

Choose b = \φ(x)\2 and B = \\φ\\2

2, so that (3.2), (3.3) and the constraint imply

\Φ(χ)\2 . (3.4)

Using translation invariance, this gives the upper bound

2

α . (3.5)
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By (1.23) of Lemma 1.3, if λ<N~\

(3.6)

which completes the proof that AO > 0.

To prove (1.17), we apply Lemma 3.1 with fa(λ) = (F(φ)eλf^4)a and g(λ) =
e2λN* (F(φ))o. For the hypothesis of uniform boundedness, it suffices to show that
there exists an M\ (depending on F) such that for 0 < λ < λQ,

(\F(φ)\eλ^)a ί M, . (3.7)

This also guarantees the analyticity of the expectations /Λ(λ). By Holder's inequality,
it suffices to obtain an upper bound for each of

(\F(φ)\s)a, <^ll*">β , (3.8)

where r~l -\- s~λ = 1, s is an even integer, and r is as close as desired to 1. The
second quantity is bounded for rλ< λG. For the first quantity in (3.8), it suffices to
show that for any F of the form (1.13),

]ΐm(F(φ))a = ( F ( φ ) ) o . (3.9)
α— »0

But this is (1.24) of Lemma 1.3.
For the hypothesis in Lemma 3.1 concerning derivatives, it suffices to show that

for every n ^ 0,

i d"
a = (2N4)n(F(φ)}0 . (3.10)

By the Cauchy integral formula for derivatives we may interchange derivatives with
the expectation, so that (3.10) will follow if

lim F(φ)[\φ(yi)\4 = F(φ}l\φ(yi)\4 (3.11)
α^° \ i=l la \ i=l /o

(where the jμ/'s are distinct, and distinct from the x/s occurring in F). The factor
lΐ!=\\Φ(yΐ)\4 can be absorbed into F, which reduces (3.11) to (3.9). D

4. The Spherical Model

In this section we prove Lemma 1.3. This involves computing the asymptotic be-
haviour, as a —* 0, of integrals of the form

ί9(Φ)ϊ.*(\\Φ\$)dμca(φ). (4.1)

We begin in Sect. 4.1 by discussing a contour integral representation for (4.1). Then
in Sect. 4.2 we prove some preliminary lemmas relevant for the contour integral.
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Finally, in Sect. 4.3 we obtain the asymptotic form of the contour integral and give
the proof of Lemma 1.3.

4.1. Contour integral representation. For the constraint in (4.1), we use the integral
representation

χN,(t) = lim -L fa (1 _ _LΛ e^
2-') (4.2)

A-+OO 2m f<σ \s s+AJ

for the Heaviside function, where, writing s = σ + ίτ, Γσ is a contour Re s = σ
with σ > 0, oriented in the direction of increasing τ. The integral under the limit is
absolutely convergent and evaluates to give a nonnegative function of t that increases
monotonically to the Heaviside function.

We assume that g is such that / \g(φ)\e~σ^2dμca(φ) < oo, which implies that
(4.1) is finite. By the dominated convergence theorem,

- Jta S^SΦMΦ^ί* (i - L .<«•-•*> . (4.3)

By Fubini's theorem, (4.3) is equal to

Define
Q(s) = J dμCa(φ)e~sM' , (4.5)

which is analytic for s in the right half plane. Let

* e z2, (4.6), ,
k2 +a2k4 +m2 +s

and

(g)(s} - 1 9(Φ)dμc (Φ) = / g(φ)e-s^dμCa(φ) . (4.7)

By the above assumption on g, (g)^ exists for s G Γσ and is analytic for Re 5- > σ.
Then, scaling s — > α~2s and restoring the contour, (4.4) equals

lim f ώ - -- ga-^g(f l-2 ^ ^ ( α - (4 8)

Λ->oo 27H/ f f V ^ ^ + fl2^/

The function Q(s) obeys ^ log<β(^) = -Q(0), and hence

logβ(5) = -/Cί(0)ώ. (4.9)
o

Let

λ(fl,s) = sN2 + β2 log β(α~2^) = sN2 - f C°~2t(Q)dt . (4.10)
o
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Then (4.8) is equal to

ds
s

lim — ids - -- —
- + a2A

Define s ^2kh ( s } = s N 2 ~ d t (4 12)

