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Abstract: Moduli spaces of compact stable ^-pointed curves carry a hierarchy of
cohomology classes of top dimension which generalize the Weil-Petersson volume
forms and constitute a version of Mumford classes. We give various new formulas
for the integrals of these forms and their generating functions.

0. Introduction

Let Mg^n be the moduli space of stable « -pointed curves of genus g. The intersection
theory of these spaces is understood in_the sense of orbifolds, or stacks. The algebro-
geometric study of the Chow ring of Mg$ was initiated by D. Mumford.

The following important version of Mumford classes on Mg,n was introduced in

[AC]. Let pn : Ήn — > Mg^n be the universal curve, JQ C #„, /=! , . . . ,« , the images
of the structure sections, ω^/M the relative dualizing sheaf. Put for a ^ 0,

= ωβίn(a) := Pn* a*/M > ) ^ H2a(Mg,n^f» . (0.1)

(We use here the notation of [KMK; AC] denote these classes κz . We will mostly
omit g in our notation but not n).

The class c%Λ(l) is actually 2^[v£%], where v£% is the Weil-Petersson 2-form
so that

/ ωgίn(l)30~3+n = (2π2)39~3+n x WP-volume of Mg,n . (0.2)
Mg,n

(see [AC], end of Sect. 1). Generally, we will call higher WP-υolumes the integrals
of the type

n .

The objective of this paper is to derive several formulas for these volumes and their
generating functions.
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For genus zero, we prove a recursive formula and a closed formula for them. The
latter formula represents each higher volume as an alternating sum of multinomial
coefficients. It generalizes to the higher genus, with the multinomial coefficients
replaced by the correlation numbers (τdl τ</Λ) which are computable via Witten-
Kontsevich's theorem [W,K1]. In the genus zero case, however, we can give an
even better formula for the higher WP- volumes. We first encode these values via
a generating function in infinitely many variables and translate the recursions for
them into an infinite system of non-linear differential equations for this generating
function. It then turns out that the inverse power series of (a slightly modified version
of) this generating function satisfies a system of linear differential equations, which
can then be solved explicitly.

We will now explain our results for the case of the classical WP-volumes (0.2)
of the genus zero moduli spaces first calculated by P. Zograf [Z]. Put v$ = I and

»„ : = / ωπ(l)"-3, n^4. (0.3)

The main result of [Z] is:

l » - 3 / n - ι - 2 / » - 4
(0-4)

(The factor 1/2 was inadvertently omitted when this formula was quoted in [KMK]).
Consider the generating functions

OO 71 OO 11

•w-Sao^r-. *) -*1" - s („-.),;„- 3)! *-'• <«>
Then (0.4) directly translates into the differential equation

xh" -ti = (xh' -A) A" . (0.6)

Notice that according to [Ma], the generating series (0.5) arise in the Liouville
gravity models.

In the first part of our paper we generalize both (0.4) and (0.5) to arbitrary
WP-volumes of genus zero: see Theorems 1.2.1 and 1.6.1. We follow the scheme
of proof explained in [KMK], Sect. 3. The second series of our results gives more
explicit formulas which specialize to the case of vn in the following way: for n ^ 4,

n-3+

"~
m\-\ ----- \-mk=n— 3

(Actually, we prove an analog of (0.7) for arbitrary genus, but as we have already
mentioned the multinomial coefficients are then replaced by the less well understood
numbers (τ^ •••?</„)). Then, using either this explicit formula or by inverting the
system of differential equations, we obtain a formula for the generating function of
the WP-volumes as the inverse power series of a very simple power series. For the
case of the vn this goes as follows: Differentiating the differential equation (0.6)

gives h'h'" = xh"3 or (setting y — h f ) yy" = xyf3. This is now cubic rather than
quadratic, but if we interchange the roles of x and y then it miraculously transforms



Higher Weil-Petersson Volumes of Stable w-Pointed Curves 765

into the Bessel equation y j^ -j- x = 0

an inverted modified Bessel function:

into the Bessel equation y j^ -j- x = 0, leading to the explicit solution of (0.4) via

- 5 (.-,),;. -3),^ " - Σ - (0.8)

It is tempting to see this as another tiny bit of the general "mirror phenomenon"
first observed for Calabi-Yau threefolds.

As a corollary of (0.8) we get the asymptotics

<0.9)

where C = 2.496918339 is a constant that can be expressed in terms of Bessel
functions and their derivatives. The existence of such an asymptotic formula-for all
genera, and with a constant C independent of the genus-was conjectured by Claude
Itzykson (P. Zograf, private communication).

It is interesting to compare (0.9) to the asymptotics of the Euler characteristic

χ(M0,n+3) « - = = ~ (0.10)

(cf. [M], p. 403). One more problem in the same spirit is to study the asymptotic
structure of the representation of §„ on H*(Mvn) with respect to the Plancherel
measure, in the same sense as it was done for the regular representation in [LS] (cf.
also [VK]). A relevant generating function was recently calculated by E. Getzler
and M. Kapranov, cf. [G].

The paper is structured as follows. In Sect. 1 we prove the recursive relations
and the differential equations for the generating function in genus zero. In Sect. 2 we
derive by a different method explicit formulas for higher WP-volumes and prove the
analogue of the inversion formula (0.8). Finally, Sect. 3 briefly explains our main
motivation for studying WP-volumes: they and their generating function naturally
arise in the theory of the so-called Associativity Equations and the operation of
tensor product in the category of algebras over the {//*(Mo,«-f-i)}-operad. (For more
details see [KMK].) Finally, in a short appendix we make some remarks about the
asymptotic formulas (0.9) and (0.10) and about the Betti numbers of the spaces

1. Recursive relations and differential equations for the generating function

1.1. Notation. Consider the semigroup N°° of sequences m = (m(l),/w(2), ...),
where m(d) are nonnegative integers, m(a) = 0 for sufficiently large a.

We put

interpreting the r.h.s. as zero unless X^>j am(a) = dimMg,n = 3g — 3 -f n. In the
rest of this section g — 0 and we write F(m) instead of Fo(m).
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In shorter versions of expressions like (1.1) we will use notation of the type

m| := Σ am(a\ ||m|| := Σ m(a)> m := Π w(α)ί,
fl^l α^l α^l

(1.2)
< = Π <*e,n(*y«a\ sm = Π &* ,

α^l α^l

where s = (s\,S2,...) is a family of independent formal variables or complex num-
bers. For instance, we have F(m) = Jωm/m! |m ! in this notation.