Then h(s) — lim^o^O^)? since

75 - ,Λ , , -- ϊT-o i^i^ + A^ + β^+ί g ^ 2 A: 2 +A: 4

Let -

Λ —β. (4,3)

(4.14)

Then by (4.11),

(4.15)

We will analyse the right side of (4.15) using the method of steepest descents,
as in the original Berlin-Kac study of the spherical model [3]. In preparation for
this, in the next section we prove three lemmas.

4.2. Preliminaries. The first lemma provides an analysis of the function h(s). In
particular, it shows that h has a critical point sc > 0; later we will take σ = sc in
the contour of (4.15).

Lemma 4.1. The function h(s) is analytic in the right half plane, with hf(s) = Q at
a unique critical point sc > 0. At the critical point, h(sc)<0. Also, h"(sc)>0,

or equivalently, j^\τ^h(sc + zτ) = — h"(sc) < 0. The real part of the function
f ( τ ) = h(sc -h /τ) — h(sc) is strictly decreasing in τ|, with Re/(τ) ^ —const. |τ|1/2

as |τ| — > oo.

Proof. The analyticity of h for Res>0 is apparent from (4.12). Critical points
are solutions of

(4 16)

The integral is real only if s is real, and is a monotone function of s > 0 with range
(0,oo). Thus, (4.16) has a unique solution sc = sc(N2) > 0, which obeys

(4.18)
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"V°> J(k2+k4+Sc)2 " »• I'.",

By definition,

Sc+z'τ Λ2]L
f f r ϊ JrN2 r ^ r a κ

J\τ) iτl\

Therefore

and hence
rfRe/

Jτ J

This shows that Re/(τ) is strictly
and writing | |&|| for the Euclidean

Re/(τ) 1 f 2

J "'J ;t2+A:4 + ί

|_ ^ i K ~τr Sc J

2 (A:2+A:4+5c)
2 + τ2l

rJ2/- T

^(A:2 + A:4+5c)
2 + τ2 '

decreasing in |τ|. Scaling k — > \τ '
norm of k, gives

Γ/--1/2I.2 _ι iΛ i _-!„ \2 , i I
iσ V c;

(4.20)

(4.21)

(4.22)

/4& in (4.21),

τ | i/2

(4.23)

This proves that Re/(τ) ^ —const. |τ|1//2 as |τ| -̂  oo. D

The next lemma provides several properties of the covariance Cs

a(x).

Lemma 4.2. Let s = σ + iτ with σ > 0 fixed.

(a) The covariance C% s(x) is uniformly bounded in a9x,τ, and is continuous
at τ = 0 uniformly in a and x. Also,

lim Ca

a (4.24)

(4.25)

(b) The following identity holds:

Cs

a(x)= Σ / Cs

a(k)e2nik-^+n)d2k .

is a positive constant δ (independent of σ,τ,a,m,x) such

^ ^(σ)exp[-α-1^(σ,τ)||^||], (4.26)

σ) = 2 JR2 ί/2^/(A:2 + k4 + σ). /« particular, K(σ) = O(\ log σ|) as σ -> 0.
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Proof, (a) By definition,

Arguing as in (4.13), it is not hard to see that this is uniformly bounded and
continuous as in the statement of the lemma, and, using (4.17), that (4.24) holds.