7.2. A recursive Formula for F(m). Put

K(m,...9na) := * - — — (1.3)
«ι(«ι + Λ2) (flH ----- h w f l )

and denote by (Sα e N°° the sequence with 1 at the αth place and zeros elsewhere.

1.2.1. Theorem. For any m and a ^ I, we have:

fl+l

..,/ιβ)Π ^m*) , (1.4)

where in each summand of (I A),

(/i ι , . . . ,/ι f l ):=( |mι | , . . . mα |) + (2, 1,..., 1) (1.5)

(notice the absence of |mα+ι|). These relations uniquely define V(m) starting with
F(0) - 1.

7.2.2. A particular case of (I A). Applying (1.4) to V(m) := F(m,0,0,...) and
a = 1 we get:

+l) =(ι» + 2) E

so that

m + 3 2 (m + l)(m + 3) m=mι+m2 mi + 2 m2 + 2 '

On the other hand, Zograf s recursive relations (0.4) can be rewritten as

(n - 2)vn 1 (n- 2)n (p - 2)vp (q - 2)vq

(n - 3)!(/ι - 1)! 2(n- 3)(/ι - 1) (/? - 3)!(p -!)!(?- 3)!(^ - 1)!

These relations agree for V(n — 3) = vn/(n — 3)!2 which is the correct formula in
view of (0.3) and (1.1).

7.2.5. Another special case. Let us use (1.4) to compute F(m) for |m| ^ 2. We
have from (1.4) for m = 0:

,. ..,!)=!. (1.6)
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But already in the next case, the consistency of the two possible formulas obtained
from (1.4) for V(βa + <5&) is not evident a priori.

Put m = δfy. There are a + 1 partitions of δb contributing to (1.4): in the kth

partition m* = δb, m7 = 0 for y

Γ (2,1,..., 1) + bδk for k ^ α,
/ i i , . . . , / ι β - j(2?1? ? 1 ) forA: = fl4

so that

t!

and

fl+i (6 + fcV 1 1 fl+!

2K«. + « - (. + 1 + ,)£ j^VwH = ̂ Σ

This does not look symmetric in α, &, but of course it is:

We will generalize (1.6) and (1.7) below to all n (and g).
We will now start proving Theorem 1.2.1. We will use some of the formalism

of [KMK]. For any stable w-tree σ, denote by φσ : Mσ ^ MGn the embedding_of
the corresponding closed stratum. We recall that the image of a generic point of Mσ

parametrizes a curve whose dual tree is σ. The set of vertices υ G Vσ of this tree
bijectively corresponds to the set of irreducible components of the curve. The edges
e e Eσ "are" singular points of the curve, and the unpaired flags (tails or leaves)
are in a bijection with the labelled points, that is, with {!,...,«}. For v G Vσ9 we
denote by \v\ the number of flags incident to v.

For any stable «-tree σ, we put (with notation (1.2))

_ (1.8)
Mσ

interpreting this as zero unless n — 3 — |m = codimφσ(Mσ) = \Eσ\. If σn is an
one-vertex ft-tree, we write Ωn(m) := Ωn(m, σn). Notice that Ωn(a) from [KMK]
is (^)\Ωn(^δa) in our present notation. The numbers F(m) in (1.1) are
ΩΛ(m)/|m !.

1.3. Lemma. We have

Ωn(m,σ)= Σ ΠθH("»»). (! 9)
(mv\vevσy. V£Vσ

m=Σ«.,

where the sum in r.h.s. is taken over all partitions ofm indexed by vertices of σ.

Proof. This follows from the crucial fact that ωw(α) form what is called a "loga-
rithmic CohFT" in [KMK], Sect. 3, i.e. satisfy the additivity property established in
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[AC], (1.8), for any genus:

φ*σ(ωn(a))= Σ I<(ωM(*)) , (1.10)

where we identify Mσ with ELe^^^M and prw means the respective projec-
tion. (Notice that although these identifications are defined only up to the action
of ΠweFσ ® W ' tne classes pr^(ω|w|(α)) do not depend on their choice, being §|w|-
invariant. )

Hence

- / Π Σ sSfer Π
Π.e^H^1 OMβ)|werff): wGFσ

m(a)=Σw mw(a)

= I Σ n5b Π pr;(«vi

= Σ -! Π /
(mw |wGFσ): ^Fσ^|H

1.4. Calculation of ωn(a) via strata classes. For a fixed « ^ 3 and α ^ 1 consider
labelled (a + 1 )-partitions,

S: « :={l , . . . ,/ ι }=ιSιΠ.. .ΠS r

f l + ι .

Denote by τ(S) the «-tree with Vτ(s) = {^ι? ..^α+ι}? and edges connecting Vj to
fz+ι for / = !,...,«, and unpaired flags (numbered by) 5/ put at t;/. The stability
condition for τ(5) and 5* is:

^ := 1̂  ^ 2 for / = 1, α + 1 ; ^ 1 for / = 2,...,α . (1.11)

In the following proof, all partitions are stable. Denote by m(S) the dual cohomology
class of the cycle φτ(s)(Mτ(s)) in MQH.

1.4.1. Lemma. We have

, . ^ (n\ - l)(na+ι - l)n\ na+ι
ωΛ(α)= Σ - - i\ -

S:n=SιU" lίSa+ι n(n- L)

where K(n\,...,na) is defined in (1.3).

K(nι,...,na)m(S) , (1.12)

1.4.2. Notation. To state some intermediate formulas we will need some of the
notation of [KMK]. Let Tn(a) be the set of w-trees with a edges. For any flag /
denote by β ( f ) the set of tails of the branch of / and £(/) the set of their labels.
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Then to any set of flags T we associate the set S(T) := \JfeTS(f) C {!,...,«}. If

{S(Tι),S(T2)} is a partition of {!,...,«} we use the shorthand notation Dτltτ2 f°r

Ds(Tι),s(τ2) Let τ be an w-tree and let e be one of its edges, de = {vι,V2},σe the
corresponding partition Si II #2 and De the corresponding divisor. Choosing flags
{ίj} G F(VI) and {/, k} G F(v2), we have [KM] the following formula:

(1-13)

1.4.3. Definition. A tree is called linear if each vertex has at most two incident
edges. An orientation of a linear tree is a labelling of its vertices by {!,..., |^(τ)|}
such that Vi and Vi+\ are connected by an edge for i — 1,..., |£(τ)|.

We denote by LTn(a) the set of stable linear rc-trees with a edges modulo iso-
morphism. Given a geometrically oriented linear tree we number its vertices in the
positive direction.

1.4.4. Remark. The oriented linear trees in LTn(a) are in 1-1 correspondence with
labeled a + 1-partitions S : n := {1, . . . ,n} = Si II II Sa+ι which satisfy (1.11).

1.4.5. Tautological classes and the cθn(a). In the proof of the lemma we will
consider some additional classes in H*(Mgtfl9 Q). Let ξj : Mg^n — > ̂  be the structure
sections of the universal curve. Put as in [AC]:

*»,,- := £*(cι(ω^/M)) G #2(M^,Q) . (1.14)

Here we will need them only for 0 = 0; see Sect. 2 for any genus.
_ Identify C — > MQn with the forgetful moφhism^p^ : M0,«+ι — > MQn. Then ξj

(MθΛ) becomes the divisor A = ^/,«+ii,.. .,C,« in Mo,«+ι and

where φ^ denotes the pullback onto the divisor Z)/. We know from [AC]:

Combining these two formulas we obtain:

ω*_ι(α) = /»B_ι. o φ*((-iγ+lDΪ+2) . (1.15)

To derive (1.15) notice that

(n- \S\-l)
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(see [KMK]) so that we have

( K - l S D f r - l S l - l ) V+1

n} J

, , , ^ (n- \S\)(n- \S\- l)n= <?a Σ v (κ-n(κ-2) ^{u.*+i}\*J«,«+i}cse{i,...,«+i} v A 7

7. 4. 6. A calculation. Denote by DnLT(k) the set of oriented linear (n + l)-trees
with a edges, whose monomials are divisible by Dn and whose orientation is given
by calling VK+\ the trivalent vertex with the two tails n and n + I. Also take S to be
the set of the flags of the other vertex Vk of the edge corresponding to Dn without
the flag belonging to that edge. Then

-2
m(τ) (U6)

We will prove (1.16) by induction using the following versions of (1.13). Let
τ be a tree, which has an edge e corresponding to Dn, then call t>2 the vertex with
F(V2) = {n,n+ 1,/β}, where fe is the flag corresponding to e.

Averaging the formula (1.13) over the set S of all flags of υ\ without the flag
belonging to e we obtain:

m(τ) . (L17)

TCS ~

Fixing owe particular flag f of S and averaging over the rest we obtain:

\T\ - 1
(1.18)

Now for A: = 1 the formula (1.16) is clear and for k = 2 it is a consequence of
(1.18). For k > 2, we have

-!) (» -!)("- 2) /=2 Σy=/ (!»/ - 2)

Σ
S {" - LΛ" — *)

?. in - 1
(1.19)

eDnLT(k-l)f£TcS (n ~~ l)(w ~"

£-2 u.i _ 2 |Γ| — 1

'
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where we have used (1.18) with the distinguished flag being the unique flag of S
belonging to an edge. This guarantees that the sum will again run over linear trees.
In the second sum there is one edge inserted at the vertex Vk-\ giving two new
vertices t/,t/' with |ι/| + \υ"\ = \Vk-\ + 2. Giving t/,1/' the labels k — 1 and k and
labelling the old vertex Vk with k + 1 in the second sum we obtain the desired result
(1.16).

1.4.7. Proof of the Lemma. What remains to be calculated is pn-ι* ° 9r>n °f
the above formula for D%+2. The only nonzero contributions come from trees
τ eDnLT(a + 2) with \Vk\ = 3, so that exactly one of the flags is a tail. Hence
after push forward and pullback the sum will run over oriented linear trees with the
induced orientation given by the image of i;/ with a distinguished flag at the vertex
Vk-2- Summing first over the possible distinguished flags amounts to multiplication
by \Vk-\ . We obtain:

-2
orientedτ€lΓM(α) n /=! ΣyU (\υj\ ~ 2) + 1

which using Remark 1.4.4 can be rewritten as a sum over partitions

\
ωΛ(β) = Σ a+l(nλ - I)n2 'na(na+\ - 1) -K(na + l,...,/2 2)/w(5)

r ic , 72 77 — 1

with HΪ = \Vι\ — 1 for / = 1, a + 1 and «/ = |i?,- — 2 for / = 2, . . . , α, which is equiv-
alent to (1.12).

1.4.8. Remark. Instead of using (1.18) in the induction one can successively ap-
ply (1.17). In this case one obtains a formula for ωn(a) involving all boundary
strata. Since not necessarily linear trees cannot be handled using only partitions, the
associated generating functions and recursion relations become very complicated.

7.5. Proof of Theorem 1.2.1. In view of (1.8), we have

Instead of wedge multiplying by ωn(a) we canjntegrate the product ω™/m! over
the cycle obtained by replacing m(S) by φτ(s)(Mτ(S)) in the r.h.s. of (1.12). The
separate summands then can be calculated using (1.8) and (1.9). The net result is:

; Σ
5r:Λ=5ιU...Π5'β+ι

x K(nι,...,na) Σ Ωnι+ι(mι)Ωn^l+ι(ma^)ll ΩΛ/+2(m/). (1.21)
m=mιH hmα+1 /=2

Now, the product of Ω's vanishes unless

/ | = w / - 2 f o r / = l , α+1, |m, | = nt - 1 f o r / = 2,...,a (1.22)
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so that n — |m + δa\ + 3. Hence we can make the exterior summation over vector
(a -f 1 )-partitions of m, and for a fixed (mz) sum over the set of (a -f 1 )-partitions of
n satisfying (1.22). Since the coefficients in (1.20) depend only on («/) rather than
(Sj), we can then replace the summation over (Si)98 by multiplication by —^—, .