(b) The Poisson summation formula

e2πik x e2πik

2

proves (4.25), since the left side is Cs

a(x).
(c) For (4.26), we first note that scaling k — > a~lk gives

f Ca~ 2\k)e2πίk'x d2k = f - - *"* ** - d2k . (4.29)
^2

 a R2 k4 + k2 + a2m2 + s v '

We shall deform the k\- and ^-contours into the complex plane, obtaining the
desired exponential decay from the imaginary parts of the deformed contours. To
simplify the notation, we define

P(k) = k4 +k2 + a2m2 + σ + iτ . (4.30)

Then

P(k + IK) = k4 - 2k2κ2 + κ4 - 4(κ k)2 + k2 -κ2 a2m2

+ i(4(κ k)k2 - 4(κ k)κ2 + 2(k K) + τ) . (4.31)

We claim that there is a δ > 0, independent of σ and τ, such that

\P(k + fιc)| ^ ^ReP(^), if ||ιc|| ^ δr(σ,τ) . (4.32)

To prove the claim, we first note that for A large (independent of σ,τ), if \\k\\ ^
A || /c || then (4.31) implies

\P(k -f /κ)| ^ ReP(A: + z'fc) ^ (1 - O(^~2))ReP(A:) ^ iReP(t) . (4.33)

For the remaining case where \\k\\ ^ ^4||κ;||, it suίfices to show that (4.32) holds
if in addition either (i) ||/c||4, ||κ:||2 ^ <5ι<7 or (ii) ||κ;||4, \\κ\\2 ^ 02\t\9 for appropri-
ately chosen constants ^i and 62. Then taking δ2 = mm{l9 61,62} proves the claim
(4.32). In case (ii) we can also assume that |τ| ^ σ, because otherwise the condition
defining case (ii) implies that of case (i).

For case (i), we can choose c>ι > 0 (independent of σ, τ) such that if \\k\\ ^
^4||κ:|| and ||κ:||4, \\κ\\2 ^ δ\σ, then (4.31) implies

\P(k + ίκ)\ ^ ReP(k + IK) ^ ReP(£) - O(δι)σ ^ ±ReP(k) . (4.34)

For case (ii), we can choose 62 > 0 (independent of σ,τ) such that if \\k\\ ^ ^4||κ:||
and ||κ;||4,||κ||2 g 62\τ\9 then (4.31) implies

\P(k + iκ)\ ^ \\mP(k + iκ)\ ^ (1 - 0(<52))|τ| -f k4 + k2 ^ ±ReP(k) , (4.35)
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using A:4 + k1 ^ 0(<52)|τ| in the second inequality and τ| ^ σ for the third. This
completes the proof of (4.32).

By (4.32), the contours for k — (kι,k2) can be displaced, without encountering
any poles of the integrand, by k —> k + ικ with K = <5r(σ,τ)jc/||;t||. After absorbing
a factor 2π into δ, this gives

P(k)

d2k

f
+ k2 + σ

= K(σ)e-a~lδr(*>τm . (4.36)

Clearly K(σ) = O(\ log σ|) for small σ > 0. D

The following lemma shows that, for s = sc + /τ, the function p(a,s) of (4.14)
consists of a contribution depending only on a and a term which is uniformly
bounded.

Lemma 4.3. The function p(a,s) can be written as p(a,s) = p(a,sc) -f y(β,^), where
y(a,sc + ίτ) is bounded uniformly in τ and small a, and limτ->oγ(a,sc + iτ) = Q
uniformly in a. In addition, Iima->oa2p(a,sc) = 0.

Proof. Let s = sc + iτ. By (4.10), (4.12) and (4.14), ρ(a,s) = ρ(a,sc) + y(a9s)
with

s s d2k
y(a, s) = -a-2 / dt Cf '(0) + a~2 / dt / ^2 + j f c 4 + f (437)

On the right side, we add and subtract the integral

a~2 fdtf ,9 7/
2\ 9 , (4.38)

;c

 J i2 + A:4 + a2m2 + t

and let

5 ,/2iL 5
Ί r Ί r W A V 7 r Ί r

yι(α,5 ) = α 2 Γώ f — — α λ f dt \ —„nv J J J 4 J J 2

= im2πfdtf—: — ^ -. (4.39)
5 o (u2 + u + sc + it)(u2 + u + a2m2+sc + it)

This is bounded uniformly in α,τ by taking absolute values under the integrals.
Also, limτ^o y\(a,s) = 0 uniformly in a.