This leads to

i t V* ~J Z-^ι
|! m=mι+ +ma+1

i=i m, |!

which is equivalent to (1.4) in view of (1.8) and (1.1). Π

Remark. We do not know whether for g ^ 1 the classes ωn(a) belong to the span
of the boundary strata and if yes, what might be a generalization of (1.20). Therefore
we cannot extend the recursive relations (1.4) to arbitrary genus.

1.6. The differential equation for a generating function. Put

F(x',s) = F(x'9sι,s29...) := Σ ^(m>|m| sm G Q[S][[Λ:]] (1.23)
m

and denote da = d/dsa, dx = d/dx. Then the recursion (1.4) is equivalent to:

1.6.1. Theorem. F satisfies the following system of differential equations:

F2k+\

~ " l ' ~ (1.24)
=0 tfxFΫ'

where we put do — x dx. It is the unique solution of this system in 1
with F(x; 0) = 0.

Proof Put //o(*;s) = x and

Ha(x',*):=x Σ
mι,...,ma /=l

for a = 1, 2, ..., where the summation is over β-tuples of vectors m/ G TV00. In
particular, we have #ι(*;s) = f* ξF(ξ;s)dξ. Multiply (1.4) by jc'm+^lsm and sum
over all m. Taking into account that in each summand

n\-\ ----- h na = |m| + a + 1 = |m + δa\ + 1,

(n\ H ----- h na )K(nι, ...,na) = K(n\ ,...9na-ι),

we obtain
daF(x;s) = a,(He(x;s)F(*;s)), a £ 1 . (1.25)

A similar calculation shows that

&#,(*; s) = flr

fl_1(x;s)F(jc;s), α ^ 1 . (1.26)

Combining these two identities, we get
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or
d F F^

By induction starting with //0 = x we obtain from here

a f?2k ft ι p

(1.28)
k=G (dxF)k

(recall that do \= xox). Substituting this into (1.25) gives (1.24).
For the uniqueness, we reverse the argument. Suppose that F(x) = F(jc;s) sat-

isfies (1.24) and define Ha by (1.28). Then HQ(x) = x (by the definition of dQF)
and Ha satisfies (1.27) for a ^ 1, while (1.24) says that daF = dx(HaF). Combining
these equations gives (1.25). By assumption F(Λ S) has a Taylor series Σ^oΛn(s)xn

where AQ(S) = 1 and An(s) for n ^ 1 is a polynomial with no constant term. Equa-
tion (1.28) then shows that Ha(0) = 0, after which the equation dx(Ha) = Ha_\F

gives inductively Ha = (^1); H , where the coefficient of xa+n+l is a weighted

homogeneous polynomial in A\,...9An of weight n. The equation daF = dx(HaF)
then gives a formula for all derivatives daAn(s) (a = 1,2,...) as polynomials in
A\(s)9...,^w_ι(s). This fixes An(s) inductively up to a constant which is uniquely
determined by the normalizing condition An(0) = 0. In this argument we have im-
plicitly assumed that dxF is an invertible power series (i.e. that ^ι(s) is not identi-
cally 0) in order to make sense of (1.24) in the ring of power series, but what we
have really proved does not need this assumption, namely, that (F,Ha) is the unique
solution in elements of Q[s][[z]] of the system of differential equations (1.25), (1.26)
subject to the normalizing conditions F(0,s) = F(χ-90) = 1, HQ(X) = x,Ha(Q) = 0.

1.6.2. Example. In the special case s = (s, 0,0,...), the function (1.23) reduces
to F(JC;S) = f(xs) with f(x) = Σm^Q V(m)xm, V(m) = F(m,0,0,...) as in 1.2.2.
Then Eq. (1.24) (with a — 1) becomes

and if we write / = y' then we see that this is (up to a power of s) the derivative of

the differential equation y = xy' /y" for the function y = Σ (n-2)\(n-3γ. Discussed
in the Introduction.

2. Explicit Formulas and the Inversion of the Generating Function

2.7. Notation^n this section we fix a value of the genus g g; 0. We keep g in the
notation for Mg^n and F^(m) but skip it elsewhere. To state our explicit formulas

we must introduce some additional classes in //*(M W ,Q). Recall that

)) 6 #2(Fβ,B,Q) , (2.1)

where £/ : Mg^n -^ ^n are the structure sections of the universal curve.
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After Witten [W], the integrals of top degree monomials in Ψ nj are denoted

Below we will express Vg(m) via these numbers. For g = 0, they are just multino-
mial coefficients:

/ τ v Ql + •-• +<!„)! ,9_

<T"-T*>^ = βl!..^! (23)

(see e.g. [K2], p. 354). The structure of a generating series for all {τfll Ό and
all 0 was predicted by Witten [W], and Kontsevich identified it as a "matrix Airy
function,", cf. [Kl] and below.

More generally, we_will consider the relative integrals of the type (2.2). For
k ^ /, denote by π^i : Mg^ — » M^?/ the morphism forgetting the last k — l points.
For any a\ , . . . , ap ^ 0 define

ωn(al9...9ap) := πn+p^(Ψa

nn+l - - - ̂ ) <E # 2 ( e i + "-^ f l I ,Q) . (2.4)

Notice that whenever a\ -\ ----- \-ap = dimMg^, we have also (a\ + l)-{ ----- h
(ap + 1) = άimMg,n+p, and then

/ ωn(al9...,ap) = J Ψa

n^n+l - Ψa

n

P

n+P = <Ψ*1+ι τβ,+ι> . (2.5)

2.2. Theorem. For any g,n,a\,...,ap,ai ^ 0 we have

p (_!)/>-£ / \
ωn(a\ ) . . . ωπ(α^) = ^ - - - ^ ωn ^ α7, . . . , £ αy . (2.6)

Equίvalently, for any m G TV00 \ {0}, p— ||m||,

^m! n

 k=l k\ m=mi+-+mt mι! πifc!
m,φO

The proof consists of a geometric and a combinatorial part.
The first one is summarized in [AC], (1.12), (1.13) and given here in a slightly

different notation. It was previously obtained by C. Faber and D. Zagier (unpub-
lished).

2.2.1. Lemma. We have

ωn(aι,...9ap)= £ Π ω« I Σ */ I > (2 8)
σGSp oGo(σ) y 60 J

where o(σ) denotes the set of the cycles of σ acting on {I,...,/?}, i.e. the orbits
of the cyclic group (σ).