Defining y2(a,s) = y(a,s) — y\(a,s) we are left with the term

= -a~2 f dt Ca~ '(0) + a~2 / dt / % 2 . (4.40)
Sc Sc ~" I '
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By (4.25) of Lemma 4.2,

γ2(a,s) = -ia~2fdt £ / Ca~2(Sc+it\k)e2πik'nd2k . (4.41)
o H Φ O

By (4.26), there are K\(sc) and δ(sc) > 0 such that

\γ2(a9sc + ιτ)| ^ fl~2 f dtK^s^'0'1^^^ . (4.42)

This is bounded uniformly in a and τ, and limτ_+o 72(0, s) = 0 uniformly in a.
Finally, to prove that \ima^Qa2p(a,sc) = 0, we argue as above to write

Sc °° du
a2p(a,sc) = a2m2n f ds Γ —-= - —- - - - -

FV ' C' J 2(«2

-Jds Σ I Ca

a~
2s(k)e2πίk ' nd2k . (4.43)

0 «ΦO

An elementary argument shows that the first term behaves like a2m2 Iog(a2m2)~l.
The same behaviour can be discerned for the second term, using (4.26). D

4.3. Asymptotics. With the above lemmas, we are now in a position to evaluate the
asymptotic behaviour of the integral f g(φ)χN2(\\Φ\\2^ dμca(φ}

Lemma 4.4. Let s = sc + ίτ. Suppose that (g)^a 5) is polynomίally bounded in τ

uniformly in a, that limfl^0(όf)(fl 5c) exists, and that (g}^a 5) is continuous at τ = 0
uniformly in a. Then

(4.44)

Proof. The integral on the left side of (4.44) is given by (4.15), in which we take

σ = sc. The assumption that (g)^a s^ is polynomially bounded in τ, together with
Lemma 4.3 and the bound on / of Lemma 4.1, allow us to apply the dominated
convergence theorem to take the limit A — > oo in (4.15), yielding

)(»-'> . (4.45)
Z7Π r S

LSC

Thus (4.44) is equivalent to

or writing

Xα,τ) = -_eK
β.*+ίt){flf}(β~(*+ft)) and χθ,0) = lim p(a,0) , (4.47)

sc + iτ α->o
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to

l ima- 1 J <?-1™P(a,τ)dτ= =/*o,o).

By Lemma 4.3, p satisfies the same hypotheses as (g}(a s\
By Taylor's theorem and Lemma 4.1,
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(4.48)

where for τ in a sufficiently small interval / = [— ε, ε],

|r(τ)| ^ Cl |τ|3 and - l-h"(sc)τ2 +C l |τ | 3 ^ -

By Lemma 4.1 and our control on p,

^a-lS<f~~***™\p(a9τ)\dτ^
ιc

and we are reduced to the contribution from /.
By (4.49),

= a~l p(a,0) / e-"-2»"(^/2
I

[ea~2r(τ}p(a,τ) - p(a,Q)]dτ .

The first term in (4.52) is

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

which converges to the right side of (4.48). It remains to show that the second term
in (4.52) goes to zero as a — > 0. For this we use

a,τ}- p(a,0)\

a~
2r(τ)p(a90)\ . (4.54)

By (4.50), the contribution to the second term in (4.52) due to the first term on the
right side of (4.54) is at most

(a,τ) - p(a,0)\dτ . (4.55)

This can be made as small as desired by taking ε sufficiently small, by the fact that
p(a,τ) is continuous at τ = 0 uniformly in a. By (4.50), the contribution to the
second term in (4.52) due to the second term on the right side of (4.54) is at most

-α-2A"(*c)τ2/4Cια-2|τ|3 ̂ τ ^ 0(α)|/?(fl,0)| = Q(ά). D (4.56)
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Proof of Lemma 1.3. (a) By Lemma 4.4 with g — 1,

The desired result then follows from Lemmas 4.1 and 4.3, with u(N2} — —h(sc(N2)).
(b) Let 0(φ) - |φ(0)|2β^2l^°)l2. The desired result will follow from Lemma 4.4,

once we show that if λ <N~4, then (g)^a ^ obeys the hypotheses of Lemma 4.4

and limα_o(0}("~2*c) = N2/(\ - λN4)2.