E. Albarello and M. Cornalba ([AC]) show that (2.8) formally follows with the
help of the push-pull formula from an identity going back to Witten [W]

ππ+ι)Π*CC+u n+ιΛuVι) = ψ"n,ι n»ω»(«»+ι) (2 9)
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and an identity for which a geometric proof is supplied in [AC]:

ωn(d) = <„_!(«„-!(«)) + Ψ^n . (2.10)

We will not repeat their argument here.
The passage from (2.8) to (2.6) and (2.7) is a formal inversion result which

we will prove here in an axiomatized form because it is useful in other contexts as
well.

Let R be a commutative Q-algebra generated by some elements ω(#), where a
runs over all elements of an additive semigroup A.

2.2.2. Lemma. Define elements ω(a\,...,ap) G R for p ^ 2, a\ E A recursively by

p-\

ω(αι,...,αp) = ω(0ι,...,βp_ι)ω(α/,) + Σ ω(a\,...,ai + ap,...,ap-\) . (2.11)
ί=l

Then {φ(a\9 . . . ,ap} \ p ^ 1} span R as a linear space. They can be expressed via
monomials in ω(a) by the following universal identity (coinciding with (2.8)):

ω(al9...9ap)= Σ Π ω(Σ> 7 ) . (2.12)
σeSp oeo(σ) yeo j

In particular , ω(a\ ,...,ap) are symmetric in a\9...9 ap.
Conversely, monomials in ω(a) can be expressed via these elements by the

universal formula (coinciding with (2.6)):

P (—\\P-k ( \

ω(flι). ω(^)=Σ /. Σ ω Σ aj9...9 Σ aλ . (2.13)
k=\ κ- {i,...,p}=Sιiί usk yeίi jesk I

5.Φ0

= {1,2,3,...}, we have also

<=!>!> = £ <zl£ Σ
m! = λ! m=m + ...+m

p - ||m|| α^ /w (2.7)
Furthermore, ω(a) are algebraically independent iff ω(a\9...9ap) are linearly

independent. In this case R is graded by A via degω(«ι, . ..9ap) = a\ + -\-ap.

Example. The elements ω(a\9...9ap) are given for p = 2 by

ω(a9 b) — ω(a)ω(b) + ω(a + b)9 ω(a)ω(b) = ω(a9 b) — ω(a + b) ,

and for p = 3 by

ω(α, 6, c) = ω(a)ω(b)ω(c) + ω(α -f b)ω(c) + ω(α + c)ω(fe)

+ω(Z? + c)ω(α) + 2ω(a -f ft + c),

= ω(α, 6, c) — ω(a + 6, c) — ω(α + c, Z?)

— ω(Z? + c, 0) + ω(α + δ + c) .
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Proof of Lemma 2.2.2. The following identity shows by induction in p that (2.11)
and (2.12) are equivalent:

Σ Π ω(Σf l ; )=ω(f l / H-ι) [Σ Π
eS^+i oGo(σ) yGo J LσeSp oeo(

+Σ Σ Π ω Σ^ + VP+I - (2.15)
/=! τG§p oeo(τ) y'Go

To convince yourself of the validity of (2.15) look at the following bijective map
from the l.h.s. monomials in ω(a) to the r.h.s. monomials. If a l.h.s. monomial
is indexed by σ G §^+ι for which σ(p + !) = /?+!, we get it in the r.h.s. for
τ— restriction of σ to {I,...,/?}. Otherwise p+ 1 belongs to an orbit of σ of
cardinality ^ 2; deleting p + 1 from this cycle, we get a permutation τ G §^ and
a number / = σ(p -f 1) ^ /? producing exactly the needed monomial in the second
sum.

One can similarly pass from (2.11) to (2.13) and backwards. For example, as-
sume that (2.13) is already proved for some p. Then we have

[ω(aι) ω(ap)]ω(ap+ι)

k=ι

Now essentially the same combinatorics as above govern a correspondence between
the summands in (2.16) and those in the r.h.s. of (2.13) for p + 1 arguments which
is

_

Σ - ̂  - Σ ω Σ « / > -
A:=l /C! {l,...,/7+l}=ίSΊU U<S1A: y'E^i

5,Φ0

Namely, any ordered ^-partition { 1, . . . ,/?}= *SΊ II II Sk can be enhanced to k + 1
ordered (k + 1 )-partitions of {!,. . .,/?+!} containing {/?+!} as a separate part,
and to k ordered A; -partitions of {!,...,/?+!} for which /? + 1 is put into one of
the Si's.

It remains to rewrite (2.13) in the form (2.14), when A = {1,2,3,...}. To this
end, notice that if δaι H ----- h δttp = m, we have
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and m(a) = card{y | α/ = a}. Any set partition {!,..., /?} = S\ II II Sk, S/ΦO,
produces a vector partition

m = mi H ----- h πu, m/ = (mt(a)) ^ 0, πii(a) = card{y | aj = a} .

We have Σj eSι aj = |m/|, and each m = mH ----- \-mk comes from

w(fl)! = m!

a^ι mι(a)\ - mk(a)\ π^ ! m* ! '

set partitions. This finishes the proof of Lemma 2.2.2 and Theorem 2.2. For a further
discussion of this combinatorial setting, cf. 2.6 below.

As a corollary, we get:

2.3. Corollary. We have for p = ||m||, 30 — 3 + n — |m| :

In particular, if g = 0,

> . (2.18)

Combine (2.6), (2.7), (2.5) and (2.3).

2.3.1. A special case. Putting in (2.16) m = (n — 3,0, 0, ...) and multiplying by
(n — 3)!2, we get the following formula for Zograf s numbers (0.3):

_"~3 _k(n-i+kγ.(n-3)\ 1

which is equivalent to (0.7).

We now proceed to the generalization of (0.8).

2.4. Theorem. In the ring of formal series of one variable with coefficients in
Q[s] = Q[^ι,^2?.. ] we have the following inversion formula:

_χl m l+ι yl m l+ι (__cyn

There are two ways to prove this theorem, one starting from the explicit formula
(2.18) and the other using the differential equation for the generating function F(x; s)
derived in Sect. 1. Since we do not know which proof, if either, may be generalizable
to the higher genus case, we will give both.
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2.4.1. First proof: Explicit formula. From (2.18) we have for any μ ^ 1:

m:|m|-μ degree μ

-μ-1

degree μ

where

-coefΓ of y in f

v|m| + l (_s

is the power series occurring on the right-hand side of (2.19) and we have used the

binomial identity ΣT=l(-\)k Γ ΐ ] ** = (1 +z)~^+1) - 1. But for any power
V k J

series x(y) = Σr^ι *r/, *ι ΦO, we have

coeff. o fy in

= coeflf. of jc" in = coeff. of

jdx

in y(x) ,

where y(x) is the power series obtained by formal inversion of x = x(y) (which is
possible since b\ φO). Applying this to our case, we find that the inverse series of
x(y) is given by

which is precisely the expression on the left of (2.19).

2.4.2. Second proof: Differential equation. In 1.6 we characterized the generating
series (1.23) as the unique power series F( c s) G 1 +JtQ[s][[jc]] with F(jc O) = 0
for which there are power series //fl(jc,s) satisfying

Ha(0) = 0, daF =
(2.20)

Write y = f^ F(ξ; s)dξ =* + ••• for the integral of F with respect to x. This is an
invertible power series, so we can also write x — x(y) = y H ---- and define power
series ha(y) — ha(y;s) G yQ[s][[.y]]. In terms of ha, we can also write x — x(y) =
y + - - - and define power series ha(y) = ha(y; s) G yQ[s][[y]] by ha(y) = Ha(x(y)).
In terms of ha, the first three equations in (2.20) become

(2.21)
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while the last equation in (2.20) becomes

dax(y98) = -ha(y) (a^l). (2.22)

(To see this, first integrate the last equation in (2.20) to get day = FHa, where the
meaning of day is that we differentiate in sa keeping x constant. But differentiating
the identity x(y(x; s); s) = x with resepct to sa gives dax + day dyx = 0, where dax
is the derivative of x with respect to sa keeping y constant, so dax = —F~lday =
—Ha(x) = —ha(y) as claimed).

Equations (2.21) and (2.22) form a system of linear differential equations re-
placing the non-linear system (2.20). They can be combined into a system of linear
differential equations for the single function x(y), namely

vs\oy osaoy vsa-\

But in fact this is not needed because we can solve the system immediately. Write

oo v«+l

x = x(y) = x(y, s) = Σ *»(») ΓTW <2 24)
H=O (n-\- i)\

with £0(s) = 1 and Bn(0) = 0 for all n ^ 1. The solution of (2.21) is immediately
seen to be

and (2.22) then says that daBn = —Bn_a (= 0 if a > n), giving successively B\ —
—s\, B2 = \s\ — 5-2, ... and in general

Σ (2.25)

Substituting (2.25) into (2.24) gives the expansion on the r.h.s. of (2.19).

2.4.3. Remarks. Equation (2.19) specializes to (0.8) if we put s = (1,0,0,...), in
which case the r.h.s. of (2.19) is a Bessel function. In general, this r.h.s. cannot
be expressed in terms of standard functions, but the series is easily summed after
applying to it the formal Laplace transform, since from (2.24) and (2.25) we get
immediately

oo 2

η~2 f e~y/ηx(y)dy = e~
Sιη~S2η ~'" . (2.26)

o

Conversely, by integrating once by parts and making the change of variables from
y to x = x(y), we find the dual formula

00

η~l f e~y(χVη dx = e~Sιη-S2η -" . (2.27)
o

These formulas allow us to get analytic information about the generating series
y(x) (and hence about the numbers F(m) when we specialize (SΊ,,^,...) suitably.
A theoretical reinterpretation of them will be given in Theorem 3.4.2 below.
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It would be interesting to extend (2.17) including the contributions of all genera
and eventually of all combinatorial cohomology classes as in [Kl]. Below we collect
some remarks in this direction.

2.5. Kontsevich's formulas. We start with Kontsevich's formula ([Kl], Sect. 3.1) for
the correlation numbers (τ^ ... τ</Λ} which can be used to calculate algorithmically
F0(m) with the help of (2.17). It has the following structure.

Fix (#, n), put d = 3g — 3 + w, and choose n independent variables λ\9...9λn.
Then

n (Ίd — 1 V t J~\Vτ\ 2
V^ /_ _ \ TT I \^ul LJ" V^ ΓT /"-» ^0\

Here G9ιn is the set of the isomorphism classes of triples Γ = (τ, c, /) where:

i) τ is a connected graph with all vertices v e Vτ of valency 3 and no tails;
ii) c is a family of cyclic orders on all Fτ(υ), where Fτ(v) is the set of flags

adjoining υ\
iii) / is a bijection between {!,...,«} and the set of all cycles of τ. We recall that

a cycle is a cyclically ordered sequence of edges (without repetitions) (e\,e^ ...,£*)
such that for every /, βι and e/+ι have a common vertex f/ and the flag (e^ Vj) follows
the flag (ei+\9Vi) in the sense of c;

iv) for any edge e E Eτ9 {λ'(e\λ"(e)} = {λa,λb}, where {a,b} C {l,...,/ι} are
the /-labels of the two cycles to which e belongs.

If τ is embedded into a closed Riemann surface X oriented compatibly with
c, the cycles of τ become the boundaries of the oriented connected components of
X \ |τ| (2-cells). Then / labels these cells, and {a,b} become the labels of the cells
adjoining e.

A paradoxical property of (2.28) which does not allow to read off {τ^ ...τ</J
directly from this identity is the cancellation of poles at λa = —λ^ in the r.h.s., not
at all evident a priori even in the simplest case g = 0, n = 3 :

1 _ , _ 1

A generating function incorporating all stable (g, n} that can be summed using (2.28)
and the standard techniques of perturbation theory is

(2-29)
\ \fl=o

Kontsevich's theorem states that (2.29) is an asymptotic expansion of (the log-
arithm of) a matrix Airy function.

We will skip the description of this function because we were unable to find
a sensible operator processing ^(5-0,^1,...) into a generating series for the WP-
volumes.
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Instead we will show that the formalism of Lemma 2.2.2 has a nice self-
reproducing property in the language of formal series, but in order to use it in
our context, a different generating series for (τ^ τ</π) is needed.