The Gaussian expectation (g)^a 5) is analytic in a half plane containing the con-
tour s — sc + rr, provided the numerator Jexp(— a~2s\\φ\\2)g(φ)dμca is absolutely

convergent for some real s <sc, since the denominator e&a s ) ΦO is analytic. For
s real and near sc, φ(Q) is a complex Gaussian random variable with distribution

Z-1 exp[-Cf WΊ0(0)|V0(0) (4.58)

Therefore {#}(fl 5) is analytic in a half plane containing the contour when λN2 <

Ca

a ^(O)"1, which by (4.24) is equivalent to λ <N~4. For such values of λ, and
s real and near sc,

d(λN2) 1 -

= (i-Λτί2cr2*(θ))2 ' (4<59)

By analytic continuation, this also holds when s lies on the contour.
By Lemma 4.2(a), the continuity hypothesis of Lemma 4.4 holds. The hypothesis

that (0}(α 5) is polynomially bounded in τ follows from the uniform bound of

Lemma 4.2(a), together with the fact that by definition the real part of Ca

a

 5(0)

is bounded above by C% 5c(0), so by (4.24) the denominator of (4.59) is bounded
away from zero. Existence of the limit required as a hypothesis of Lemma 4.4
follows from (4.24). Thus Lemma 4.4 gives

lim (\φ(0)\2e)a = 1 , (4.60)

which is (1.23).
(c) We apply Lemma 4.4 with g — F of the form (1.13). It suffices to show

that (F}(a~2^ obeys the hypotheses of Lemma 4.4 and that lima^Q(F)(a~2^ = (F)Q.

The Gaussian expectation (F)(a s^ is a correlation function of the Gaussian

measure with covariance Ca

a

 s(x). By Wick's theorem [10], (F}(α s^ is given by

a sum of Feynman diagrams having propagator Ca

a

 s(x). If πij = HJ for all j, there
is a contribution

Π nijl Ca

a~\0rj (4.61)
7=1
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arising from the diagrams having only self-lines, together possibly with other dia-
grams containing at least one propagator that is not a self-line. The latter type of
diagram is the only type that occurs when /w/=My for some j. Such diagrams are

defined as multiple integrals over the torus of products of factors C% s(x — y). By
Lemma 4.2(a), the hypotheses of Lemma 4.4 are all satisfied and thus limfl_»o(F)α
is equal to the limiting value of the sum of the Feynman diagrams, with s = sC9 as
a^O.

By (4.24), with s = sc the limit of (4.61) is the desired limit Π"=ι mj\N2mJ =

(F)O. By Lemma 4.2,

lim Cf~2jc(jc) = 0, ( cΦO) (4.62)
a—>0

sufficiently rapidly that any Feynman diagram with a line that is not a self-line goes
to zero in the limit. D

We end with a heuristic remark pertaining to the discussion on the effect of
scaling the temperature to the critical point in the spherical model, in Sect. 1.3.2.

Remark 4.5. Scaling the temperature to the critical point in the spherical model cor-
responds to introducing a factor β(a)~λ, with \\ma^β(a) = oo, into the covariance.
Scaling the field as φ —> β(a)~l/2φ, this insertion of β(a) is the same as instead
replacing N2 by N2β(a) in the constraint. As in (4.17), in this case the critical
value sc = sc(a) is determined by

Λ2£
" 2 K*)=/^M*..,,Λ (4.63)

For β(a) — > oo, we must take sc(a) — •> 0, so that roughly N2β(a) ~ logsc(a)\.
As in the proof of Lemma 1.3(c), the two-point function in the limit a — » 0 is
asymptotic to

This is nontrivial if sc is proportional to a2 and hence N2β(a) « logα~2, which
corresponds to Wick ordering the constraint. In this case the limiting two-point
function is of the form Σke

2mk'x/(k2 -f 1), which is the two-point function of
a massive Gaussian field on the torus.
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