2.6. A remark on Lemma 2.2.2. In the situation of this lemma, assume that A =
{0,1,2,...} and put for p ^ 1,

U(tl9...,tp):= Σ ω(al9...9ap)
t-^-'"^-. (2.30)

aι,...,ap^0 al ap

2.6.1. Lemma. We have

+ PΣ U(tl9...,ti + tp,...,tp-l). (2.31)

The proof is a straightforward calculation using (2.11).

2.6.2. Corollary. We have

P ( — ]\p-k ( \

t/(*ι) ••£/(*,) =Σ /. Σ u( Σ '/>•••, Σ'y (2 32)
k=ι κ {i,...,p}=SιU usk \jesi jesp I

5,Φ0

For the proof, apply Lemma 2.22 to A = ®?=l Zti9 R[[ti]]9 and U(t) instead of
ω(d).

We can try to use (2.32) in the case R = H*(Mg,n\ω(ά) = ωg,n(a). The l.h.s.
of (2.32) after integration becomes a polynomial with coefficients which are WP-
volumes multiplied by some factorials, whereas the r.h.s. becomes a similar poly-
nomial which is a linear combination of correlation numbers.

3. Potential of the Invertible Cohomological Field Theories

Here we explain following [KMK] that the genus zero generating function for higher
WP-volumes is the third derivative of the potential of a generic invertible CohFT
written in coordinates additive with respect to the tensor multiplication.

3.1. Definition. Let k be a ground field of characteristic zero, H a finite dimen-
sional TLi-graded linear space over k, and g an even nondegenerate symmetric
pairing on H represented by its dual element A G H 0 H.

A structure of the tree level Cohomological Field Theory on (//,#) is given by
a sequence of maps

In'.H®n-+H\MQn,k\ n £ 3,

which are §n-covariant and satisfy the following identities. For any 2 -partition σ :
{!,. . .,#} = S\ II $2, rij = \Sj\ ^ 2 and the respective embedding of the boundary
divisor φσ : M0,«1+ι x M0,W2+ι -* M0,w we have

Ψ*σ(In(y\ Θ 0 ?„)) = β(σ)(/Λl+ι Θ/Λ 2 +ι)

where ε(σ) is the sign of σ acting on the odd y/ G H.
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This notion was introduced in [KM]. One of its most interesting instances is
quantum cohomology: a canonical structure of CohFT on (H*(V9k)9 Poincare pair-
ing) for any smooth projective (or C°° compact symplectic) manifold V .

3.2. Tensor product. Let {H',g'Jf

n} and {//",#",/"} be two CohFT's. Put H =
H' <g> H" and g = gr ® g". We can define a CohFT on (H, g) by

/«(/ι ® yί' ® ® yi ® y") := ε(y', y^y'i ® ® yi) Λ /^'(yί' 0 - - ® y?) .

In the context of quantum cohomology, this product serves as a Kϋnneth formula.

3.3. Potential The potential of a CohFT (H,g,In) is the formal series Φ G k[[Hy]]
which in terms of coordinates w.r.t. a basis (Aa) of H can be written as

The main result about Φ( t) proved in [KM] and [KMK] is the following theorem.

3.3.1. Theorem. The map (H9g,In) ι-> Φ establishes a bijectίon between the follow-
ing objects'.

a) The structures of a CohFT on (H,g),
b) The solutions of the Associativity Equations in A:[[//v]] modulo terms of

degree ^ 2.

We recall that the Associativity Equations are

Va9b,c,d : £ 3β3*3βΦ gefdfdcddΦ = (_i)^^)£ d,^Φ gefdfdaddΦ ,

where (g*S) = (g(Δe,Δf))-\da = d/dxa,xa = the Z2-parity of xa and Jfl.

J.^. 77ie moduli space of one-dimensional CohFT's. We can think naively of Co-
hFT's as forming an infinite dimensional algebraic variety, with the tensor product
defining a structure of a semigroup on it. In view of 3.3.1, it is natural to try
to understand the properties of the potential as a function on the moduli space.
In particular, we would like to understand how to express the potential function
Φd1®^" associated to the tensor product of two CohFT's stf' = (//', #',/') and
£#" = (H",g"J"} in terms of the potential functions Φ^/ and Φ^//.

As a special case, let us consider CohFT structures on one-dimensional spaces.
Such a theory will be invertible with respect to the tensor product if the map
/3 from H®3 = k to H*(MQ3,k) = k is an isomorphism. We will call the theory
normalized if we have a chosen basis of length one, H = kA0, g(AQ,A0) = 1, and
I$(AQ ® AQ ® AQ) = 1. (or equivalcntly I n ( Δ f n ) = 1Λ -f terms of dimension > 0 for
all n ^ 3, where ln G H°(MQn9k) is the fundamental class). The potential function
(3.1) has the form

oo χn

= Σ cn - , (3.2)
«=3 n
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where Q — 1 but the other coefficients are arbitrary by virtue of Theorem 3.3.1,
since the Associativity Equations are empty in this case. Thus the space CohFTj(A:)
of all normalized and invertible 1 -dimensional CohFT's is canonically isomorphic
to ^jc3 + x4 k[[x]] and has canonical coordinates Cn (n ^ 4), and we would like to
describe the tensor product in terms of these coordinates.

These 1 -dimensional CohFT structures were studied in [KMK] and a different set
of coordinates was given. For s\, s2, . . . G k there is an element j/(s) G CohFT j (A:)
given by

/oo \

I n ( Λ f n ) = ωn[sι,s29 ...]:= exp £ saωn(a) (n ̂  3) , (3.3)
\fl=l /

in the notation of our paper and [KMK]. Then it was shown that the map s ι— >• j/(s)
gives a bijection between &N and CohFT^) and that j2/(s' ) 0 ja/(s" ) ̂  «a/(s' + s"),

3.4.1. Theorem [KMK]. The parameters (s\,S2, . . .)form a coordinate system on the
space of normalized 1 -dimensional CohFT '5*. The tensor product becomes addition
in these coordinates.

Denote by Φ( c s) the potential associated to the theory (3.3). The connection
with what we have done in this paper is that the third derivative of the potential
Φ(.x;s) associated to the theory (3.3) is just our generating function for higher WP-
volumes. Indeed, Definition (3.1) gives

oo χn m(a)

Φ(*;*ι,*2,...)= Σ ~ I Σ Π ™n(aT(a}- ,

and the third derivative of this is obviously the function F(Λ S) = X^m F(m)xlmlsm

defined in 1.6. We now use this connection to describe both the tensor product and
the coordinates on the space of invertible 1 -dimensional CohFT's explicitly.

3.4.2. Theorem. Define bίjections

- +x4k[[x]] <-+ 1 +ηk[[η]] , (3.4)

where the first map assigns to a theory stf its potential Φ^(x) and the second map
is defined by

oo

Φ(jc) <-> U(η) = / e-*"(nxVidx (3.5)
o

or alternatively by assigning to Φ(x) = ^x3 -\ ---- the power series U(η) =

Σ^o^«^" where x = Σ^r^+n! = y + ' ' ' ™ tne inverse power series of y =
Φ"(x) — x + - - -. Then the tensor product of \-dimensional CohFT's corresponds
to multiplication in 1 +^[M].' ί/^'^'Ό/) = U^>(η)U^»(η\ The coefficients of
— log f/jXty) are the canonical coordinates of stf .
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Proof. Equations (2.25) and (2.26) tell us that the two descriptions of U(η) given

in the theorem agree and give e~Sιη~S2η when Φ(x) = Φ( c s), and in view of
Theorem 3.4.1 this implies the result in general.

3.5. Explicit formulas. Substituting (3.2) (with C^ = 1) into (3.5), expanding, and
integrating term by term gives the explicit formula

for the coefficients of U(η) in terms of the coefficients of Φ(x), and the same
argument applied to the inverse power series gives the reciprocal formula

r
"=

(2/11+3/12 Λ2

Combining these formulas with the identity U^>®d"(n} — U^>(η} U^"(r\) we obtain
the explicit law for the tensor product of two normalized invertible CohFT's in terms
of the coefficients of their potential functions:

c5 = c^

c6 = q

C7 - C!j + (35 q q + 14 φ C + (61 + 33 cfc's' + 33

Finally, we observe that the values of the genus 0 Weil-Petersson volumes K(m)
can be calculated numerically from any of a number of formulas in this paper: the
recursion relation (1.4), the differential equation (1.24), the closed formula (2.18), or
the generating function formula (2.19). Here are the values up to |m| = 5, expressed
in terms of the generating function (1.23):

+ 49946 + 4822 344 + 470 + 20sιs4

Note that the coefficient J^ ωm of — j^jy is integral for every m since the coho-

mology classes (%„(#) are integral for g = 0.
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Appendix

In this appendix we make a few remarks on the asymptotics of the Betti numbers
and Euler characteristics of the moduli spaces of M0n and on the Weil-Petersson
volumes(0.2). Set P\(q) = I and for n ^ 2 let

Bj(n) = dim#'(M0,«+ι), Pn(q) = Σ Bj(n)q*

7^0

be the Betti numbers and Poincare polynomial, respectively, of MO,«+I. It was shown
in [M] that the polynomials Pn satisfy the recursion

Pn+\(q) = Pn(q) + r Σ ( j, ) Λnω^+i-Λ) (/i ^ 1). (A.I)
m=2

This is equivalent to the differential equation

dy l+y

fix 1 — q2(y — x)

for the generating function

^ „ , , xn I 7 .1 + q2 , ,1 + 5q2 + «

(A.2)

1 ! 2 2 4

The solution is given by the implicit equation

(l+yf = l+q2x + q4(y-x). (A.3)

If we specialize to q = 1, then the solution of (A.2), or the limiting value of (A.3),
is given by the implicit equation

• = 2j; - (1 + y) log( 1 + ̂ ) - J^ - Σ2 ̂ _υ (q = 1) ,
CXD

Σ

from which the asymptotic formula (0.10) for the values χ(Mo,M+ι) = Pn(\} follows
easily. (The derivative dx/dy vanishes simply at y = e — 1, x = e — 2, so the power
series expansion of y(l,x) as a function of .x has radius of convergence e — 2 with
a square-root singularity at x = e — 2). The same method applies to the inversion
formula (0.8) to give the asymptotic equation (0.9) with the constant C given by
C = 2yo /o(yo), where y0 = 2.4048255577 is the smallest zero of the Bessel function
JQ(X) and the other constants in the expansion can be obtained by doing a more
detailed analysis of the function ^/yJ\(2^/y) near its maximum.

We can also use (A.I) and (A.3) to study the behavior of the Betti numbers
Bj(n) as a function of n for fixed j. From (A.I) we get

B4(n) = 3" - i(«2 + 5n + 8)2" + i(3n4 + 2«3 + 21«2 + 22n + 12) ,
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and more generally

B2j(n) = Σ,Pjj(»H + l-ir (A.4)
7=0

for some polynomials Pjj(n) of degree 21 in n. (The odd Betti numbers are 0). To
see this, and to get information about the polynomials p j j , we observe that (A.4) is
equivalent to the statement that for each j we have the generating function identity

ΣBj(n)^=Aj(x,e*)
n=l n'

for some polynomial Aj(x,u) G Q[M,JC], the first few values being

Ao = u-l9 A2 = u2 - (1 + x + ^-)w,

A4 = \ u3 - (2 + 3;c + jc2) u2 4- Q + 2x + 2^2 + ̂  +

The function j; is then replaced by a power series y(q,x,u) = ^Aj(x,u)qJ in three
variables, the previous power series being obtained by setting u — e^, and the recur-
sion (A.I) gives the same differential equation (A.2) as before but with the left-hand
side replaced by ^ + u ̂ . The solution is given by the implicit equation

(A.5)

The polynomial Aj(u,x) has degree j + 2, where w and * are assigned degrees 2
and 1, respectively, and u divides Aj for j ^ 1, so q2(l + j) = Φ(q,qx,q2u) with

,X, £7) e Q[b,JΓ, £/]]. Then (A.5) gives

Φ = Ue~xlq(\ +qX + q2Φ + O(q3))l/q = U eφ~

so Φ(0,X, U) is a solution of Φe~φ = Ue~x /2. Inverting this gives

oo ί j I ιy~ι
1 + y = q~2 φ = q~2 Σ . — Uj+λ e

7=1 β

which with u = Uq~2, x = Xq~l translates back as

or, for the polynomials pjj defined in (A.4), as

In particular,
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